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In one of the most frequent empirical scenarios in applied linguistics, a researcher’s empirical 
results can be summarized in a two-dimensional table, in which

• the rows list the levels of a nominal/categorical variable,
• the columns list the levels of another nominal/categorical variable, and
• the cells in the table defi ned by these row and column levels provide the frequencies 

with which combinations of row and column levels were observed in some data set.

An example of data from a study of disfl uencies in speech is shown in Table 1, which 
shows the parts of speech of 335 words following three types of disfl uencies. Both the part 
of speech and the disfl uency markers represent categorical variables.

Table 1 shows that 30 uh’s were followed by a noun, 20 uhm’s were followed by a verb, 
etc. One question a researcher may be interested in exploring is whether there is a cor-
relation between the kind of disfl uency produced—the variable in the rows—and the part 
of speech of the word following the disfl uency—the variable in the columns. An exploratory 
glance at the data suggests that uh mostly precedes conjunctions while silences most precede 
nouns, but an actual statistical test is required to determine (a) whether the distribution 
of the parts of speech after the disfl uencies is in fact signifi cantly different from chance, 
and (b) what preferences and dispreferences this data set refl ects. The most frequent 
statistical test used to analyze two-dimensional frequency tables such as Table 1 is the 
chi-square test for independence.

The Chi-Square Test for Independence

The chi-square test for independence is introduced by describing how data analysis is 
conducted using the open source statistical language and environment R (R Development 
Core Team, 2010), which can be freely downloaded from http://cran.at.r-project.org and 
which runs on all major operating systems.

Entering the Data

The fi rst step in the analysis of two-dimensional frequency tables is to start the R program 
and enter the frequency table into R. For example, to enter the above data in Table 1, the 

Table 1 Fictitious data on the correlation of Disfluency and Part of speech 2

 Noun Verb Conjunction Totals

uh  30 70  90 190

uhm  50 20  40 110

silence  20  5  10  35

Totals 100 95 140 335
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researcher would type the following at the console prompt (where c means “combine 
values into a vector, or sequence,” ncol specifi es the number of columns into which the 
sequence of numbers should be coerced, <- represents an assignment arrow, and the 
Pilcrow sign ¶ means “press ENTER”):

x <- matrix(c(30, 50, 20, 70, 20, 5, 90, 40, 10), ncol=3)¶

This creates the matrix of the frequencies shown in Table 1 and stores it as an object 
called x. However, since this matrix does not yet have row and column names, it is useful 
to add such names using the function list. This function takes two vectors, fi rst the row 
names, second the column names:

attr(x, �dimnames�) <- list(Disfluency=c(�uh�, �uhm�, �silence�), 
POS=c(�Noun�, �Verb�, �Conjunction�))¶

If one now tells R to display the object x, then the data are shown nearly exactly as 
represented in Table 1:

x¶
 POS
Disfluency Noun Verb Conjunction
 uh 30 70 90
 uhm 50 20 40
 silence 20 5 10

If one needs the row and column totals of x, too, then these can be obtained from the 
function addmargins:

addmargins(x)¶
 POS
Disfluency Noun Verb Conjunction Sum
 uh 30 70 90 190
 uhm 50 20 40 110
 silence 20 5 10 35
 Sum 100 95 140 335

Assumptions

The second step involves determining whether the data are such that one can in fact 
compute a chi-square test for independence. This test has three assumptions of two dif-
ferent kinds: the fi rst two have to do with the frequencies that would be expected if the 
data were randomly distributed; the third has to do with whether the data points are 
independent of each other or not. The three assumptions are the following:

• 80% of the expected frequencies are greater than 4;
• all expected frequencies are greater than 1; and
• all observations are independent of each other.

In R the fi rst two assumptions are best tested with the function of the chi-square test 
itself, but the third assumption requires the researcher to consider whether data points—
individual occurrences of a disfl uency with the part of speech of the following word—are 
related to each other. This would be the case if, for example, one and the same speaker 
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provided more than one data point to the data set. In such a case, an individual speaker’s 
preference for a particular disfl uency, or a particular disfl uency before some part of speech, 
could bias the statistical evaluation of the data. Another threat to independence could arise 
if disfl uencies were from different speakers but from successive turns in the same conver-
sation, because then a disfl uency in turn t might be infl uenced by the one in turn t − 1 
because of priming effects. We will assume that this is not the case here because, for 
instance, each collected disfl uency is from a different speaker in a different conversation.

