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Abstract 

In order to adjust observed frequencies of occurrence, previous studies have suggested a 

variety of measures of dispersion and adjusted frequencies. In a previous study, I reviewed 

many of these measures and suggested an alternative measure, DP (for ‘deviation of 

proportions’), which I argued to be conceptually simpler and more versatile than many 

competing measures. However, despite the relevance of dispersion for virtually all corpus-

linguistic work, it is still a very much under-researched topic: to the best of my knowledge, 

there is not a single study investigating how different measures compare to each other 

when applied to large datasets, nor is there any work that attempts to determine how 

different measures match up with the kind of psycholinguistic data that dispersions and 

adjusted frequencies are supposed to represent. This article takes exploratory steps in both 

of these directions. 

1. Introduction 

Whether one likes it or not, corpus linguistics is all about distributional data, and 
virtually every corpus-based paper reports how often a linguistic phenomenon 
occurred or how often it co-occurred with some other linguistic phenomenon or 
extralinguistic variable. Such frequency data are used for several different 
purposes: sometimes they are just used descriptively, but outside of particular 
traditional schools of corpus linguistics, they are also often used to support 
particular points or applications in the domains of applied and theoretical 
linguistics as well as a tool for psycholinguists and psychologists. For example, in 
some theoretical approaches, such as cognitive linguistics or usage-based 
grammar, frequency data are now regularly used in the domains of first- and 
second/foreign-language acquisition, the study of language and culture, 
grammaticalization, phonological reduction, morphological processing, syntactic 
alternations, etc. 
 Interestingly enough, many of these approaches assume a connection 
between observed frequencies in a corpus and some mental correlate: in first-
language acquisition, input frequency is one of the most important determinants 
of word and construction learning; in cognitive-linguistic approaches, frequency 
of encounter is one of the central determinants of degree of mental 
entrenchment/familiarity; for example, observed frequencies (or their logs) are 
good proxies toward the familiarity of words—see Howes and Solomon (1951) 
for recognition times, Oldfield and Wingfield (1965) as well as Forster and 
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Chambers (1973) for naming times, and Ellis (2002a, b) as well as Jurafsky 
(2003) and Gilquin and Gries (2009) for overviews. Thus, in probabilistic models 
of language production and comprehension, mental entrenchment in turn is 
correlated with accessibility (such that, for example, high frequencies of exposure 
make nodes more available for activation). 
 Despite this central role of frequency in linguistics in general and in 
psycholinguistics in particular, it has become clear that for a variety of reasons, 
frequencies of occurrence are not a perfect predictor of aspects of processing. The 
first reason is the complexity of all aspects entering into processing effort: no one 
would deny that the processing of words and concepts is determined by many 
more though highly intercorrelated aspects such as salience of words and 
concepts, recency of occurrence, and concreteness/manipulability, to name but a 
few. Thus, any kind of frequency effect will be ridden with noise and, hence, 
necessarily indirect. The second reason is that frequency of occurrence, however 
straightforward to define, does not enter into a straightforward one-to-one 
relationship with aspects of processing because any particular frequency of 
occurrence can arise from very different distributional patterns: a word w may 
occur 18–20 times in each of ten very different registers, or it may occur 190 
times in only one of the ten registers. While these two results look the same in a 
frequency list of the complete corpus of ten registers, it is obvious that these 
results would not be the same: they would not be the same for the corpus linguist 
who may be interested in register-dependent vocabulary differences, and they 
would not be the same for the psycholinguist or language acquisition researcher 
who knows that learning process in general exhibit a distributed learning or 
spacing effect. 
 

