
15 Basic significance testing
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1 Introduction

This chapter introduces the fundamentals of inferential statistics – that
is, methods that help you make inferences or predictions based on your sample
data. More specifically, in most empirical studies, researchers cannot study the
complete population of a phenomenon of interest – that is, the complete set of
objects or speakers of interest – but only a small sample of the phenomenon under
investigation. For example, instead of investigating all relative clauses, you
investigate a (hopefully carefully constructed) sample of relative clauses in a
(part of a) corpus; instead of testing all non-native speakers of a language, you
test a (hopefully randomly selected) sample of speakers, and so on. Obviously,
you hope that whatever results – percentages, means, correlation coefficients –
you obtain from a sample (which you studied) will generalize to the population
(which you did not study). However, if researchers draw different samples from
the same population and compute point estimates of percentages, means, correla-
tion coefficients, they will just as obviously also get different point estimates; they
will encounter variability. The most important application of inferential statistics
is to assist researchers in quantifying and studying this variability to (i) arrive at
better estimates of population parameters, and (ii) test hypotheses and separate
random/accidental from systematic/meaningful variation.
Section 2 will introduce several basic concepts that underlie most inferential

statistics. Section 3 presents a set of questions based on Chapter 14 and Section 2
of this chapter that are necessary to identify which statistical test is applicable in a
particular research scenario. Sections 4.1 and 4.2 then discuss a small selection of
statistical tests involving frequency data of discrete/categorical data and central
tendencies (means and medians) respectively.

2 The logic of significance tests

To put the notion of statistical testing into perspective, an introduction
to the framework of null hypothesis significance testing (NHST) is required. As
the term NHST suggests, the notion of hypothesis plays a central role in this
framework. A hypothesis is a statement that makes a prediction about the distri-
bution of one variable (or about the relation between two or more variables) in a
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population and that has the implicit structure of a conditional sentence (if . . .,
then . . . or the more/less . . ., the more/less . . .). Two different ways of character-
izing hypotheses must be distinguished:

� alternative hypotheses (H1) vs null hypotheses (H0): the former is a
statement about an effect, a difference, a correlation regarding one or
more variables; the latter is the logical counterpart of the former (i.e., a
statement that predicts the absence of an effect, a difference, a corre-
lation). Most of the time, the research hypothesis that is explored in an
empirical study is an alternative hypothesis, predicting, say, a differ-
ence between percentages, a difference between group averages, a
correlation between two or more variables, and so on.

� text hypotheses vs statistical hypotheses: each of the two above
hypotheses comes in two forms. The former is a prediction in natural,
“normal” language, such as in the H1, in English ditransitives, recip-
ients are shorter than patients. The latter is the former’s translation
into something that can be counted or measured – that is, its oper-
ationalization. This is an important step, not only because a proper
operationalization is required to ensure the study’s validity, but also
because one text hypothesis can be translated into different statistical
hypotheses. For instance, one statistical hypothesis for the above text
hypothesis involves central tendencies such as means: in English
ditransitives, the mean syllabic length of recipients is smaller than
the mean syllabic length of patients. However, an operationalization
based on counts/frequencies would also be possible: in English ditran-
sitives, the number of recipients that are shorter than the average of all
recipients and patients is larger than the number of patients shorter
than that average. Needless to say, it is possible that the first statistical
hypothesis is supported whereas the second is not, which is why a
careful operationalization is essential and, obviously, will determine
which statistical test you need to perform.

Significance tests are based on the following logic and steps: (i) you compute the
effect you observe in your data (e.g., a frequency distribution, a difference in
means, a correlation), (ii) you compute the so-called probability of error p to
obtain the (summed/combined) probability of the observed effect and every other
result that deviates from H0 even more when H0 is true, and (iii) you compare p to
a significance level (usually 5 percent, i.e., 0.05) and, if p is smaller than the
significance level, you reject H0 (because it is not compatible enough with the data
to stick to it) and accept H1. Note that this does not mean you have provenH1: after
all, there is still a probability p that your observed effect/result arises under H0 – p
is just too small (by convention) to stick to H0 (see Cohen 1994 for a critical
discussion of NHST).
The above immediately leads to the question of how that probability p is

computed. One way is to write up all results possible and their probabilities
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under H0 and then check how likely the observed result and everything more
extremely deviating from H0 is. Imagine a linguist interested in conversion/zero-
derivation in English. He presents the word walk independently to three subjects
and asks them which word class it is: noun or verb. Imagine further that all three
subjects responded verb. How likely is this result, assuming that, under H0, noun
and verb are equally likely? To answer this question, Table 15.1 summarizes the
whole result space: the three left columns represent the subjects and their possible
answers, columns four and five summarize the numbers of noun and verb
responses for each possible outcome, and the rightmost column provides the
probability for each of the eight results, which are equally likely under the H0

