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Dispersions and adjusted frequencies 
in corpora

Stefan Th. Gries
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The most frequent statistics in corpus linguistics are frequencies of occurrence 
and frequencies of co-occurrence of two or more linguistic variables. However, 
such frequencies in isolation may sometimes be misleading since they do not 
take into consideration the degree of dispersion of the relevant linguistic vari-
able. Many dispersion measures and adjusted frequency measures have been 
suggested but are neither widely known nor applied. Another unfortunate aspect 
of such measures is that many also come with a variety of problems. I pursue 
three objectives with this article. First, I want to raise awareness of this issue 
and make the available measures more widely known, so I present an overview 
of many measures of dispersion and adjusted frequencies. Second, I propose 
a conceptually simple alternative measure, DP, explain and exemplify it, and 
compare it to previously discussed measures. Third and most importantly, I urge 
corpus linguists to explore the notion of dispersion in more detail and outline a 
few proposals which steps to take next.

Keywords: frequency of occurrence, frequency of co-occurrence, dispersion, 
constructions/patterns, collocations, collostructions

1. Introduction

The most frequently used statistic in corpus linguistics is the frequency of occur-
rence of some linguistic variable or the frequency of co-occurrence of two or more 
linguistic variables. The former is usually either invoked for individual words or 
grammatical patterns or more globally in the form of partial or complete frequen-
cy lists. In both of these forms, frequencies are reported, among other things, to 
indicate the importance of particular words / grammatical patterns for language 
teaching or to reflect the degree of cognitive entrenchment of particular words / 
grammatical patterns.
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However, even though this is apparently not recognized much in the field, 
frequencies of (co-)occurrence may sometimes be incredibly misleading.1 An in-
structive example for how raw frequencies can be misleading indicators of the 
overall importance of words is discussed by Leech et al. (2001). They show that 
the words HIV, keeper, and lively are about equally frequent in the British National 
Corpus (16 occurrences p.m.), which would usually be interpreted as an indica-
tion of their overall similar importance. A look at how these words are distributed 
in the corpus, however, suggests a very different result. While lively and keeper 
both occur in 97 of 100 equally-sized corpus parts, HIV occurs in only 62, which 
already indicates that HIV is much more specialized. This assessment is supported 
when Leech et al. compute a more refined measure of dispersion, Juilland et al.’s 
D. Juilland et al.’s (1970) D for lively, keeper, and HIV is 0.92, 0.87, and 0.56 re-
spectively, indicating that these three words are far from being equally distributed 
across the corpus and that, more generally, frequency data should be augmented 
with information on the dispersion of the items in question. To give just one other 
example, in the domain of second language acquisition, Ellis and Simson-Vlach 
(2005) as well as Ellis et al. (2007) demonstrate that the number of academic genres 
in which a particular n-gram appears 4+ times — what they refer to as ‘range’ — 
is significantly correlated with processing speed and among the most important 
determinants of subjects’ reading times and, thus, their first sorting criterion in 
determining n-gram lists for learners of (academic) English.

Although dispersion is virtually always only mentioned in the domain of fre-
quencies of occurrence (if at all, that is), it can in fact be equally troublesome when 
one turns to an area where many people have been concerned with the choice 
of the right kind of statistics: co-occurrence frequencies or even more complex 
statistical measures based on co-occurrence frequencies. For example, Stefanow-
itsch and Gries (2003) introduced an extension of statistical approaches towards 
collocations or colligations called collexeme analysis. This method quantifies the 
degree to which particular words are attracted to, or repelled by, syntactically de-
fined slots in grammatical patterns or constructions. Examples include the verb in 
the verb slot in the passive construction (cf. (1)) or in the ditransitive construction 
(cf. (2)); cf. Stefanowitsch and Gries (2003) for further examples.

 (1) a. John was shot by Mary.
  b.  verbs attracted to the passive: base, concern, use, involve, publish, 

associate, …
  c. verbs repelled by the passive: have, think, get, say, want, do, know, …

 (2) a. John gave Mary the book.
  b.  verbs attracted to the ditransitive: give, tell, show, offer, cost, teach, wish, …
  c. verbs repelled by the ditransitive: bring, play, take, pass, make, sell, …
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Crucially, the degree of attraction in collexeme analysis is computed on the basis 
of co-occurrence frequencies as represented in Table 1.

Table 1. Schematic representation of the table underlying most co-occurrence statistics
Construction c Other constructions Row totals

Verb v A b a+b
Other verbs C d c+d
Column totals a+c b+d a+b+c+d

While a variety of different measures are available for the analysis of such tables, 
Stefanowitsch and Gries (2003) used the pFisher-Yates exact test-value; later publications 
converted this p-value into a more easily interpretable negative logarithm to the 
base of 10 of that p-value such that small values and large values indicate degrees 
of attraction and repulsion respectively. This method and its extensions have pro-
vided interesting results in a variety of applications — the syntax-lexis interface 
(Gries & Stefanowitsch 2004a, b), syntactic priming (Gries 2005; Szmrecsanyi 
2005, 2006), second language acquisition (Gries & Wulff 2005) — and it has ex-
perimentally been shown to be a better predictor of native speaker performance 
or judgments than just raw frequencies (cf. Gries et al. 2005, to appear; Ellis & 
Simpson-Vlach, to appear).

However, in spite of these advantages, like all methods based on raw frequen-
cies of (co-)occurrence it can run into problems when the dispersion of elements 
is not taken into consideration. Stefanowitsch and Gries’s (2003) analysis of the 
imperative construction in the British component of the International Corpus of 
English (ICE-GB) yielded the list of verbs in (3) that are most strongly attracted to 
the imperative (in descending order, with observed frequencies in the imperative 
in parentheses):2

 (3) let (86), see (171), look (74), listen (26), worry (21), fold (16), remember (35), 
check (21), process (15), try (47), hang on (17), tell (46), note (16), add (21), 
keep (28)

The problem is that the highly-ranked verbs fold and process occur in the impera-
tive each in just a single file; the former in a file containing a text on origami, the 
latter in a file from a cook book. Thus, although there is a relatively high frequency 
of occurrence of both verbs in the imperative — especially given their overall not 
so high frequency — and, therefore, a statistically high degree of attraction, this 
statistical result must be taken with a grain of salt since there is a high likelihood 
that these high frequencies are not particularly representative of what is going in 
the corpus as a whole (cf. Stefanowitsch & Gries 2003:237f.).
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Gries (2006) returned to this problem and showed that a variety of other verbs 
from a similar frequency range as fold and process — the frequency range from 
13 to 17 occurrences in the imperative — may yield lower degrees of attraction 
than fold and process, but are actually more widely distributed in the corpus as 
measured by both the number of files in which the verbs occur in the ditransitive 
construction and Carroll’s D2. I will return to this example below.

Both these examples show that the dispersion of elements or co-occurring ele-
ments in a corpus is highly relevant information both in and of itself as well as a 
factor that can strongly influence many other corpus-linguistic statistics. However, 
neither is this issue acknowledged in the vast majority of the corpus-linguistic 
literature nor is it yet clear how to best handle dispersion and its impact on the 
interpretation of observed frequencies. The following section surveys a variety of 
measures that have been suggested in the literature as ways to quantify dispersion 
and adjust observed frequencies on the basis of an elements dispersion throughout 
a corpus.

2. An overview of dispersion measures and adjusted frequencies

To the best of my knowledge, this section surveys all dispersion measures and ad-
justed frequencies that have been proposed so far. While this paper will be mostly 
concerned with the former kind of measure, many measures of the latter kind are 
derived from the former and the whole topic of adjusted frequencies is inextrica-
bly related to matters of dispersion, which is why I will survey both kinds of mea-
sures here. To clarify how all of these measures are computed and provide a more 
unified overview, a few terms need to be introduced.

Let us assume this is our corpus of length l = 50, where letters represent words 
and the pipes the division of the corpus into different, here, n = 5 equally-sized 
parts.3

b a m n i b e u p k | b a s a t b e w q n | b c a g a b e s t a | b a g h a b e a a t | 
b a h a a b e a x a

The percentages that each of the parts makes up of the whole corpus — in this case 
all 0.2 — are denoted as s1 to s5. Let’s assume we are interested in the word a in the 
corpus. The frequencies with which a occurs in each part are denoted as v1, v2, etc.; 
as you can see, a occurs once in the first part, twice in the second part, and so on, 
such that v1 = 1, v2 = 2, v3 = 3, v4 = 4, v5 = 5. The vector with all observed frequencies 
(1, 2, 3, 4, 5) is referred to as v and the sum of all observed frequencies, i.e., the 
number of occurrences of a is referred to as f (f = Σv = 15). Note also some other 
words’ distributions: x occurs only once in the whole corpus; e occurs once in each 
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part and always in the same position, b occurs twice in each file and always in the 
same positions. In what follows, I will first provide an overview of the dispersion 
measures (in Section 2.1) and then turn to adjusted frequencies based on corpus 
parts (in Section 2.2) as well as adjusted frequencies based on distances between 
successive occurrences (in Section 2.3).4 Section 2.4 will then discuss a variety of 
problems of these measures.