Given a certain number of exposures to a stimulus, or a certain 
amount of training, learning is always better when exposures or 
training trials are distributed over several sessions than when they 
are massed into one session. This finding is extremely robust in 
many domains of human cognition. (Ambridge et al., 2006: 175) 

 
 Surprisingly, there is not much corpus-linguistic work that deals with or 
let alone incorporates this potential bias, which in corpus linguistics is referred to 
as dispersion. I know of only a few studies that attempt to address this problem 
by developing measures of dispersion (i.e., measures that quantify the 
homogeneity of the distribution of a word in a corpus) or adjusted frequencies 
(i.e., frequencies that penalize words that are attested only in a small part of a 
corpus), and there is also only another handful of studies that actually use these 
measures or study them in more detail. In Gries (2008), I discuss all the measures 
proposed so far and illustrate that using frequencies alone runs the risk of yielding 
incorrect results. More specifically, I 
 
• exemplified how frequencies of (co-)occurrence can be quite misleading. 
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• argued that measures of dispersion as well as adjusted frequencies may be 
needed to study and characterize our data more accurately. 

• suggested a new and intuitively simple dispersion measure called DP to 
address several of the shortcomings that existing measures exhibit. 

• provided some resources for researchers: two small computer programs to 
compute dispersion measures and adjusted frequencies as well as 
dispersion measures and adjusted frequencies for thousands of words from 
four different corpora.  

 
 (See that study for definitions of and references on all the measures 
discussed here.) However, it is quite obvious that a variety of issues in this area 
remains to be explored in more detail, especially given that dispersion 
characteristics can influence any given corpus-based statistic. 
 First, we need much more information about the properties of the 
measures. Lyne’s (1985) groundbreaking work is a laudable start: using 
scatterplots to compare a few dispersion measures, he was the first to try to come 
to grips with the various ways in which measures differ. However, his study was 
restricted to the few measures available at that time, and today’s computational 
possibilities allow for much larger and/or more detailed investigations of the 
measures he used and later ones. For example, little is known about 
 
• how the results of different dispersion measures or adjusted frequencies 

compare to each other (beyond Lyne’s above study). This is problematic 
since there are now different kinds of measures. 
o First, parts-based measures, which take into consideration how 

often an element in question is attested in parts of the corpus, 
but disregard the order of corpus parts as well as where in these 
parts element in question occurs. 

o Second, distance-based measures, which take into consideration 
the distances between successive occurrences of the element in 
question in a corpus (and hence their order), but not its 
frequencies in different parts of a corpus. 

o Finally, hybrids, which take into consideration both the number 
of occurrences of the element in question in each corpus part 
and, within each part, distances between successive 
occurrences. 

• to what degree, if any, these measures come in quantitatively definable, 
meaningful groups. 

• which kinds of distributions (of authentic data) yield what kinds of results. 
 
 Such issues are relevant for, for example, being able to better compare 
dispersion measures from different studies in order to choose the best measure for 
a task—or at least choose measures that are better suited than other measures for 
the particular tasks at hand. In Section 2 of this paper, I will therefore compare 
the behavior of all published measures of dispersions and all adjusted frequencies 
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I have come across on the basis of the 17,481 most frequent types (10,294,637 
tokens) in the spoken component of the British National Corpus World Edition 
(XML version). 
 Second, we need to be more serious about validating our dispersion 
measures and adjusted frequencies. (Strictly speaking, this also applies to 
measures of co-occurrence strengths, but this is beyond the scope of the present 
paper.) Devising statistics that are theoretically motivated and make intuitive 
sense when applied to corpus data is a useful step, although only the first step. 
 For example, given what we have seen earlier regarding the correlation of 
observed frequencies (or their logs) and the familiarity of words, psycholinguists 
or psychologists often use frequency information of words from corpora or 
databases to create experimental stimuli with the intent to control for frequency or 
familiarity. However, if dispersion plays the role some corpus linguists have 
argued, then controlling for frequency alone may turn out to be insufficient unless 
dispersion is considered at the same time. For corpus linguists, that means that 
our measures must be validated against corpus-external evidence because, strictly 
speaking, as long as we corpus linguists do not show that our dispersions and 
adjusted frequencies correspond to something outside of our corpora, we have 
failed to provide the most elementary aspect of a new measure—its validation.1 
 How could we provide such evidence? First, we can perform experiments 
ourselves. For example, one could run experiments (i) on the fictitious corpus 
distributions discussed in Lyne (1985) and Gries (2008) to determine whether the 
measures are able to distinguish them or not and (ii) to determine which 
measures’ results from large balanced corpora are most compatible with subjects’ 
intuitions regarding the words’ overall centrality in a language. Since dispersion 
and adjusted frequencies are used as proxies to familiarity, one could also check 
whether ways of presenting children with nonce words that differ in terms of the 
dispersion patterns of the word in question lead to different degrees of learning 
success (see studies on distributed learning such as Ambridge et al., 2006). 
Thankfully, the number of experimental validations of corpus-based studies is 
steadily increasing, and the field of dispersion should be no exception to this 
general trend. 
 Second, we can reanalyze published psycholinguistic data. In Section 3 
below, I will correlate dispersion measures and adjusted frequencies with the 
response time latencies of Spieler and Balota (1997) and Balota and Spieler 
(1998), as well as lexical decision task data from Baayen (2008). 