and, thus, all 1/8.
The linguist can now determine how probable the observed result – three times

verb – and all other results deviating fromH0 evenmore – none, three times verb is
the most extreme verb-favoring result you can get from three subjects – are. That
probability is shown in the last row: p=0.125, which makes the observed result not
significantly different from chance.
Obviously, the strategy of writing up every possible result, and so on, is not

feasible with continuous data, or even with the binary data from above if the sample
size becomes large. However, consider Figure 15.1 to see what happens as the
number of trials increases. The top left panel shows the probability distribution for
the data in Table 15.1: p(0 times verb)=0.125, p(1 times verb)=0.375, p(2 times
verb)=0.375, and p(3 times verb)=0.125. If you perform six or twelve trials, you
obtain the other distributions in the upper panel, and if you perform twenty-five,
fifty, or one hundred trials, you obtain the distributions in the lower panel: clearly, as
the number of trials increases, the discrete probability distribution looks more and
more like a bell-shaped curve, whose distribution can therefore be modeled on the
basis of the equation underlying a Gaussian normal distribution, as shown in (1).

Y ¼ 1

�
ffiffiffiffiffiffi
2p

p e� X��ð Þ2=2�2 ð1Þ

Table 15.1 All possible results from asking three subjects to classify walk as a
noun or a verb

Subject 1 Subject 2 Subject 3 # noun # verb Probability

noun noun noun 3 0 0.125
noun noun verb 2 1 0.125
noun verb noun 2 1 0.125
noun verb verb 1 2 0.125
verb noun noun 2 1 0.125
verb noun verb 1 2 0.125
verb verb noun 1 2 0.125
verb verb verb 0 3 0.125
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Thus, if the data under investigation are distributed in a way that is sufficiently
similar to the normal distribution (or another one of several widely used probability
density functions, such as the F-, t-, or χ2-distribution), then one does not have to
compute, and sum over, exact probabilities as in Table 15.1, but can approximate the
p-value from parameters of equations underlying the above distributions (such as
(1)); this is often called using parametric tests. Crucially, this approximation of a
p-value on the basis of a function can be only as good as the data’s distribution is
similar to the corresponding function; the next section illustrates the relevance of
this issue, as well as a few others, for selecting the right statistical test.
A second advantage of your data being distributed similarly to a known distribu-

tion is that this sometimes allows you to compute a so-called confidence interval on
top of a descriptive statistic (such as amean or a correlation). A 95 percent confidence
interval helps you assess the precision of a statistic describing your sample; it

identifies a range of values a researcher can be 95% confident contains the true
value of a population parameter . . . Stated in probabilistic terms, the researcher
can state that there is a probability/likelihood of 0.95 that the confidence interval
contains the true value of the population parameter. (Sheskin 2007: 74)

Section 4 will provide two examples for confidence intervals.

3 Choosing significance tests

The decision for a particular statistical test is typically made on the
basis of a set of questions that cover various aspects of the study you are
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Figure 15.1. Probability distributions for outcomes of equally likely binary trials
(top row: 3, 6, and 12 trials; bottom row: 25, 50, and 100 trials)
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conducting, the number and types of variables that are involved, and the
size and distribution of the dataset(s) involved. The remainder of this section
discusses these questions in (1) to (6), and their possible answers and
implications.

1. What kind of study is being conducted?

This question is usually easy to answer. At the risk of a slight simplification,
studies are either exploratory/hypothesis-generating or hypothesis-testing. The
former means that you are approaching a (typically large) dataset with the
intentions of detecting structure(s) and developing hypotheses for future studies;
your approach to the data is therefore data-driven, or bottom-up. The latter means
you are approaching the dataset with a specific hypothesis in mindwhich youwant
to test. In this chapter, I will discuss only the latter type of study (see Chapter 14
for a discussion of the former type).

2. How many and what kinds of variables are involved?

There are essentially four different possible answers. First, you may only have one
dependent variable. In that case, you normally want to compute a goodness-of-fit
test to test whether the results from your data correspond to other results (from a
previous study) or correspond to a known distribution (such as a normal distribu-
tion). Examples include the following:

� Does the ratio of no-negations (e.g., He is no stranger) and not-
negations (e.g., He is not a stranger) in your data correspond to a
uniform distribution?

� Does the average acceptability judgment you receive for a sentence
correspond to that of a previous study?

Second, youmay have one dependent and one independent variable, in which case
you want to compute a monofactorial test for independence to determine whether
the values of the independent variable are correlated with those of the dependent
variable. For example:

� Does the animacy of the referent of the direct object (a categorical
independent variable) correlate with the choice of one of two post-
verbal constituent orders (a categorical dependent variable)?

� Does the average acceptability judgment (a mean of a ratio/interval/
ordinal dependent variable) vary as a function of whether the subjects
providing the ratings are native or non-native speakers (a categorical
independent variable)?