2.1 Dispersion measures

The first dispersion measures to be mentioned here are general statistics and not 
specifically geared to the dispersion of linguistic items in texts but more often used 
as general indices of variation/dispersion:

 (4) range:  number of parts containing a (x times) = 5 (x is usually, but need not 
be, 1)

 (5) max-min difference: max(v) − min(v) = 4

 (6) standard deviation sd:  
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 A measure from the domain of information retrieval that was proposed at around the 

same time and is conceptually similar to an adjusted frequency measure that was proposed by 

Engvall is inverse document frequency idf (cf. Spärck Jones (1972) and Robertson (2004) for 

discussion). It is computed as is shown in (12). 

   where  

 6

variation/dispersion:

(4) range: number of parts containing a (x times) = 5 (x is usually, but need not be, 1) 

(5) max-min difference: max(v) - min(v) = 4 

(6) standard deviation sd:
( )

581.1
1

1

2

≈
−

−∑
=

n

vv
n

i
i

  where 3==
n
fv

(7) variation coefficient vc: 527.0≈v
sd

(8) chi-squared χ2: ( ) 33.3
1

2

≈∑
=

n

i i

ii

v expected
v expected - v observed  where expected vi=si · f

 Next, a few well-known “classics” from the early 1970s: 

(9) Juilland et al.’s (1971) D: 736.011 ≈−− n
vc

(10) Rosengren’s (1971) S: 937.011 2

1
≈⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛∑
= f

v
n

n

i
i  where min S = n1  = 0.2 

(11) Carroll’s (1970) D2: 926.0
log

11loglog
21

22 ≈⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠

⎞
⎜
⎝

⎛
− ∑

= nf
vvf

n

i
ii

 A measure from the domain of information retrieval that was proposed at around the 

same time and is conceptually similar to an adjusted frequency measure that was proposed by 

Engvall is inverse document frequency idf (cf. Spärck Jones (1972) and Robertson (2004) for 

discussion). It is computed as is shown in (12). 

 

 (7) variation coefficient vc: 

 6

variation/dispersion:

(4) range: number of parts containing a (x times) = 5 (x is usually, but need not be, 1) 

(5) max-min difference: max(v) - min(v) = 4 

(6) standard deviation sd:
( )

581.1
1

1

2

≈
−

−∑
=

n

vv
n

i
i

  where 3==
n
fv

(7) variation coefficient vc: 527.0≈v
sd

(8) chi-squared χ2: ( ) 33.3
1

2

≈∑
=

n

i i

ii

v expected
v expected - v observed  where expected vi=si · f

 Next, a few well-known “classics” from the early 1970s: 

(9) Juilland et al.’s (1971) D: 736.011 ≈−− n
vc

(10) Rosengren’s (1971) S: 937.011 2

1
≈⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛∑
= f

v
n

n

i
i  where min S = n1  = 0.2 

(11) Carroll’s (1970) D2: 926.0
log

11loglog
21

22 ≈⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠

⎞
⎜
⎝

⎛
− ∑

= nf
vvf

n

i
ii

 A measure from the domain of information retrieval that was proposed at around the 

same time and is conceptually similar to an adjusted frequency measure that was proposed by 

Engvall is inverse document frequency idf (cf. Spärck Jones (1972) and Robertson (2004) for 

discussion). It is computed as is shown in (12). 

 (8) chi-squared χ2: 

 6

variation/dispersion:

(4) range: number of parts containing a (x times) = 5 (x is usually, but need not be, 1) 

(5) max-min difference: max(v) - min(v) = 4 

(6) standard deviation sd:
( )

581.1
1

1

2

≈
−

−∑
=

n

vv
n

i
i

  where 3==
n
fv

(7) variation coefficient vc: 527.0≈v
sd

(8) chi-squared χ2: ( ) 33.3
1

2

≈∑
=

n

i i

ii

v expected
v expected - v observed  where expected vi=si · f

 Next, a few well-known “classics” from the early 1970s: 

(9) Juilland et al.’s (1971) D: 736.011 ≈−− n
vc

(10) Rosengren’s (1971) S: 937.011 2

1
≈⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛∑
= f

v
n

n

i
i  where min S = n1  = 0.2 

(11) Carroll’s (1970) D2: 926.0
log

11loglog
21

22 ≈⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠

⎞
⎜
⎝

⎛
− ∑

= nf
vvf

n

i
ii

 A measure from the domain of information retrieval that was proposed at around the 

same time and is conceptually similar to an adjusted frequency measure that was proposed by 

Engvall is inverse document frequency idf (cf. Spärck Jones (1972) and Robertson (2004) for 

discussion). It is computed as is shown in (12). 

 where expected vi = si ∙ f

Next, a few well-known “classics” from the early 1970s:

 (9) Juilland et al.’s (1971) D: 

 6

variation/dispersion:

(4) range: number of parts containing a (x times) = 5 (x is usually, but need not be, 1) 

(5) max-min difference: max(v) - min(v) = 4 

(6) standard deviation sd:
( )

581.1
1

1

2

≈
−

−∑
=

n

vv
n

i
i

  where 3==
n
fv

(7) variation coefficient vc: 527.0≈v
sd

(8) chi-squared χ2: ( ) 33.3
1

2

≈∑
=

n

i i

ii

v expected
v expected - v observed  where expected vi=si · f

 Next, a few well-known “classics” from the early 1970s: 

(9) Juilland et al.’s (1971) D: 736.011 ≈−− n
vc

(10) Rosengren’s (1971) S: 937.011 2

1
≈⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛∑
= f

v
n

n

i
i  where min S = n1  = 0.2 

(11) Carroll’s (1970) D2: 926.0
log

11loglog
21

22 ≈⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠

⎞
⎜
⎝

⎛
− ∑

= nf
vvf

n

i
ii

 A measure from the domain of information retrieval that was proposed at around the 

same time and is conceptually similar to an adjusted frequency measure that was proposed by 

Engvall is inverse document frequency idf (cf. Spärck Jones (1972) and Robertson (2004) for 

discussion). It is computed as is shown in (12). 

 (10) Rosengren’s (1971) S: 

 6

variation/dispersion:

(4) range: number of parts containing a (x times) = 5 (x is usually, but need not be, 1) 

(5) max-min difference: max(v) - min(v) = 4 

(6) standard deviation sd:
( )

581.1
1

1

2

≈
−

−∑
=

n

vv
n

i
i

  where 3==
n
fv

(7) variation coefficient vc: 527.0≈v
sd

(8) chi-squared χ2: ( ) 33.3
1

2

≈∑
=

n

i i

ii

v expected
v expected - v observed  where expected vi=si · f

 Next, a few well-known “classics” from the early 1970s: 

(9) Juilland et al.’s (1971) D: 736.011 ≈−− n
vc

(10) Rosengren’s (1971) S: 937.011 2

1
≈⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛∑
= f

v
n

n

i
i  where min S = n1  = 0.2 

(11) Carroll’s (1970) D2: 926.0
log

11loglog
21

22 ≈⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠

⎞
⎜
⎝

⎛
− ∑

= nf
vvf

n

i
ii

 A measure from the domain of information retrieval that was proposed at around the 

same time and is conceptually similar to an adjusted frequency measure that was proposed by 

Engvall is inverse document frequency idf (cf. Spärck Jones (1972) and Robertson (2004) for 

discussion). It is computed as is shown in (12). 

 where min S =

 6

variation/dispersion:

(4) range: number of parts containing a (x times) = 5 (x is usually, but need not be, 1) 

(5) max-min difference: max(v) - min(v) = 4 

(6) standard deviation sd:
( )

581.1
1

1

2

≈
−

−∑
=

n

vv
n

i
i

  where 3==
n
fv

(7) variation coefficient vc: 527.0≈v
sd

(8) chi-squared χ2: ( ) 33.3
1

2

≈∑
=

n

i i

ii

v expected
v expected - v observed  where expected vi=si · f

 Next, a few well-known “classics” from the early 1970s: 

(9) Juilland et al.’s (1971) D: 736.011 ≈−− n
vc

(10) Rosengren’s (1971) S: 937.011 2

1
≈⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛∑
= f

v
n

n

i
i  where min S = n1  = 0.2 

(11) Carroll’s (1970) D2: 926.0
log

11loglog
21

22 ≈⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠

⎞
⎜
⎝

⎛
− ∑

= nf
vvf

n

i
ii

 A measure from the domain of information retrieval that was proposed at around the 

same time and is conceptually similar to an adjusted frequency measure that was proposed by 

Engvall is inverse document frequency idf (cf. Spärck Jones (1972) and Robertson (2004) for 

discussion). It is computed as is shown in (12). 

= 0.2

 (11) Carroll’s (1970) D2: 

 6

variation/dispersion:

(4) range: number of parts containing a (x times) = 5 (x is usually, but need not be, 1) 

(5) max-min difference: max(v) - min(v) = 4 

(6) standard deviation sd:
( )

581.1
1

1

2

≈
−

−∑
=

n

vv
n

i
i

  where 3==
n
fv

(7) variation coefficient vc: 527.0≈v
sd

(8) chi-squared χ2: ( ) 33.3
1

2

≈∑
=

n

i i

ii

v expected
v expected - v observed  where expected vi=si · f

 Next, a few well-known “classics” from the early 1970s: 

(9) Juilland et al.’s (1971) D: 736.011 ≈−− n
vc

(10) Rosengren’s (1971) S: 937.011 2

1
≈⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛∑
= f

v
n

n

i
i  where min S = n1  = 0.2 

(11) Carroll’s (1970) D2: 926.0
log

11loglog
21

22 ≈⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠

⎞
⎜
⎝

⎛
− ∑

= nf
vvf

n

i
ii

 A measure from the domain of information retrieval that was proposed at around the 

same time and is conceptually similar to an adjusted frequency measure that was proposed by 

Engvall is inverse document frequency idf (cf. Spärck Jones (1972) and Robertson (2004) for 

discussion). It is computed as is shown in (12). 

A measure from the domain of information retrieval that was proposed at around 
the same time and is conceptually similar to an adjusted frequency measure that 
was proposed by Engvall is inverse document frequency idf (cf. Spärck Jones 
(1972) and Robertson (2004) for discussion). It is computed as is shown in (12).

 (12) idf: 

 7

(12) idf: 0
 containing parts ofnumber 

log2 =
a

n

 Lyne’s (1985:129, n. 2) D3 is a preliminarily suggested measure that is based on the chi-

square measure for quantifying dispersion: 

(13) D3: 944.0
4

1 2

≈
−
f
χ

 Much more recently, Zhang et al. (2004) proposed a measure called Distributional 

Consistency DC, which is defined as in (14) and which, in this artificial example, yields the same 

result as Rosengren’s S.