2. Dispersions and adjusted frequencies: intercorrelations 

To explore how dispersion measures and adjusted frequencies are intercorrelated 
with each other, I used data from the spoken component of the British National 
Corpus (BNC) World Edition (XML). More specifically, I wrote an R script that 
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• loaded each corpus file of the BNC World Edition (XML) that contained 
spoken data, converted it to lower case, and retained only the lines that 
contained sentence numbers (regular expression: “<s·n”). 

• deleted all sequences of nonword tags and the material they refer to 
(regular expression: “·*<(?!w·.*?>).*?>[^<]*”). 

• split up the remaining data at sequences of optional spaces and word tags 
(regular expression: “·*<w.*?>”). 

• printed the resulting word list into an output file such that the file 
contained all the word tokens from the corpus in the order of the files 
followed by one tab stop followed by the name of the file in which the 
word occurred.2 

 
 Then, for all word types that occurred ten or more times in the corpus, I 
used another R script to compute all 29 dispersion measures and all adjusted 
frequencies discussed in Gries (2008); the corpus parts I assumed were the 
individual files, which were processed in alphabetical order of their filenames. As 
a result, I obtained a table with these dispersion measures and adjusted 
frequencies in the columns for the 17,481 word forms in the rows.3, 4  
 Intercorrelations between these measures were explored using hierarchical 
agglomerative cluster analyses and, for additional graphical exploration, principal 
component analysis. Hierarchical agglomerative cluster analysis is a statistical 
tool well-suited to the task at hand. Such cluster analyses try to find structures in 
the data by successively amalgamating individual measures into larger groups 
such that the within-groups similarities are as large as possible compared to the 
between-groups similarities. While such a clustering approach is bottom up and 
data driven, the researcher has to make at least two important decisions. First, one 
has to decide on a measure of pairwise similarity on the basis of which the 
different elements—the dispersion measures and adjusted frequencies—are 
compared to each other. Second, one has to decide on an amalgamation rule, an 
algorithm that determines how groups of elements are merged. As to the former, I 
use a fairly standard measure, namely 1-r, where r is the Pearson product-moment 
correlation between the vectors of any two measures that are being compared.5 As 
to the latter, I use Ward’s method because it has been shown to be a reliable 
measure and good at identifying small clusters, and because of its affinity to the 
logic underlying ANOVAs. To avoid distortions by the different scales of the 
measures, the values were z-standardized by column,6 and I did separate analyses 
for the dispersion measures and the adjusted frequencies. 

2.1  Dispersion measures 

The result of the cluster analysis on dispersion measures is shown in Figure 1 (the 
abbreviations of the measures are listed in Appendix 1). 
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Figure 1. Dendrogram of dispersion measures.7 

 The results suggest five different clusters: 
 
• The maximal average silhouette width for a cluster solution (0.73) was 

obtained for six clusters (see the grey boxes), but this comes at the cost of 
assuming two clusters that consist of only one measure (assuming one-
measure clusters is undesirable because such clusters mean that the one 
measure is in fact unique and cannot be merged with another one, which is 
after all the whole point of clustering). 