Testing the assumptions of the chi-square test is important because, when the data 
violate the assumptions of the test, its results cannot be trusted: If (too many) expected 
frequencies are too small, then the test becomes anti-conservative and may return a 
signifi cant result although the null hypothesis is correct, and if the data points are not 
independent of each other, then the computation of the expected frequencies will be biased. 
Making sure that the test’s assumptions are met is therefore paramount.

Computing and Signifi cance Testing

If the assumptions of the chi-square test are met, it can be computed very easily in R. 
The function for the chi-square test is called chisq.test, and it takes two arguments: the 
table for which one wants to compute a chi-square test (here: x), and an argument correct 
that is set to TRUE or FALSE, depending on whether or not one wants to use a so-called 
continuity correction, which is sometimes recommended for sample sizes between 20 and 
60 and which will therefore not be needed for this example. The researcher assigns the 
result of the chi-square test to an object x.test:

x.test <- chisq.test(x, correct=FALSE)¶

Nothing is returned, but the data structure x.test now contains all the results. Three 
things must now be done. First, the researcher should inspect the frequencies that would 
have been expected by chance—that is, when there is no correlation between the kind of 
disfl uency and the part of speech of the following word—by calling the part of the test 
results that contains the expected frequencies:

x.test$exp¶
 POS
Disfluency Noun Verb Conjunction
 uh 56.71642 53.880597 79.40299
 uhm 32.83582 31.194030 45.97015
 silence 10.44776 9.925373 14.62687

(One can also compute each expected frequency of a cell manually by dividing the product 
of the cell’s row and column total by the total of the table, for example, 190·100 ÷ 335 = 
56.71642, and so forth.) Obviously, all expected frequencies are greater than 4 so the appli-
cation of the chi-square test is justifi ed. Therefore, the second step is to determine whether 
the observed result from Table 1 is signifi cant—that is, different enough from the expected 
result shown above—by calling the overall result:

x.test¶
 Pearson�s Chi-squared test
data: x
X-squared = 45.2273, df = 1, p-value = 3.566e-09
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In this example, there is a highly signifi cant correlation between the kind of disfl uency 
and the part of speech that follows: p is much smaller than the critical value of p = 0.05 
that is usually adopted in the social sciences: 3.566e-09 = 3.566·10-9 = 0.000000003566. 
However, the fact that there is an overall signifi cant result does not reveal which of the 
nine cells is/are most responsible for this effect, i.e. what to focus on most in the interpret-
ation. To identify these cells, one can inspect the so-called Pearson residuals.

x.test$res¶
 POS
Disfluency Noun Verb Conjunction
 uh −3.547512 2.196002 1.1892280
 uhm 2.995361 −2.004245 −0.8805362
 silence 2.955245 −1.563384 −1.2097935

If the Pearson residual in a cell is positive, then the observed frequency in that cell is 
greater than the expected frequency in that cell, and if the Pearson residual in a cell is 
negative, then the observed frequency is less than the expected frequency. The more the 
Pearson residual deviates from 0, the stronger that effect. In this case, therefore, the strongest 
effect is the dispreference of uh before nouns (observed frequency: 30, expected frequency: 
56.7), followed by the preferences of uhm and silences before nouns (observed frequencies 
50 and 20, expected frequencies 32.8 and 10.4 respectively). By contrast, the Pearson resid-
uals for conjunctions are closer to zero, since their observed frequencies are closer to the 
expected ones.