(14) Distributional consistency DC: 937.01 2

1
≈⎟

⎠

⎞
⎜
⎝

⎛ ∑
=

n

i
ivn

 The final two measures discussed in this section are rather different from the others in 

how corpus parts are involved and bridge the gap to measures dealt with further below. First, 

Quasthoff (2007) proposed a measure on what he calls fractal dimensions of words (and which I 

will call FD here).5 His approach is very interesting and different from all other ones mentioned 

so far since while it is based on corpus parts, he does not assume an existing division of the 

corpus into parts (on the basis of registers, files, etc.). Rather, he appears to propose to divide the 

corpus into successively smaller parts and count in how many of these parts a is attested. For 

example, he discusses a case where a word occurs in 2 out of n=3 parts, in 4 out of n=9 parts, in 

8 out of n=27 parts, etc. From this unpublished ms., however, it is unclear (to me) how exactly 

the number of divisions n is determined and which of the resulting quotients in (15) is then 

chosen or whether some kind of average is computed, which is why I cannot apply this formula 

to the present example corpus. 
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parts ofnumber log 

containing parts ofnumber log a  for increasingly larger numbers of parts 
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Second, Washtell (2007) is an interesting approach based on a measure of spatial 
dispersion from geography. On the one hand, his approach involves the division 
of the corpus into parts and counting how often a occurs in each of the n files, just 
like all others discussed in this section. On the other hand, his approach does not 
settle for just using the frequencies with which a is observed in each corpus part, 
but also their distances to each other within these parts. More specifically, in those 
corpus parts in which a is observed more than once, he also utilizes the distances 
between the different occurrences of a such that each occurrence’s minimal dis-
tance to another occurrence is determined and used within the numerator of the 
formula in (16).


this should be
1-(chi-squared/4f)
The script computes it correctly, but I got this wrong in the formula editor; thanks to Laurence Anthony for pointing this out.
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 According to Lyne (1985:101), an adjusted frequency measure suggested by 
Engvall (1974: 46–55) simply multiplies a’s observed frequency with the percent-
age of corpus parts in which a is observed:

 (20) Engvall’s measure: f ∙ percentage of parts containing a = 15

Kromer’s (2003) proposes what he considers a psycholinguistically more adequate 
measure, the psychophysically relations-based usage measure UR:

 (21) Kromer’s (2003) UR: 
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determined by Equation (6)” (2003:180) – but he does not provide any corroborating 
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It must be pointed out, though, that Kromer unfortunately only claims that his 
measure is psycholinguistically more appropriate — “[i]t is accepted as a working 
hypothesis that while reading the text, the subjective feeling, caused by a specific 
word with frequency F, is determined by Equation (6)” (2003:180) — but he does 
not provide any corroborating psycholinguistic evidence for this claim.

2.3 Adjusted frequencies based on distances

An alternative approach to adjusted frequencies is not based on the frequencies of 
occurrence of a in different parts of the corpus but solely on the distances between 



© 2008. John Benjamins Publishing Company
All rights reserved

410 Stefan Th. Gries

successive occurrences of a in the corpus. For example, Savický and Hlaváčová’s 
(2002) approach to adjusted frequencies differs from nearly all other approaches 
so far — the exception is Washtell (2007). They propose the three following mea-
sures, for which we need another variable: d1 to df refer to the distances between 
occurrences of a in the corpus after the corpus has been shifted such that an oc-
currence of a is the last element of the corpus. In this case, the distances d1 to d15 
become (2, 10, 2, 9, 2, 5, 2, 3, 3, 1, 3, 2, 1, 3, 2), which is used for the following 
measures:
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 Savický and Hlaváčová (2002:228f.) conclude that, on the whole, ARF is the most stable 

of the three measures, but do not compare their measures to other adjusted frequencies. 

 

2.4 Problems of existing measures 

Unfortunately, several of these coefficients – and from now on I will concentrate more on the 

dispersion measures – suffer from some problems, which will be discussed in the following 

sections. The main objective of this discussion is not to single out particular measures for 

criticism – the main objective is to showcase some problems in such a way as to highlight 

important dimensions of the measures which are in need of further exploration and which may be 

taken into account for the construction of new (better) measures. 

 

2.4.1 Problems of parts-based measures 

2.4.1.1 The sizes of corpus parts 

One problem is that some parts-based measures require the corpus parts for which a dispersion 

measure is computed to be identically large.8 However, this is usually not true because corpus 

files, genre-based corpus parts, or parts from any other easy and/or meaningful corpus divisions 

are usually not equally-sized, and creating equally-sized corpus parts can be practically difficult 

and will likely conflate corpus parts that should not be conflated. For example, since the 500 files 

of the ICE-GB are not exactly equally large, the dispersion values in Gries (2006) can only be 

interpreted heuristically. A related problem is that while some measures do not strictly speaking 

require equally-sized corpus parts – idf is one such example – that also means that potentially 

relevant information about corpus sizes, which will be discussed below, cannot be figured into 

the computation meaningfully. 

 For some measures, workarounds have been proposed (which then usually also apply to 
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problem is that while some measures do not strictly speaking require equally-sized 
corpus parts — idf is one such example — that also means that potentially relevant 
information about corpus sizes, which will be discussed below, cannot be figured 
into the computation meaningfully.

For some measures, workarounds have been proposed (which then usually 
also apply to the adjusted frequencies derived from the respective dispersion mea-
sures). Juilland et al.’s D, for example, can be adjusted for unequal corpus sizes by 
computing vc not on the basis of the standard deviation of the observed frequen-
cies, but of the standard deviation of the observed relative frequencies. The com-
putation of the mean and the sd for Juilland et al.’s D changes to (25), the results 
of which are then inserted into (7), and then into (9). In the case of equally-sized 
parts s1 to s5, the adjusted D is of course identical to the unadjusted D. A similar 
adjustment is available for Rosengren’s S, which changes its formula into (26). In-
terestingly, these proposed adjustments have hardly been explored, it seems, as 
they are not even usually referred to in current textbooks or research articles (cf. 
again note 8).
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2.4.1.2 Dispersion measures and their defined limits. Some proposed dispersion 
measures vary widely in the range of values they may take on. For instance, the 
range, the standard deviation, the variation coefficient, and chi-square are — un-
like some other values — not normalized to fall into a particular convenient range 
such as 0 to 1, which makes it difficult to compare values across different studies.

A related but smallish issue one may find undesirable is that with five equally-
sized corpus parts, all measures cannot get the theoretical maximum value for (2, 
2, 2, 2, 1). For example, Carroll’s D2 for the above distribution is 0.967 rather than 
the theoretical maximum of 1 although there is of course no way that 9 occur-
rences of a word could be more evenly distributed across 5 equally-sized different 
corpus parts.

2.4.1.3 Dispersion measures outside of the defined limits. Another set of problems, 
which I have not seen discussed so far, is concerned with the fact that some disper-
sion measures can take on values outside of their intended range. Both Juilland et 
al.’s D and Lyne’s D3 do not always result in a value within the expected range. They 
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are supposed to fall between 0 and 1, but as the reader can easily verify, D and D3 
for a word x that occurs only once in one out of six corpus files results in disper-
sion values of D = −0.095 and D3 = −0.25 respectively.

2.4.1.4 Dispersion measures and the number of corpus parts. Third and relatedly, 
some measures’ ranges are dependent on the number of corpus parts.9 For ex-
ample, in the above corpus, the word e occurs equally frequently in each of the 
5 equally-sized corpus parts and the parts-based measures that are supposed to 
fall between 0 and 1 — Juilland et al.’s D, Carroll’s D2, Rosengren’s S, DC — return 
their maximal value, 1, to indicate a maximally even distribution. However, x is 
maximally underdispersed in that it occurs only once in the corpus and that is 
problematic for some measures. The parts-based measures with the exception of 
Carroll’s D2 do not return their theoretical minimal value of 0 but 0.2, i.e., 1 di-
vided by the number of corpus parts n, which means that the value decreases with 
increasing numbers of corpus parts. In addition, Juilland et al.’s D even breaks 
down and returns a negative value, which it is not supposed to return (cf. Sec-
tion 4.1 below for more discussion).

2.4.1.5 Lack of sensitivity. Some measures appear to be not as sensitive to distri-
butional differences as needed or desired, or too sensitive. As for a lack of sen-
sitivity, measures may be too insensitive in the sense that they cannot pick up 
potentially relevant differences.10 For example, as Francis and Kučera (1982:463), 
citing Muller (1965), discuss, Juilland et al.’s D does not distinguish between the 
following two distribution vectors for both of which D = 0.526: (4, 2, 1, 1, 0) and (3, 
3, 2, 0, 0). In addition, as Rosengren (1971:117) himself has shown, Rosengren’s S 
does not distinguish between the pairs of the vectors in the following two distribu-
tions (4, 4, 4, 4, 0) and (9, 4, 1, 1, 1) (both S = 0.8) as well as (9, 9, 4, 0, 0) and (16, 
4, 1, 1, 0) (both S = 0.582) although in both cases intuitively the latter member of 
each pair is less equally spread (assuming equal corpus sizes, that is); the same is 
actually true of DC.

Second, measures may be too insensitive such that they uniformly output their 
extreme value when all occurrences of a word a are in one and the same corpus 
part irrespective how large that corpus part is compared to the others. In an admit-
tedly hypothetical extreme case, one of three corpus parts may account for 98% 
of the corpus and if then all instances of a occurred in that part, this would be 
the expected natural case: the tokens of a are found in a large part of the corpus, 
which is what large dispersion is all about. (Parts-based measures, but not neces-
sarily distance-based measures, would still face the problem that if the sizes of 
corpus parts are very heterogeneous as in this example, then measures based on 
corpus parts cannot take the dispersion of the expression in question within the 
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large corpus part(s) into account.) By contrast, if all occurrences of a occurred in 
one small part, this would be very underdispersed/clumpy, which is why the sizes 
of the corpus parts must be figured into the equation (cf. Section 4.1 below for 
exemplification).