• The second highest average silhouette width is practically the same 
(0.729) but has only one single-element cluster and a much higher average 
silhouette width than the next solution with fewer clusters (four clusters: 
0.675). 

• The principal component analysis returned only four principal components 
with eigenvalues larger than 1; the loadings of the first two principal 
components (the first on the x-axis, the second on the y-axis), which 
together account for 77.2% of the variance in the data, are plotted in 
Figure 2 (the polygons represent the clusters from the HCA). 
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Figure 2. Loadings of the first two principal components. 

 For reasons of space, I cannot discuss the results here in great detail. It is 
obvious, however, that the proposed 16 dispersion measures constitute five or six 
different kinds of measures that differ mainly along two dimensions and that 
exhibit varying degrees of homogeneity: both versions of Rosengren’s S, DC, and 
the range are very similar to each other whereas the cluster containing idf and the 
variation coefficient is rather heterogeneous. Interestingly, a measure such as 
Carroll’s D2, whose creator harshly attacked Juilland et al.’s D for a variety of 
perceived shortcomings, is actually very similar to it in terms of its overall 
behavior—in fact, much more similar than to most other measures. In addition, I 
checked how each cluster relates to raw frequency by inspecting one central 
member of each cluster. In order to force all values into a comparable range and 
give them the same orientation (high values indicate high clumpyness and low 
values indicate more even distributions), I z-standardized 
 
• the vectors of 1-DC value and 1-Dequal. 
• the vectors of idf, chi-square and DP values. 
 
 These values were then plotted against log frequency and summarized 
with smoothers.8 The result shows that the different groups of values behave very 
differently with respect to frequency; see link 2 in Appendix 2. DC, Dequal, idf, 
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and DP become smaller with larger observed word frequencies, but, on the 
whole, chi-square does not. In addition, the measures exhibit quite different 
ranges: while DC and DP are fairly similar, the Dequal has more larger values than 
idf, and chi-square has many large values. Finally, the curvature of the smoothers 
sometimes differs considerably: DC and DP again behave similarly but different 
from both Dequal and idf. 
 What does all this show? In the present form, the data do not show much 
in terms of specific content. What they do show, however, is that different 
measures of dispersion will yield very different (ranges of) values when applied 
to actual data. Researchers must exercise caution in their choice of a measure of 
dispersion for their data: not only should they make sure that they choose a 
measure that exhibits all of the theoretically desirable characteristics,9 but they 
might also want to consider reporting or basing their subsequent analysis on the 
results of more than one measure, ideally from measures from the different 
clusters represented in Figures 1 and 2. Interestingly, the one dispersion measure 
that is conceptually very different from all others does not exhibit a particularly 
special status in the evaluation: Washtell’s self-dispersion is the only measure 
that not only takes into consideration the number of times an element is observed 
in a corpus part, but also the distances between the occurrences. On the one hand, 
this may seem like a theoretically very attractive feature, but it can also be 
applied only when a word occurs more than once in a corpus part. However, 
while this measure is different enough to constitute a cluster on its own when the 
less parsimonious six-cluster solution is adopted, the principal component 
analysis shows that it is located in a relatively populated area of principal 
component space. More and maybe more diverse data are required to shed light 
on whether or not the additional computational effort of this theoretically 
attractive feature of self-dispersion is justified. 