Graphical Interpretation and Effect Size

The above kind of interpretation of chi-square tests can often be facilitated considerably 
with graphical displays. Figure 1 shows two frequent plots, which can be created with the 
following two lines:

mosaicplot(t(x))¶
assocplot(t(x))¶

The left panel shows a so-called mosaic plot, in which the box sizes are proportional to 
the cell frequencies and where the lack of alignment of the margins between the boxes 
indicates correlational structure; for example, compare the small box of uh:Noun against 
the long box for uh:Verb. The right panel shows a so-called association plot, in which dark 
and light gray rectangles indicate observed frequencies greater and less than the expected 
frequencies respectively, and in which the area of the box is proportional to the difference 
in observed and expected frequencies. It is therefore easy to see that the signifi cant effect 
is mostly due to the fact that uh is less likely before nouns and more likely before verbs 
and conjunctions, and that uhm is less likely before verbs, and so forth.

Finally, in order to be able to compare results from different studies, one needs to com-
pute an effect size, which is independent of the sample size. For two-dimensional tables, 
a statistic called Cramer’s V is used. It falls between 0 (“no association”) and 1 (“perfect 
association”) and is computed as shown in (1), where min(r,c) means “take the numbers 
of rows and columns (here, each is three) and pick the smaller of the two”:

(1) V = 
I

2 

n · (min(r, c) − 1)
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In this example, the effect size can be computed with the following code, where sqrt 
means “square root,” x.test$stat represents the chi-square value of the chi-square test 
stored in x.test, sum(x) represents the sample size n, and dim(x) returns the numbers 
of rows and columns of the data table x, of which then the minimum (min) is taken. The 
resulting Cramer’s V value is relatively small, certainly much closer to 0 than to 1:

sqrt(x.test$stat/(sum(x) * (min(dim(x))-1)))¶
X-squared
0.2598142

To report the result of a chi-square test, the researcher should provide the table of 
observed frequencies, the chi-square value as well as its df, its p-value, and the effect size. 
The next section discusses very briefl y one way to proceed if the expected frequencies are 
too small to use the chi-square test, namely an exact test.

An Exact Alternative: An Exact Test for Independence

Sometimes, one may not have data that result in expected frequencies large enough to 
meet the conditions of the chi-square test. For instance, one may have obtained only 20% 
of each cell’s frequency in Table 1, as in this table y.

y <- x/5¶
y¶
 POS
Disfluency Noun Verb Conjunction
 uh 6 14 18
 uhm 10 4 8
 silence 4 1 2

A chi-square test on y shows that more than 20% of the expected frequencies are smaller 
than 3:

Figure 1 A mosaic plot (left panel) and an association plot (right panel) for the data in 
Table 1
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chisq.test(y, correct=FALSE)$exp
 POS

Disfluency Noun Verb Conjunction
 uh 11.343284 10.776119 15.880597
 uhm 6.567164 6.238806 9.194030
 silence 2.089552 1.985075 2.925373
chisq.test(y, correct=FALSE)
     Pearson�s Chi-squared test
   data:  y
  X-squared = 9.0455, df = 4, p-value = 0.05997

A test that can be applied to such tables is the Fisher–Yates exact test. The application 
in R is very straightforward:

fisher.test(y)¶
   Fisher�s Exact Test for Count Data
data: y
p-value = 0.05338
alternative hypothesis: two.sided

The test shows that the distribution is not signifi cant: p is too large. This is interesting 
for two reasons: First, as can be easily seen, the p-value of the Fisher–Yates exact test of 
y (0.05338) is closer to the standard signifi cance level of 0.05 than the p-value of the chi-
square test of y (0.05997): The two tests differ especially with small sample sizes. Second, 
this is interesting since, in percentages for example, the distribution in y is of course the 
same as in x: uhm:Verb is still four times as frequent as silence:Verb, which shows how 
sensitive p-values are to sample sizes and why sample-size independent effect sizes should 
always be provided.

This example from quantitative corpus analysis provides only one of many uses for 
these two tests of correspondence between categories of nominal or categorical variables. 
Like many other statistical tests, the chi-square has assumptions about the data that need 
to be checked. Data failing to meet assumptions can be analyzed in a different way, in this 
case, using the Fisher–Yates exact test.

SEE ALSO: Corpus Linguistics: Overview; Corpus Linguistics: Quantitative Methods; 
Describing and Illustrating Quantitative Data; Inference; Probability and Hypothesis Testing
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