2.4.1.6 Oversensitivity. As for being oversensitive, Lyne (1985:107–9), for example, 
shows how Juilland et al.’s D is impartial about zeroes — i.e., corpus parts not 
containing the word a in question — while Carroll’s D2 penalizes them and Rosen-
gren’s S penalizes them even more strongly, which Lyne considers objectionable on 
the basis of his data.11 Also, some measures such as max-min difference, the stan-
dard deviation sd, or chi-square are very sensitive in the sense that few extreme 
values or very small expected frequencies can distort results considerably. (This is 
a well-known disadvantage that rules out the use of chi-square in many corpus-
linguistic situations.)

2.4.2 Problems of distance-based measures
Given the different nature of the distance-based measures, the problems they come 
with are somewhat different from those of parts-based ones. For example, under 
certain (admittedly marginal) circumstances and from a certain perspective, the 
measures by Savický and Hlaváčová (2002) can lack sensitivity. Let us assume a 
small corpus containing one file with spoken dialog of two interlocutors in which 
each interlocutor produces exactly one ten-word sentence on each turn. Let us 
further assume that one interlocutor consistently produces word a at position 5 
in each turn and the other one does not. In this case, the measures proposed by 
Savický and Hlaváčová (2002) would, since they are based on distances between 
successive occurrences and not on corpus parts, yield the result that a is perfectly 
evenly dispersed in the corpus: all distances are 20. A parts-based measure, on the 
other hand, is theoretically able to see that the one file consists of two parts — two 
parts each of which contains all sentences for each interlocutor — and that a only 
shows up in the part for one interlocutor and accordingly output a more adequate 
value. Similar comments apply to corpora with different genre parts etc.12

Another issue is the question of how such measures handle different corpus 
parts, which results in a real catch-22 for these measures. For example, in the 
above corpus example, the computation of Savický and Hlaváčová’s measures will 
simply ignore corpus parts and their distances may therefore in fact cross docu-
ment boundaries. That may be disadvantageous in the sense that it is linguistically 
counterproductive, but it may also be advantageous in the sense that their measure 
is more widely applicable as it avoids the methodological problems Washtell’s ap-
proach runs into. His measure is linguistically more intuitive as it respects docu-
ment boundaries, but then methodologically more problematic because it cannot 
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handle many lower-frequency elements: since his measures require within-part 
neighbors for its computation, by definition it must disregard all instances where 
a occurs just once in a part. Thus, it cannot even be applied at all to distributions 
where the element in question occurs just once in the corpus (cf. x in the above 
example where it should output most extreme underdispersion) or where the ele-
ment in question occurs just once in each corpus part (cf. e in the above example), 
and even when the element in question occurs in corpus parts more than once, 
the measure still becomes more unreliable the more occurrences of the element in 
question are the only ones in their respective parts.

Then, unlike parts-based measures, distance-based measures can of course be 
sensitive to order effects. They output different values both when the corpus parts 
are arranged differently or when the words in the corpus parts are arranged differ-
ently. For example, Savický and Hlaváčová’s adjusted frequencies, but not Wash-
tell’s dispersion measure, of a in the above example will change if the five corpus 
parts are arranged in a different order. This is not necessarily desirable: in the case 
of the BNC, this means that the adjusted frequencies computed for the BNC would 
only be comparable if everybody used the same ordering of the files, which in the 
case of the BNC would probably mean one would have to stick to, for example, the 
arbitrary order of file names. Similarly, if the order of the five parts of the corpus 
above remains the same but the three occurrences of a in the third part are moved 
to the end of the third part and the four occurrences of a are moved to the begin-
ning of the fourth part, the measure changes drastically, too. Again, this may not 
be desirable because on the level of granularity of the five corpus parts nothing 
has changed in the data. On the other hand, one may just as well argue that the 
finer resolution of their measures is intended to detect and reflect such changes. 
Ultimately, the decision appears to boil down to whether one would be willing to 
treat a corpus as one homogeneous string of words devoid of any structure (in the 
form of turns, file parts, files, genre/register parts, etc.) or not.

2.5 Interim summary

In sum, it seems as if there are few if any dispersion measures that provide unprob-
lematic measures for equally- and unequally-sized parts. In his comparative review 
of the classics — D, D2, and S — Lyne (1985:117) concludes that D is the overall 
most adequate measure. In the previous section, however, I hope to have already 
shown that there are many issues to be considered when it comes to evaluating 
dispersion measures and adjusted frequencies and that, sometimes at least, (some 
of) these issues can counteract each other.

In the following section, I will propose for discussion a conceptually very 
simple alternative measure DP (for deviation of proportions), which (i) allows to 
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quantify the dispersion of lexical items just like the above, (ii) does not rely on the 
unwarranted assumption of equally-sized corpus parts, (iii) is, as I see it, neither 
too nor too little sensitive, (iv) is not a measure of statistical significance and thus 
avoids theoretical problems of the hypothesis-testing paradigm,13 and (v) theo-
retically at least ranges from 0 to 1. In the following section, I will explain how DP 
is computed and how it behaves in certain distributionally basic and/or interesting 
situations. Then, I will exemplify this measure DP on the basis of dispersions of 
words from different frequency bands and with different degrees of dispersion in 
the British National Corpus Sampler.

3. An alternative measure of dispersion: DP / DPnorm

To determine the degree of dispersion DP of word a in a corpus with n parts, one 
needs to take three simple steps.

i. Determine the sizes s1−n of each of the n corpus parts, which are normalized 
against the overall corpus size and correspond to expected percentages which 
take differently-sized corpus parts into consideration

ii. Determine the frequencies v1−n with which a occurs in the n corpus parts, 
which are normalized against the overall number of occurrences of a and cor-
respond to an observed percentage.

iii. Compute all n pairwise absolute differences of observed and expected per-
centages, sum them up, and divide the result by two. The result is DP, which 
can theoretically range from approximately 0 to 1, where values close to 0 
indicate that a is distributed across the n corpus parts as one would expect 
given the sizes of the n corpus parts. By contrast, values close to 1 indicate that 
a is distributed across the n corpus parts exactly the opposite way one would 
expect given the sizes of the n corpus parts.

Let me illustrate this on the basis of a set of fictitious distributions. Imagine a 
corpus consisting of three 200-word parts, i.e. 600 words. Imagine further one is 
interested in a word a that occurs 9 times in the corpus, 3 times in each of the three 
corpus parts. In this case, the computation of the three steps can be summarized 
as in Table 2. Step 1 results in the leftmost column: if a is distributed as one would 
expect given the sizes of the n corpus parts, a’s frequency in each file should be 
one third of its overall frequency in the corpus: 200/600 = 0.33. Step 2 results in the 
second column from the left: in each row, i.e. for each corpus part, 3/9=0.33. Step 3 
requires to compute the n row-wise absolute differences (shown in the third col-
umn), sum them up (shown in the fourth column), and divide by 2; the result is 
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DP. The result in the rightmost column shows that a is distributed perfectly evenly 
in the corpus, namely in exact accordance with how the corpus parts look like.

Table 2. Computation of DP; example 1
Step 1 Step 2 Step 3
Expected % Observed % Abs. difference Sum of abs. diff. Divide by 2
0.33 0.33 0

0 00.33 0.33 0
0.33 0.33 0

For comparison, imagine now the same corpus, but the occurrences of a are all 
found in one of the n equally-sized corpus parts. The computation changes as rep-
resented in Table 3.

Table 3. Computation of DP; example 2
Step 1 Step 2 Step 3
Expected % Observed % Abs. difference Sum of abs. diff. Divide by 2
0.33 1 0.67

1.33 0.670.33 0 0.33
0.33 0 0.33

Note here one important characteristic in which DP differs from some measures, 
a characteristic I mentioned briefly above. In a case like the one shown in Table 3, 
DP and the other standard parts-based measures output their extreme values since 
all occurrences of a are in one corpus part. However, the extreme value is not the 
theoretical minimum 0 or the theoretical maximum 1, as I mentioned above in 
Section 2.4.1.2. One might criticize DP for this characteristic, but my response 
to this would be that, first, as shown above all the classic parts-based measures 
with the exception of Carroll’s D2 behave the same way so if this is a valid point of 
critique, then it applies to more than just DP. Second, I do not know what other 
scholars’ motivation for designing their dispersion measures were, but with regard 
to DP the idea is to have it not output its theoretically maximal value here because 
the size of DP accounts for the fact that while all occurrences of a do occur in one 
and the same part, a particular proportion of a was expected to occur in there 
anyway. Third, this issue of course only arises noticeably with very small numbers 
of corpus parts n.

Given this legitimate concern, however, let me clarify related aspects of DP’s 
behavior. Imagine a corpus whose parts’ sizes are extremely heterogeneous. It 
consists of three parts, two of which each account for 1% of the corpus while the 
last part accounts for the remaining 98% of the corpus. However, the first corpus 
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part contains 98% of the occurrences of a, while the remaining two corpus parts 
each contain only 1% of all occurrences of a. In this case, a is obviously extremely 
underdispersed since just about all of its occurrences are only in one small part of 
the corpus and any dispersion measure should reflect this. The resulting computa-
tion for DP is summarized in Table 4 and yields the high value of DP=0.97, which 
reflects that the distribution of a is very uneven in the sense of being completely at 
odds with the sizes of the corpus parts.

Table 4. Computation of DP; example 3
Step 1 Step 2 Step 3
Expected % Observed % Abs. difference Sum of abs. diff. Divide by 2
0.01 0.98 0.97

1.94 0.970.01 0.01 0
0.98 0.01 0.97

A nearly opposite kind of distribution is shown in Table 5. While the proportions 
of the corpus parts are the same as in the previous example — 0.98, 1, 1 — now all 
occurrences of a are in the largest part. This means that a is well dispersed because 
it is spread out nicely across most of the corpus (at least in the highly artificial way 
the corpus parts are defined here), which is indicated by DP’s correspondingly low 
value.