2.2  Adjusted frequencies 

Interestingly, the result of the cluster analysis on adjusted frequencies does not 
merit a figure. Apart from Kromer’s UR, all other measures are grouped together; 
the only one that may be a little bit different from the rest is fAWT: the average 
silhouette width for the two-cluster and three-cluster solutions are 0.89 and 0.65 
respectively. What is more interesting to note is that the two different kinds of 
adjusted frequencies are not distinguished very much: the distance-based 
measures proposed by Savický and Hlaváčová are grouped together with several 
parts-based measures, which disregard distance information. Also, when one 
looks at how much in percent each adjusted frequency reduces the actually 
observed frequency, then the three measures that are farthest away from each 
other in the dendrogram behave completely differently; see Figure 3, which 
shows the non-parametric smoothers for Rosengren’s AF (for equal corpus parts), 
Kromer’s UR, and Savický and Hlaváčová’s fAWT, and link 3 for the complete plot. 
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Figure 3. Nonparametric smoothers summarizing three adjusted frequencies. 

 It is hard to imagine a more diverse result. The more frequent words are, 
the less Kromer’s UR reduces their frequency, but at the same time the more 
Rosengren’s AF does, and fAWT is different from both. I have little to say about 
this particular result other than that it clearly emphasizes that we know next to 
nothing about how different adjusted frequencies behave and what they actually 
mean or do. More exploration is necessary but even more important is that we 
begin to validate the two dozen or so dispersion measures and adjusted 
frequencies we have at our disposal. A first step in this direction will be taken in 
the next section. 

3. Dispersions and adjusted frequencies: validation against 

psycholinguistic data 

While dispersion measures and adjusted frequencies were developed with rather 
practical motivations in mind (e.g., to provide lexicographers with more reliable 
statistics than raw frequencies), it is probably fair to say that our knowledge of 
dispersion measures and adjusted frequencies is approximately inversely 
proportional to what we know about their accuracy, reliability, and predictive 
power. In this section, I want to briefly explore how the measures we have relate 
to the kind of psycholinguistic data they are presumably supposed to relate to. If 
dispersion measures are really better indicators of, for example, the familiarity of 
words (and, hence, somewhat indirectly to maybe even to the concepts these 
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words evoke), if adjusted frequencies are truly more appropriate indicators of 
cognitive entrenchment, then we should find robust correlations between our 
measures and psycholinguistic results such as response time latencies. 
Unfortunately, it will become obvious that the data raise more questions than they 
answer. 
 As a first example, I correlated the response time latencies of young and 
old native speakers of English to monosyllabic words from Spieler and Balota 
(1997) and Balota and Spieler (1998). All dispersion measures and adjusted 
frequencies were centered and the correlation coefficient used was Kendall’s τ. 
Given that not all dispersion measures have the same orientation (see Section 2.1 
above), the correlations between the measures and the response time latencies can 
be both positive and negative: the larger an effect, the more Kendall’s τ will 
deviate from zero; see Figure 4 for the results for young speakers and Figure 5 for 
the results for old speakers; the x-axis labels (d and f indicate whether the plotted 
measure is a measure of dispersion or an (adjusted) frequency and given the large 
n, all correlations are highly significant. 
 

 

Figure 4. Correlations between Balota and Spieler’s (1998) response time 
latencies (young speakers) and the dispersion measures and adjusted 
frequencies surveyed in Gries (2008). 

 In some sense, the results are striking. On the one hand, both panels show 
the same measures as resulting in the strongest correlations: ALD, DP/DPnorm, 
and idf (as measures with positive correlation coefficients) and AFuneq and Uuneq 
(as measures with negative correlation coefficients). On the other hand, it is 
equally obvious that with very few exceptions, it doesn’t seem to matter which 
measure is chosen since most of the correlations are of the same strength (which 
also means that Kromer’s UR—despite the claim of it being more 
psycholinguistically grounded—does not result in a stronger correlation with the 
psycholinguistic data). 
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Figure 5. Correlations between Balota and Spieler’s (1998) response time 
latencies (old speakers) and the dispersion measures and adjusted 
frequencies surveyed in Gries (2008). 

 Even this interim conclusion, however, is undermined once we do the 
same kind of computation for the lexical decision task data of Baayen (2008), 
which are represented in Figure 6. 

 

Figure 6. Correlations between Baayen’s (2008) lexical decision task times (for 
native speakers) and the dispersion measures and adjusted frequencies 
surveyed in Gries (2008). 