Table 5. Computation of DP; example 3
Step 1 Step 2 Step 3
Expected % Observed % Abs. difference Sum of abs. diff. Divide by 2
0.01 0 0.01

0.04 0.020.01 0 0.01
0.98 1 0.02

Note that others’ dispersion measures which take the sizes of corpus parts into 
account also return values that mark the distribution in Table 5 as well dispersed: 
the occurrences of the word in question are simply exactly where they would be 
given an equal distribution.14

Let me now briefly return to a shortcoming of some measures mentioned 
above and discuss two examples where the expected frequencies are more real-
istic than in the above examples, which serves to highlight the behavior of DP in 
extreme situations. In the following two examples, the corpus again consists of 
three parts, which make up 45%, 35%, and 20% of the corpus. First, consider the 
case where all occurrences of a are in the first corpus part, which is the largest of 
the three parts; the computation in Table 6 results.
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This is interesting in comparison with Table 7, which represents the case in 
which all occurrences of a are in the second corpus part, which is the second larg-
est. As Table 7 shows, DP is now higher than in Table 6. This is relevant because 
— as before — many measures such as D, D2, DC, and idf would not reflect that 
difference but would rather assign the same extreme value to both distributions. 
By contrast, DP reflects this difference because it takes into consideration the fact 
that, while both distributions are extreme, the second one in Table 7 is more ex-
treme because it has the same observed percentage of 100%, but in an even smaller 
part of the corpus.

Table 6. Computation of DP; example 4
Step 1 Step 2 Step 3
Expected % Observed % Abs. difference Sum of abs. diff. Divide by 2
0.45 1 0.55

1.1 0.550.35 0 0.35
0.2 0 0.2

Table 7. Computation of DP; example 5
Step 1 Step 2 Step 3
Expected % Observed % Abs. difference Sum of abs. diff. Divide by 2
0.45 0 0.45

1.3 0.650.35 1 0.65
0.2 0 0.2

Before we look at some real data, let me point out a few other positive aspects of 
DP apart from its ability to distinguish between different degrees of “most extreme 
distributions” and also propose a normalization to DP. First, unlike Juilland et 
al.’s D or Lyne’s D3 it cannot even in the most extreme distributions fall outside of 
the range of 0 to 1. Second, DP can also distinguish distributions that some other 
measures cannot. Assuming equal sizes of corpus parts and looking at the distri-
butions Juilland et al.’s D treated equally, DP for (4, 2, 1, 1, 0) is 0.35 whereas DP for 
(3, 3, 2, 0, 0) is 0.4. The same is true of the distributions Rosengren’s S and DC do 
not distinguish: assuming equal sizes of corpus, DP for (4, 4, 4, 4, 0) is 0.2 whereas 
DP for (9, 4, 1, 1, 1) is 0.4125; similarly, DP for (9, 9, 4, 0, 0) is 0.4182 whereas 
DP for (16, 4, 1, 1, 0) is 0.5273. Thus, not only can DP distinguish all these pairs 
of distributions, but the value for the latter distributions of the two pairs scores 
a higher value reflecting a less homogeneous distribution. Third, while DP has a 
greater discriminatory power than even adjusted D, it shares with D the property 
of not necessarily penalizing zeros overly strongly, an undesirable characteristic 
of D2 and S according to Lyne. Fourth, an observation for which I am grateful to 
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Petr Savický: DP has the attractive characteristic that, if a part of the corpus is split 
into, say, two parts of smaller sizes in some proportion and the occurrences of the 
considered word split in the same proportion, then DP does not change. Finally, 
while DP can also not attain its maximum value of 1 for the distribution (2, 2, 2, 
2, 1) with equally-sized corpus parts, just like D and S and unlike D2, it can when 
then sizes of the corpus parts are proportional to (2, 2, 2, 2, 1).

Finally, let me return briefly to the issue of the range of dispersion values. 
While I have argued in favor of DP as it is, those who prefer a dispersion measure 
that returns the theoretically possible minimal and maximal values (which Car-
roll’s D2 does) and that is at the same time as theoretically simple as DP (by being 
based on simple percentage differences), there is a simple normalization step that 
changes DP’s behavior with respect to this issue:

iv. Divide DP by 1 − (1/n) to yield DPnorm.

If this step is added to the computation exemplified in Table 3, the computation 
changes to that represented in Table 8. Note, first, how DPnorm now takes on the 
maximal value of 1 but at the same time does not anymore account for the fact 
that one third of the occurrences were expected in a corpus part that makes up one 
third of the corpus. Note, second, that as the numbers of corpus parts increase, the 
impact of this normalization will decrease (since 1/n will become smaller).

Table 8. Computation of DPnorm; example 1
Step 1 Step 2 Step 3 Step 4
Expected % Observed % Abs. difference Sum of abs. diff. Divide by 2, =DP Divide by 1−1/n
0.33 1 0.67

1.33 0.67 10.33 0 0.33
0.33 0 0.33

Let us now study the behavior of DP when applied to real data from the BNC 
Sampler.

4. Applications

In this section, I will look at three small case studies to explore DP’s behavior when 
applied to real data. Section 4.1 explores results when DP is applied to simple fre-
quencies of occurrence while Section 4.2 explores DP’s performance with regard 
to co-occurrence frequencies.
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4.1 The dispersion of words: DP’s results

In this section, I will discuss results from using DP to look at a pseudorandom 
sample of words from the 2-million word BNC Sampler.15 I first generated a fre-
quency list of the BNC Sampler and then chose 68 words from five different fre-
quency bands; cf. Appendix 1 for the list of words included in the analysis as well 
as a precise characterization of how the words were obtained. For each of these 
words, I computed all the dispersion measures from Section 2 above as well as DP 
and DPnorm using an R function, which is available from my website for readers to 
use; cf. Section 5.3 below for links and explanations. The corpus parts I assumed 
were the individual files. In what follows, I will discuss the results of this analysis 
(if, for reasons of space, only summarily).

First, some general descriptive information. Given the above sampling pro-
cedure, it is reassuring to see that, like all other measures, DP exhausts nearly the 
complete range of possible values, as can be seen clearly in the small sample of 
dispersion measures presented in Section 2. (For measures where adjustments for 
unequally-sized corpus parts are available, only these are provided). (Note in pass-
ing how again D3 yields many negative values outside of the range into which it is 
supposed to fall.) In addition to the comparable spread of values, Table 10 shows 
that DP also behaves “well” when it comes to the words scoring the highest, most 
intermediate, and lowest values. The first three columns list a well-known com-
mon set of function words and light verbs; the last three columns list words many 
of which I have never seen before; the three middle columns list words which I 
think most would intuitively agree are certainly well-known to all native speakers 
and advanced learners of English, but which also one would not necessarily expect 
to see everywhere and evenly everywhere.

I hope I have been able to show in this section that DP does what it is sup-
posed to do: when applied to a random frequency-stratified sample of words from 
the BNC Sampler, it nearly fully exhausts the possible range of values,16 provides 
intuitively very reasonable output when high, intermediate, and low DP values 
are inspected, and it is overall consistent with some of the best-known dispersion 

Table 9. Descriptive summary statistics for selected dispersion measures
Statistic DP D D2 S D3 DC idf
Minimum 0.08 −0.0027 0 0.0014 −44.75 0.0054 0
1st quartile 0.2668 0.6424 0.4415 0.0651  −3.6002 0.0543 0.0829
Median 0.6187 0.8384 0.7526 0.3499  −0.1143 0.3038 1.593
Mean 0.5965 0.6755 0.6126 0.4463  −9.2311 0.4081 2.46
3rd quartile 0.9252 0.9424 0.9256 0.8627 0.7793 0.7771 4.2016
Maximum 0.9986 0.9809 0.9684 0.9886 0.918 0.9196 7.5256
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measures. In the following section, I will briefly show how DP can also be applied 
to co-occurrence information of the kind exemplified in Section 1.

4.2 The dispersion of words in constructions/patterns: DP’s results

In Section 1, I used the example of the verbs attracted to the imperative in the 
ICE-GB to point out that, contrary to what a look at the literature might make us 
believe, the issue of dispersion is also highly relevant to co-occurrence data: statis-
tics based on frequencies and co-occurrence frequencies — in the above example, 
pFisher-Yates exact-values as measures of collocational attraction/repulsion — can suf-
fer from very similar problems as raw frequencies of occurrence alone. Whatever 
dispersion measure one adopts would therefore ideally be extendable to handle 
co-occurrences and their dispersion. In this section, I will discuss two examples in 
which the logic underlying DP is applied to co-occurrences. In Section 4.2.1, I will 
briefly return to the imperative construction mentioned above; in Section 4.2.2, I 
will then look at the ditransitive pattern.

4.2.1 The imperative in the ICE-GB
As a first example, I will very briefly revisit the imperative in the 1-million word 
ICE-GB as discussed by Stefanowitsch and Gries (2003). This is how I retrieved 
the data for this case study:

Table 10. The words with the fifteen maximal, most intermediate, and minimal DP values
Minimal DP’s Intermediate DP’s Maximal DP’s
Word DP Freq Word DP Freq Word DP Freq
a 0.08 39,119 definition 0.795   102 macari 0.999  10
to 0.103 46,187 includes 0.716   102 mamluks 0.998  10
and 0.106 53,216 thousands 0.714   102 lemar 0.996  10
with 0.155 11,138 plain 0.709   102 sem 0.994  10
but 0.158 10,569 formal 0.708   102 hathor 0.994  10
in 0.159 32,198 anywhere 0.645   102 tatars 0.989  10
not 0.165  9,211 properly 0.625   102 scallop 0.989  10
this 0.166  9,651 excuse 0.612   102 malins 0.988  10
the 0.168 104,248 hardly 0.585   102 ft 0.986 102
have 0.178 11,928 er 0.556 9,721 defender 0.98  10
be 0.207 12,735 each 0.474 1,007 scudamore 0.98  10
are 0.223  9,770 lot 0.472 1,032 pre 0.945  10
that 0.227 29,280 house 0.453 1,024 diamond 0.941 102
there 0.243  9,243 tell 0.414 1,023 carl 0.938 102
of 0.249 44,276 came 0.412 1,013 proclaimed 0.934  10



© 2008. John Benjamins Publishing Company
All rights reserved

422 Stefan Th. Gries

− using the fuzzy-tree fragment search facility of ICE-CUP, I generated and 
saved a concordance of all instances of auxiliaries used in the imperative (cat-
egory: aux, feature: imp) as well as a concordance of all instances of imperative 
clauses (category: CL, feature: imp) containing a verb phrase containing a verb 
in the imperative (category: V, feature: imp);

− then, I retrieved all the auxiliary and verb forms from above and generated a 
table the columns of which contain all aux/verb lemmas attested in the im-
perative, the rows of which contain all corpus files, and each cell of which 
states how much in percent of all imperative occurrences of this column’s verb 
occurs in this row’s corpus file. To clarify this a little, the verb lemma trust is 
used in the imperative three times (once in S1A-028, once in W1B-004, and 
once in W2D-009). Thus, the column for trust in this table contains 497 zeros 
(one for each file in which trust is not attested in the imperative) and three 
times 1/3, namely in the rows for the above files. Thus, this table contains all 
observed percentages.