 Again, ALD and DP/DPnorm are among the strongest correlations, only 
surpassed, perhaps surprisingly, by the variation coefficient, but Dequal and D3 also 
exhibit strong correlations although their correlations with Balota and Spieler’s 
data were only somewhat moderate. On the more positive side, compared to 
Figures 4 and 5, this time there is a distinct cline with some measures clearly very 
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close to a null correlation, and as a matter of fact, only Dequal, D3, Dunequal, and the 
variation coefficient correlate significantly with the psycholinguistic measure. 

4. Summary and some (preliminary) conclusions 

While the results of Section 2 provide at least some clue(s) for future studies, the 
results of Section 3 do not yet inspire a lot of hope. Section 2 showed that when 
the proposed dispersion measures are applied to most of the words in the spoken 
component of the BNC, they fall into approximately five groups along two 
dimensions and take on a bewildering range of values. It is probably safe to say 
that chi-square is not a particularly useful measure since across the full range of 
observed frequencies, it exhibits an extremely high range of values, so chi-square 
does not appear to be particularly discriminatory. However, apart from that, the 
dispersion measures differ mainly in the degree to which they reach higher values 
with increasing frequency, and none of them reaches really high levels of 
predictive power, which was to be expected (recall Section 1). 
 For the adjusted frequencies, the picture is more diverse: the measures do 
not fall into nicely distinct groups other than UR vs. the rest, but if three core 
measures are explored, the ways in which an adjusted frequency reduces the 
observed frequency exhibit all possible directions of correlation with the actually 
observed frequency. 
 Despite the diversity of these results, recommendations for future work are 
clear: avoid chi-square, use several different measures of dispersion from the 
identified groups, bear in mind the potentially confounding factor of corpus part 
sizes, and explore self-dispersion as well as the distance-based measures to 
determine whether or not they ultimately yield more revealing results. 
 Section 3 brings good news and bad news. The good news is that for all 
three psycholinguistic measures, there are significant correlations between at least 
some dispersion measures and adjusted frequencies, the highest absolute 
correlations are provided by a small set of measures (ALD, DP, and the variation 
coefficient are among them), and, crucially, these measures are more highly 
correlated with the psycholinguistic results than raw frequencies of occurrence. It 
is particularly interesting that a general measure of dispersion such as the 
variation coefficient, which has not been designed specifically to handle corpus 
data, scores so well. The bad news, however, is that the data are as yet too small 
and too heterogeneous to allow making more meaningful recommendations than 
that, (i) focusing on these three measures probably increases the likelihood of 
good results and (ii) we need to know more. 
 On a methodological level, it also emerges that even though Lyne’s earlier 
work on comparing different measures of dispersion has been a major milestone, 
it is now time to include more measures and adopt a multivariate perspective. 
Lyne used a plot-based exploration on selected (fictitious) distributions, but the 
present approach shows that (i) looking at more than 17,000 word types and (ii) 
using more sophisticated methods—robust smoothing approaches, hierarchical 
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cluster analysis, and principal components analysis—have more to offer than was 
available at the time of Lyne’s work. While this paper could only take a small 
step toward answering all the questions that arise from the literature, I hope I 
could provide some initial and interesting results and some incentive to explore 
these issues further. After all, what are dispersions and adjusted frequencies good 
for when we don’t know what they do and what exactly they measure? 

5. Notes 

* I thank three anonymous reviewers for their comments and suggestions. 
The usual disclaimers apply. 

1.  One laudable exception is the recent work by Ellis (2002a, 2002b), which 
shows that range has significant predictive power above and beyond raw 
frequency of occurrence, and it is this kind of evidence we must provide in 
order to show our efforts are more than devising clever equations. 

2.  All retrieval operations, statistics, and graphs were computed with R 2.8.0 
(see R Development Core Team, 2008). 

3.  Scripts to compute dispersion measures and adjusted frequencies as well 
as dispersion measures and adjusted frequencies for words from four 
different corpora are available from my web site; see link 1 in Appendix 2. 