− I then created a vector that lists for each file the number of verb and aux tokens 
it contains and converted that into a vector of percentages (that sum to 1). 
Thus, this vector states how many verbs in percent each file contributes to the 
corpus; i.e., this vector contains the expected percentages.

The computation of DP for each verb was then performed as above: for each verb, 
I subtracted the 500 observed percentages from the 500 expected proportions, 
summed the absolute differences and divided the sum by 2. The results are rather 
clear: the 20 verbs with the lowest and highest DP-values are given in (27) and 
(28) as is the DP-value for the verb fold that was discussed above in Section 1; DP-
values are listed in parentheses.

 (27) let (0.676), see (0.845), look (0.885), take (0.882), go (0.886), come (0.912), 
try (0.94), tell (0.914), get (0.918), be (0.929), make (0.946), have (0.925), do 
(0.949), remember (0.942), put (0.952), give (0.957), keep (0.948), say (0.948), 
use (0.969), ask (0.96)

 (28) recall, resolve, cancel, cf, manipulate, employ, chips, enquire, unmask, love, fly, 
contrast, scrape, lend, melt, process, break, pat, chill, season (all DP≈0.999; 
fold’s DP=0.998, too)

Two things are noteworthy. First, the results are well correlated with Stefanowitsch 
and Gries‘s (2003: Section 3.3.2) study of verbs that are typical for the impera-
tive, and they make intuitive sense when, as we usually do in corpus linguistics, 
inspect the results in terms of the ranking of elements they provide, the prevalent 
practice in our interpretation of, say, measures of collocational or collostructional 
strength. For example, verbs that we would expect to occur without much con-
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straint in the imperative construction show up first, esp. let. The verb see is also 
quite natural there, given how see is often used sentence-initially as a discourse 
marker and many other contexts: See what’s on the other side, See what it says here, 
See, and all because …, See leaflets NI 230 Unemployment Benefit …, etc, etc. Most 
following verbs are ones that would not be surprising to find in an imperative. 
Another example is have: examples include Have a seat, various versions of Have 
some [FOOD], Have a [MODIFIER] birthday! etc. Some other verbs in (27) are 
similarly widespread in the imperative and are arguably in the process of becom-
ing discourse markers: tell and say (as in intonation unit-initial tell me, …! or say, 
…!), or remember (cf. Tao 2001). Similarly, the verbs in (28) are certainly ones 
whose distribution in the imperative we would not necessarily expect to be par-
ticularly regular. Note in particular that the problematic cases of process and fold 
score extremely high values, which reflects the fact that they are only attested in 
imperatives in a single file, just as we would want a dispersion measure to detect.

Second, the DP-values do not extend across the whole range of values (from 
0 to 1) anymore. Rather, the values are rather high and approach 0.9 and higher 
fast. However, this is less reason for concern than one might think. First, there is 
a long tradition in corpus linguistics to evaluate distributional statistics (such as 
collocational strengths) in terms of the ranking of words in comparison to other 
words rather than their absolute values in isolation, and the ranking has enough 
discriminatory power to provide meaningful results out of all 387 verbs whose 
dispersion was included. Second, the DP values become large fast because the ob-
served frequencies in this small corpus become small fast: the verb with the 20th-
highest DP-value occurs only 27 times in the imperative in the corpus. Third and 
relatedly, this is exactly the reason why some other dispersion measures produce 
results very similar to DP. (Note in passing that Juilland et al.’s D and Lyne’s D3 
again do not fall within the range they are supposed to fall.)

− results for let: Carroll’s D2 = 0.766, Rosengren’s S = 0.288, Lyne’s D3 = −0.26, 
DC = 0.27, Juilland et al.’s D = 0.904;

− results for expect: Carroll’s D2 = 0.112, Rosengren’s S = 0.004, Lyne’s D3 = −61.25, 
DC = 0.004, Juilland et al.’s D = 0.292;

− results for fold: Carroll’s D2 = 0, Rosengren’s S = 0.002, Lyne’s D3 = −123.75, 
DC = 0.002, Juilland et al.’s D = −0.001.

In sum, these results suggest that DP can be applied to identify underdispersed 
words in co-occurrence relations, an issue which we will also look at in the fol-
lowing section.



© 2008. John Benjamins Publishing Company
All rights reserved

424 Stefan Th. Gries

4.2.2 The ditransitive in the ICE-GB
As a second example, I will look at verbs in the ditransitive (or double object con-
struction) in the ICE-GB. The data for this case study were retrieved and processed 
in virtually the same as those for Section 4.1: using the fuzzy-tree fragment search 
facility of ICE-CUP, I generated and saved a concordance of all instances of verbs 
used ditransitively (category: ‘verb’, feature: ‘ditr’); retrieved all verb forms from 
the marked matches together with the file in which they occurred, lemmatized all 
the verb forms and generated the same kind of table as before, and computed DP 
as before. The results are rather clear: the 20 verbs with the highest and lowest DP-
values are given in (29) and (30); DP-values are listed in parentheses.

 (29)  give (0.43), tell (0.51), ask (0.83), show (0.86), send (0.9), offer (0.92), get 
(0.95), cost (0.96), allow (0.96), teach (0.97), convince (0.97), remind (0.97), 
inform (0.97), buy (0.97), do (0.97), take (0.98), pay (0.98), promise (0.98), 
warn (0.98), lend (0.98)

 (30)  render, deal, permit, profit, vote, feed, file, sell, instruct, prescribe, keep, 
command, draw, rent, loan, bet, supply, build, cut, overpay (all DP≈1)

On all three points discussed above, we basically get the same kind of results as be-
fore: again, the results correspond well to previous corpus-based work on ditransi-
tives and their semantics, and the result makes intuitive sense: verbs that we tend 
to associate with the ditransitive construction a lot (because their semantics are 
highly compatible; cf. Stefanowitsch & Gries 2003: Section 3.2.2) show up first and 
esp. give and tell, the ditransitive verbs par excellence, occupy the first two places 
(in that order), but also all following verbs are ones that would not be surprising 
to find in a ditransitive (remind or inform, for example, as in remind me what 
age he was or informing him what I’ve done respectively can be metaphorically 
construed as involving transfer of the requested information from the reminder 
to the remindee). Similarly, the verbs in (30) are certainly ones whose distribution 
in the ditransitive we would not expect to be particularly regular: for example, sell 
is more significantly more associated with the prepositional to-dative (cf. Gries & 
Stefanowitsch 2004: 106).

Second, the DP-values again do not extend across the whole range of values 
(from 0 to 1) for the same reason as above (the frequencies in this small corpus 
become small fast: the verb with the 20th-highest DP-value occurs only 12 times in 
the ditransitive in the corpus), but also again the rank ordering of the verbs is still 
sensible and, third, other dispersion measures produce very similar results:

− for give: Carroll’s D2 = 0.889, Rosengren’s S = 0.568, Lyne’s D3 = 0.633, 
DC = 0.551, Juilland et al.’s D = 0.946;
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− for lend: Carroll’s D2 = 0.307, Rosengren’s S = 0.017, Lyne’s D3 = −21.319, 
DC = 0.015, Juilland et al.’s D = 0.598;

− for accord: Carroll’s D2 = 0.177, Rosengren’s S = 0.005, Lyne’s D3 = −40.417, 
DC = 0.006, Juilland et al.’s D = 0.422.17

Again, DP allows for identifying the underdispersed words and outputs as most 
regularly dispersed verbs a range of words that fit both our expectation of the dis-
tribution and the semantics of the construction perfectly.

5. Conclusions and a (brief) outlook

In this paper, I have taken a few first steps towards a from my point of view over-
due program of research. Dispersion and adjusted frequencies are an essential tool 
in a discipline that is so dependent on distributional data and, accordingly, in the 
past 30–40 years, a large number of dispersion measures and adjusted frequencies 
has been proposed. However, apart from Lyne’s early work there is virtually no 
systematic exploration, comparison, or even comprehensive introduction of these 
kinds of statistics in both corpus linguistic research and textbooks. It is actually 
surprising to, on the one hand, see the wealth of immensely interesting literature 
on collocational statistics (much of which is unfortunately still underutilized), but, 
on the other hand, see that the distributional statistic of dispersion has remained 
relatively ignored in spite of the fact that particular kinds of dispersion can com-
pletely mess up even the most careful collocational statistics.

While I do not want to lay claim to having provided a great many solutions 
or earth-shaking observations, I did provide the most comprehensive overview of 
dispersion measures and adjusted frequencies as well as their characteristics, pros, 
and cons to date and I proposed a new measure of dispersion for the analysis of 
corpus data. While the latter may appear as just adding one more measure to an 
already sizable list of measures, I believe this measure has several appealing char-
acteristics that make it worth considering:

− flexibility: DP is able to handle differently sized corpus parts;
− simplicity: DP is conceptually extremely simple and straightforward, as it is 

based on something anyone can understand immediately — differences be-
tween observed percentages of words and percentages that corpus parts make 
up of a corpus;

− extendability: DP can immediately be applied to other kinds of data / sce-
narios such as co-occurrence frequencies;

− high sensitivity: unlike some other measures, DP does not blindly output ex-
treme values for extreme distributions but since it includes the expected pro-
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portion of occurrences into the equation, it can distinguish cases where all 
observed occurrences of a word are in the smallest file from cases where all 
observed occurrences of a word are in the largest file; also, DP can distinguish 
distributions other measures fail to distinguish;

− not too high sensitivity: unlike some other measures, at the same time, it does 
not over-penalize zeros, does not output extremely high values when low ex-
pected frequencies come into play, and is insensitive to the order of corpus 
parts.