4.  Since it is as yet an unresolved question exactly how dispersions and 
adjusted frequencies react to different numbers of corpus parts (especially 
in combination with differently sized corpus parts), it needs to be 
mentioned how similar the corpus parts are to each other. In this case, the 
file sizes (in words) were all rather similar to each other: the relative 
entropy of the file sizes is 0.914 and thus relatively close to the theoretical 
maximum. 

5.  I used 1-r as a measure to be able to better compare the results of the 
cluster analysis with the of the principal components analysis. A cluster 
analysis based in Kendall’s τ as a similarity measure yielded a virtually 
identical dendrogram, the sole difference being that the two clusters on the 
right of Figure 1 were more similar to each other. 

6.  To z-standardize a value x from a vector/range of values, you subtract the 
mean of all the values from x and divide the result by the standard 
deviation of all the values: 

σ
µ−

=
x

z . 

7.  See the appendix for the meanings of the abbreviations. 
8.  I used locally weighted polynomial regressions as smoothers, (i.e., 

regression lines that try to summarize the cloud of points in a scatterplot 
without the restriction of typical linear regressions that the line must be 
straight); see ?lowess in R. 
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9.  These “theoretically desirable characteristics” include the ability of 
dispersion measures (i) to handle differently-sizes corpus parts, (ii) to fall 
only into the range the dispersion measure is supposed to fall into, (iii) to 
exhaust that range (i.e., not cluster only in small range of the complete 
theoretical range), (iv) to not be overly sensitive to the overall numbers of 
corpus parts, (v) to be sensitive enough, but not too sensitive, given 
extreme distributions and zero occurrences, and others; see Gries (2008: 
Section 2.4 and 5 for discussion and exemplification). 
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Appendix 

Appendix 1. 

Abbreviation Measure 
FREQ observed frequency of word w 
RANGE number of parts with word w 
MAXMIN max. freq. of w/part—min. freq. of w/part 
SD standard deviation of frequencies 
VARCOEFF variation coefficient of frequencies 
CHISQUARE chi-square value of the frequency distribution 
D_EQ Juilland et al.’s D (assuming equal parts) 
D_UNEQ Juilland et al.’s D (not assuming equal parts) 
D2 Carroll’s D2 
S_EQ Rosengren’s S (assuming equal parts) 
S_UNEQ Rosengren’s S (not assuming equal parts) 
D3 Lyne’s D3 
DC Distributional Consistency 
IDF Inverse Document Frequency 
ENGVALL Engvall’s measure 
U_EQ Juilland et al.’s usage coefficient U (assuming equal parts) 
U_UNEQ Juilland et al.’s usage coefficient U (not assuming equal parts) 
UM_CARR Carroll’s Um 
AF_EQ Rosengren’s Adjusted Frequency AF (assuming equal parts) 
AF_UNEQ Rosengren’s Adjusted Frequency AF (not assuming equal 

parts) 
Ur_KROM Kromer’s UR 
F_ARF Savický and Hlaváčová’s fARF 
AWT Savický and Hlaváčová’s AWT 
F_AWT Savický and Hlaváčová’s fAWT 
ALD Savický and Hlaváčová’s ALD 
F_ALD Savický and Hlaváčová’s fALD 
SELF_DISP Washtell’s self-dispersion 
DP Gries’s Deviation of Proportions 
DP_norm Gries’s Deviation of Proportions (normalized) 

 
 
Appendix 2. 

Link 1: 
<http://www.linguistics.ucsb.edu/faculty/stgries/research/dispersion/links.html> 
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Link 2: 
<http://www.linguistics.ucsb.edu/faculty/stgries/research/dispersion/comparison_

dispersion.png> 
 
Link 3: 
<http://www.linguistics.ucsb.edu/faculty/stgries/research/dispersion/comparison_

adjfreq.png> 