However, given the present state of the art, much remains to be done, and the fol-
lowing sections mention a few such issues.

5.1 The integration of frequencies and dispersion

The first area requiring work is about how to best integrate frequency and dis-
persion information. The probably most widely-used approach so far has been to 
compute adjusted frequencies of the above-mentioned sort, where sometimes the 
adjusted frequency is just the product of the observed frequency and a dispersion 
value. However, to me at least it is often unclear what these values “mean”: fre-
quencies as such are straightforward to understand but the product of a frequency 
and some dispersion value has usually no such straightforward interpretation. 
I am not (yet) certain I am in a position to make a full-fledged proposal about 
how this issue can be addressed, but let me mention briefly one way of handling 
this: for many linguistic research purposes — as opposed to, say, lexicographical 
purposes where practical constraints of time and money dictate procedures — a 
two-dimensional representation of the kind of Figure 1 may be more useful. The 
product of a frequency and a dispersion value ultimately loses information — does 
the adjusted frequency result from x·y or from 10x·0.1y? The two-dimensional 
plot, by contrast, preserves each word’s frequency and dispersion and is thus more 
informative; cf. Figure 1 for a partial representation of the words investigated in 
Section 3.

5.2 Refining and normalizing measures

A second area of concern is that we need to explore in more detail how measures 
behave under different circumstances and how they should be tweaked, normal-
ized, weighted etc. Let me discuss only one example here: most measures are based 
on corpus parts, but there is virtually no exploration of how differently-sized 
corpus parts can distort the picture. Above, we discussed the hypothetical case 
that, in a corpus with three parts, one part contains 98% of all the words and how 
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parts-based measures (such as DP) and distance-based measures handle such dis-
tributions. One possibility is, therefore, that one should provide with every parts-
based measure an indication of how unequal the corpus parts’ sizes are on which 
the dispersion measures or adjusted frequency is based (e.g., relative entropy). A 
second possibility would be to compute the measures of dispersion and the adjust-
ed frequencies on the basis of the existing corpus divisions (with all their unequal 
corpus part sizes) but then compare them to the measures one gets when one as-
sumes that the corpus consists of the same number of parts, but now assumes they 
are equally-sized. Maybe the fractal dimension approach can help get important 
insights into how different corpus part sizes can be interpreted …

5.3 Validating dispersion measures and adjusted frequencies

One of the if not the most crucial issues is that both dispersions measures and ad-
justed frequencies are in need of corpus-external validation. It is one thing to devise 
statistics that are theoretically motivated and make intuitive sense when applied to 
corpus data, and above I myself did just that. However, very often measures of 
dispersion and adjusted frequencies serve practical purposes that make them very 
relevant even to linguists who may otherwise see no relevance in these matters. For 
example, the psycholinguist or psychologist who wishes to formulate experimental 
items in such a way as to avoid frequency or familiarity effects should ultimately 
not just choose words with particular frequencies — we have seen above that dis-
persion must be taken into consideration, too. That means, however, that if our dis-
persion measures or adjusted frequencies are supposed to be operationalizations 

Figure 1. Selected words’ DP and log10 frequency
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of familiarity or likelihood of encounter, then we must validate them against non-
corpus-based evidence, i.e., psycholinguistic experimentation.

For instance, it is well-known that (logs of) observed frequencies are good 
proxies towards the familiarity of words given the strong correlations of frequen-
cies with processing speed — cf. Howes and Solomon (1951) for recognition times, 
Oldfield and Wingfield (1965) and Forster and Chambers (1973) for naming times, 
and Ellis (2002a, b) as well as Jurafsky (2003) for overviews. However, there is very 
little work on the predictive power of dispersion measures and adjusted frequen-
cies although one could, strictly speaking, of course argue that as long as we cor-
pus linguists do not show that our dispersions and adjusted frequencies actually 
correspond to something outside of our corpora, we have failed to provide even 
the most elementary aspect of a new measure: its validation.

How could we come up with such evidence? Two research strategies are most 
obvious. First, we can reanalyze published psycholinguistic data, and Gries (2008, 
to appear a) are first attempts to correlate different adjusted frequencies with re-
sponse time latencies. Second, we can of course perform experiments ourselves. 
For example, one could run experiments (i) on the fictitious distributions dis-
cussed in the first part of the article to determine whether our measures should 
actually be able to distinguish them or not (cf. Lyne 1985:115) and (ii) to deter-
mine which measures’ results on large balanced corpora are most compatible with 
subjects’ intuitions regarding the words’ overall centrality in a language. Recent 
laudable work including dispersion is recent experimental work by Ellis (Ellis & 
Simpson-Vlach), who show that the range has significant predictive power above 
and beyond raw frequency of occurrence, and it is this kind of evidence we must 
provide in order to show our efforts are more than devising clever equations.

To conclude, given the still overwhelming reliance on unweighted frequency 
data and given the evidence on how misleading results based on frequencies alone 
can be discussed above, I hope that this paper (i) minimally motivates more re-
searchers to not just rely on frequencies alone and maybe — once they decide to 
include/report dispersions — also adopt some kind of dispersion measure that can 
handle differently large corpus parts and (ii) maximally stimulates more research-
ers to try to come to grips with the distributional peculiarities of our trade. In 
order to facilitate this program of research, I am making some resources available 
myself (for the first two you will need to install the open source software R on your 
computer; cf. R Development Core Team 2008):

− an R function called dispersions1: This function requires three arguments: 
the first is a vector with all the words in the corpus in their order in the corpus; 
the second is a vector that states for each word which file it occurs in; the third 
is the element in square quotes for which dispersion measures are required. 
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Thus, if the BNC sampler is in a vector called corpus (e.g., Lebanon, leader, 
builds, cabinet, By, …) and the names of the files where each word occurs in 
that order are in a vector called corpus.parts (e.g., A7V, A7V, A7V, A7V, 
A7V, …), then you can enter the following two lines of code at the R prompt to 
get all dispersion measures and adjusted frequencies discussed above for the 
word form understand in the files of the BNC sampler (cf. Appendix 2 for an 
example of what the output looks like):

source(“http://www.linguistics.ucsb.edu/faculty/stgries/research/
dispersion/_dispersion1.r”)¶
dispersions1(corpus, corpus.parts, “understand”)¶

− an R function called dispersions2: This function requires two arguments: the 
first is the vector of observed frequencies of the element in questions; in the 
example discussed above in Section 2, this vector would be (1, 2, 3, 4, 5); the 
second argument is a vector of corpus part sizes (in percent); in the above case 
of five equally-sized corpus parts, this would be (0.2, 0.2, 0.2, 0.2, 0.2). You can 
then enter the following two lines at the R prompt to get all dispersion mea-
sures and adjusted frequencies discussed above but the distance-based mea-
sures for the element whose frequencies you entered and the corpus whose 
part sizes you specified:

source(“http://www.linguistics.ucsb.edu/faculty/stgries/research/
dispersion/_dispersion2.r”)¶
dispersions2(c(1,2,3,4,5), c(0.2,0.2,0.2,0.2,0.2))¶

− (zipped) text files, OpenOffice.org Calc files, and .RData files that contain all 
of the above dispersion measures and adjusted frequencies for all word forms 
in the BNC Sampler, all word forms in the BNC Baby, all word forms in the 
spoken part of the BNC XML, and all word forms in the ICE-GB that occur 
more than 9 times. These files together with readme files explaining how they 
were generated can be downloaded from http://www.linguistics.ucsb.edu/fac-
ulty/stgries/research/dispersion/links.html.

  Since we have seen above that dispersion measures and adjusted frequen-
cies are sensitive to different corpus part sizes, the functions and the data also 
provide an index of how equal the corpus part sizes are to each other. When 
this index, relative entropy, is large, the files are similarly large, and the disper-
sions and adjusted frequencies are likely to be reliable — when it is low, the 
corpus files are very differently large, and dispersions and adjusted frequencies 
are less likely to be reliable.

 As I see it, these tools and lists will be useful to a variety of different research-
ers: corpus linguists who wish to further investigate measures of dispersion, 

http://www.linguistics.ucsb.edu/faculty/stgries/research/
http://www.linguistics.ucsb.edu/faculty/stgries/research/
http://www.linguistics.ucsb.edu/faculty/stgries/research/dispersion/links.html
http://www.linguistics.ucsb.edu/faculty/stgries/research/dispersion/links.html
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adjusted frequencies, and maybe work on corpus comparison and homogene-
ity; lexicographers who are interested in checking the frequency information 
for words that they consider including in dictionaries; psycholinguistics and 
psychologists who use them to generate experimental stimuli that control for 
frequency and dispersion in a more suitable way than the Brown corpus can 
afford; computational or text linguists who use dispersion for information re-
trieval and text-linguistic purposes etc. I think the range of applications is vast 
and hope that these resources are one small step to help advance our knowl-
edge and quality of practical work.

Notes

1. This judgment is supported by the fact that the number of papers at four recent corpus-linguis-
tic conferences — ICAME 2007, Corpus Linguistics 2007, AACL 2008, and ICAME 2008 — which 
supported their frequency results with at least one index of dispersion is vanishingly small.

2. Cf. http://www.ucl.ac.uk/english-usage/projects/ice-gb/ for information on the ICE-GB.

3. Contrary to Savický and Hlaváčová (2002:216), the corpus parts need not correspond to 
genre groups.

4. Unless indicated otherwise, all retrieval operations, computations, and graphs were per-
formed with R for Windows 2.7.0 (R Development Core Team 2008).

5. My discussion of this approach is rather vague. As far as I know, this proposal has not been 
published so far and my knowledge of it is only based on a four-page Powerpoint slideshow, 
which, as far as I understand it, does not explain the measure in great detail. I chose to include 
the measure anyway because its logic appears to be different from all existing ones and its dis-
cussion thus serves to highlight the range of parameters future research on dispersion may want 
to explore.

6. This measure is also known as Francis and Kučera’s (1982:463f.) adjusted frequency AF.

7. Note that this formula is not exactly the one provided by Kromer (2003:181, formula 8) as I 
have inserted a closing bracket after “C”, which is missing in his paper. Ψ refers to the first de-
rivative of the logarithm of the gamma function; C is the Euler-Mascheroni constant computed 

as follows: computed as follows: �
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 or, in R: z<-1:10000000; sum(1/z)-log(length(z))¶.

8. Interestingly, there seems to be disagreement and/or confusion regarding this issue. Rosen-
gren (1971) discusses the coefficients U, AF, and Juilland et al.’s D and states “[a]ll the measures 
discussed hitherto presuppose equally large categories” (p. 119). He then goes on to discuss 
adjustments for these measures that allow using unequal sizes of corpus parts as well as his own 
measure S. Oakes (1998:191), on the other hand, discusses a variety of dispersion measures as 
well as Lyne’s (1985, 1986) comparison of D, D2, and S, and in the immediately following para-
graph states “[i]t is not possible to use these measures if the corpus is subdivided into sections of 
different sizes [my emphasis, STG].” Similarly, Piao (2002:212f.) states that D requires equally-

http://www.ucl.ac.uk/english-usage/projects/ice-gb/
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sized corpus parts whereas D2 and S do not in spite of the published proposals refinements to be 
discussed presently. Finally, Forsbom (2006:5) simply states that Savický and Hlaváčová’s (2002) 
measures require equally-sized corpus parts, which is simply wrong.

9. This issue has been brought up by Paul Rayson and both anonymous reviewers.

10. The discussion of this point of critique needs to be qualified since it has to be admitted that 
it is not always intersubjectively obvious which distributions should be distinguished by disper-
sion measures. For example, Lyne (1985) discusses how D cannot distinguish between (3, 2, 1, 1, 
1) and (2, 2, 2, 2, 0) while D2 and S yield quite marked differences and comments:

 As we have just seen, the reasons why S and D2 “demote” certain distributions compared 
with D is that they contain one or more low sub-frequencies, (not necessarily zero). But surely 
it is not the business of a dispersion measure to discriminate against particular distributions in 
this manner. In the above example [A: (3, 2, 1, 1, 1) vs B: (2, 2, 2, 2, 0)], which is [Rosengren’s] 
own, it seems to us quote proper that B should be rated as highly as A, because the presence 
of a single low sub-frequency, 0, in B is balanced by the perfectly even distribution across the 
remaining four sections. (Lyne 1985:115)

11. Some may actually find penalizing zeros attractive, but I agree with Lyne in the sense that I 
would not want to place too much emphasis on zeros. First, while zeros do signal underdisper-
sion, that underdispersion must take into consideration the expected frequency (e.g., on the ba-
sis of the size of the corpus part) and especially if that expected frequency is small zeros should 
not have too much leverage on the dispersion value. Second, zeros may be due to sampling 
variation, and given that there is this whole field of research on providing better estimates of the 
frequency of unseen items (with, say, Good-Turing estimates), I think one should be reluctant 
to overemphasize zeros.

12. This is not to say that this is a very realistic assumption or application of how parts-based 
measures have so far been applied, but in a comparative review all pros and cons should be 
pointed out. Also, note that Savický and Hlaváčová’s (2002) measures could provide the same 
information when the corpus is resorted, but then this may be difficult to motivate when one 
does not already assume different corpus parts whose integrity the sorting would restore: if one’s 
measure assumes that a corpus does not come in parts and only the distances between succes-
sive occurrences are important, why would one want to destroy the natural order of turns in a 
dialog corpus?

13. For a discussion of problems of the null-hypothesis-significance testing paradigm cf., e.g., 
Loftus (1991, 1996).

14. This can be best understood on the basis of a non-linguistic example. Imagine three buckets 
so close to each other that any coin thrown in their direction must land in one of the them. 
Imagine further that of the one bucket takes of 98% of the space and the other two equally share 
the remaining 2%. If one now tossed 100 coins randomly in the direction of the buckets, then 
the result in the absence of any patterning would be that approximately 98 of the coins land in 
the big bucket. The absence of patterning here corresponds to “no particular distributional bias 
that (all) dispersions measures pick up”, which is why the measures that take the corpus sizes 
into consideration label the result where 98 coins end up in the largest bucket the “normal” 
distribution.
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15. Cf. http://www.natcorp.ox.ac.uk/corpus/index.xml.ID=products#sampler for information 
on the BNC sampler.

16. One may erroneously suspect that DC appears to be a better measure because “its scores are 
more evenly distributed.” At present, however, this argument does not follow. First, the values for 
DC are not necessarily more evenly distributed: DC’s interquartile range is larger, but its range is 
just about the same as that of DP (or, say, S). Second, how would one know that an even distribu-
tion of dispersion values is one or oven the best criterion? It may be, but it may just as well not be 
since one could just as well argue that the fact that the median and the mean of DP are closer to 
0.5 than those of DC shows that DP is better. I explicitly do not do that because there is no way 
of knowing which criterion is better, which is why corpus linguists will ultimately need to look 
at corpus-external converging evidence (cf. Gries 2008). Third, even if DP and DC were to yield 
results of exactly the same quality (however measured), DP is still more appealing because it is 
conceptually simpler (Occam’s razor) and easier to understand — everybody can understand 
differences of percentages. Finally, the dispersion data for tens of thousands of words from dif-
ferent corpora that I make available with this paper (cf. Section 4) will allow other researchers to 
follow up on this and arrive at their own conclusions.

17. I also computed DP in another way to test the validity of the results. In this second way, 
the expected baseline percentages were not the percentages of verbs of each corpus file, but the 
percentages of all words of each corpus file. The results are for all intents and purposes the same 
as those obtained on the basis of the verbs.
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Appendix 1

The words that were included in the BNC Sampler analysis in Section 3 (corpus frequencies 
and ranges in parentheses) are the following: the (104248, 184), and (53216, 184), to (46187, 
184), of (44276, 184), a (39119, 184), i (38445, 167), it (33968, 184), in (32198, 183), you (30538, 
164), that (29280, 183), be (12735, 183), he (12424, 168), have (11928, 184), do (11374, 179), 
with (11138, 184), but (10569, 182), are (9770, 182), er (9721, 105), this (9651, 183), there (9242, 
182), not (9211, 183), never (1104, 147), even (1100, 170), own (1066, 172), lot (1032, 135), end 
(1031, 171), house (1024, 141), tell (1023, 141), came (1013, 152), each (1007, 144), both (1001, 
163), long (993, 164), anywhere (102, 60), carl (102, 8), definition (102, 33), diamond (102, 10), 
egypt (102, 12), excuse (102, 62), formal (102, 40), ft (102, 2), hardly (102, 62), includes (102, 45), 
pink (102, 29), plain (102, 42), properly (102, 57), russians (102, 11), steve (102, 31), thousands 
(102, 45), defender (10, 1), enhanced (10, 10), forefront (10, 10), frustrated (10, 10), grind (10, 
10), hathor (10, 1), lemar (10, 1), macari (10, 1), malins (10, 1), mamluks (10, 1), misleading 
(10, 10), practicable (10, 10), pre (10, 10), prevailing (10, 10), proclaimed (10, 10), scallop (10, 1), 
scudamore (10, 1), sem (10, 1), tatars (10, 1), verdict (10, 10).

The following exposition explains in very much detail how these words were chosen in (up to the 
level of providing Perl-compatible regular expressions). The reason for this level of detail is that 
the default settings of different concordance programs can yield different outputs even when 
given the same search strings (cf. Gries, to appear b). In order to guarantee the replicability of 
the retrieval procedure, the kind of meticulous characterization common in other disciplines 
has to be adopted here, too. I wrote an R script (cf. R Development Core Team 2008) that

−  loaded each corpus file, converted it to lower case, and retained only the lines that contained 
sentence numbers (regexp: “<s n”);

−  deleted all sequences of spaces, non-word tags, and the material they refer to (regex: 
“·*<(?!w·.*?>).*?>[^<]*”) as well as a formula and number tags and what they refer to (regex: 
“·*<w·(fo|m).*?>[^<]*”);

−  split up the remaining data at sequences of optional spaces and word tags (regex: 
“·*<w.*?>”).
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The result of this was a word list containing 50,354 types / 1,944,548 tokens. In order to choose 
an appropriate set of words with which to test DP, I determined the maximal frequency of a 
word in the corpus, which turned out to be 104,248 (of the). I then computed the logarithm to 
the base of 10 of 104,253 (5.018068), divided that number by five, multiplied it with the numbers 
from 1 to 5, and antilogged them to arrive at a frequencies at every order of magnitude from 
10 to 104,248. (The exact function that was used probably makes the procedure clearer than 
the prose description: round(10^(1:5*(log10(104254)/5))).) As a result, I obtained the follow-
ing frequencies to be inspected: 10, 102, 1,025, 10,338, and 104,248. However, the numbers of 
words with these or very similar corpus frequencies were very uneven, which is why I chose to 
investigate

−  the ten most frequent words;
−  the word with the frequency closest to 10,338 as well as the next five more frequent and less 

frequent words;
−  the word with the frequency closest to 1,025 as well as the next five more frequent and less 

frequent words;
−  all sixteen words with a corpus frequency of 102;
−  ten words with a corpus frequency of 10 that occurred in 10 files each and ten words with a 

corpus frequency of 10 that occurred in 1 file each.

Appendix 2
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