Third, you may have one dependent and two or more independent variables, in
which case you want to compute a multifactorial analysis to determine whether
the individual independent variables and their interactions correlate with the
dependent variable. For example:
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� Does the frequency of a negation type (a categorical dependent
variable with the levels no vs not; see above) depend on the mode
(a binary independent variable with the levels spoken vs written), the
type of verb that is negated (a categorical independent variable with
the levels copula, have, or lexical), and/or the interaction of these
independent variables?

� Does the reaction time to a word w in a lexical decision task (a ratio/
interval dependent variable) depend on the word class of w (a catego-
rical independent variable), the frequency of w in a reference corpus (a
ratio/interval independent variable), whether the subject has seen a
word semantically related to w on the previous trial or not (a binary
independent variable), whether the subject has seen a word phonolo-
gically similar to w on the previous trial or not (a binary independent
variable), and/or the interactions of these independent variables?

Such multifactorial tests are discussed in Chapters 16 and 20.
Fourth, you have two or more dependent variables, in which case you want to

perform a multivariate analysis, which can be exploratory (such as hierarchical
cluster analysis, principal components analysis, factor analysis, multi-
dimensional scaling) or hypothesis-testing in nature (MANOVA).

3. Are data points in your data related such that you can associate data
points to each other meaningfully and in a principled way?

This question is concerned with whether you have what are called independent or
dependent samples. For example, your two samples (e.g., the numbers of mistakes
made by ten male and ten female non-native speakers in a grammar test) are
independent of each other if you cannot connect each male subject’s value to that
of one female subject on a meaningful and principled basis. This would be the case
if you randomly sampled ten men and ten women and let them take the same test.
There are two ways in which samples can be dependent. One is if you test

subjects more than once (e.g., before and after a treatment). In that case, you
could meaningfully connect each value in the before-treatment sample to a value
in the after-treatment sample, namely connect each subject’s two values. The
samples are dependent because, for instance, if subject #1 is very intelligent and
good at the language tested, then these characteristics will make his results better
than average in both tests, especially compared to a subject who is less intelligent
and proficient in the language and who will perform worse in both tests.
Recognizing that the samples are dependent this way will make the test of before-
vs-after treatments more precise.
The second way in which samples can be dependent can be explained using the

above example of ten men and ten women. If the ten men were the husbands of the
ten women, then onewouldwant to consider the samples dependent.Why?Because
spouses are on average more similar to each other than randomly chosen people:
they often have similar IQs, similar professions, they spend more time with each
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other than with randomly selected people, and so on. Thus, it would be useful to
associate each husband with his wife, making this two dependent samples.
Independence of data points is often a very important criterion: many tests

assume that data points are independent, and for many tests you must choose your
test depending on what kind of samples you have. For instance, below I will
discuss a t-test for independent samples and one for dependent samples.

4. What is the statistic of the dependent variable in the statistical
hypotheses?

There are essentially five different answers to this question. Your dependent
variable may involve frequencies/counts (e.g., when you study which level(s) of
a categorical variable are attested more/less often than others), central tendencies
(e.g., when you explore whether the mean or median of a ratio/interval or ordinal
variable is as high as you expected), dispersions (e.g., when you investigate
whether the variability of a ratio/interval or ordinal variable around its mean or
median is higher in one group than another), correlations (e.g., when you ask
whether changing the values of one variable bring about changes in another), and
distributions (e.g., whether samples of two ratio/interval variables are both nor-
mally distributed or not). Obviously, the nature of your dependent variable has
important consequences for your statistical analysis; below, we will discuss
examples involving frequencies and central tendencies.

5. What does the distribution of the data look like? Normally or another
way that can be described by a probability density function (or a way
that can be transformed to correspond to a probability density func-
tion; see Section 5), or some other way?

6. How big are the samples to be collected? n<30 or n≥30?

These final two questions are related to each other and to the above notion of
parametric (vs non-parametric/distribution-free) tests. Parametric tests involve
statistical approximations and rely on the sampled data being distributed in a
particular way (for example, normally as represented in Figure 15.1 or the left
panel of Figure 15.2). Sometimes, the data do not even have to be distributed
normally as long as the sample size is large enough. However, the more the data
violate distributional assumptions of the test you are considering (e.g., word
lengths are often distributed as in the right panel of Figure 15.2), the safer it is
to use a non-parametric/distribution-free alternative that does not rely on assump-
tions you know your data violate; see Section 4.2.2 for an example. See Chapter 3
for an example of a case where the distinction between parametric and non-
parametric tests is important for analyzing grammaticality judgments.
Sometimes, tests have yet other requirements, such as particular minimal

sample sizes or more complicated ones. In all cases, you must check your data
for all of these to make an informed decision in favor of some test; ideally this
involves a visual exploration of the data.
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Once all the above questions have been answered and all other requirements
have been checked, they usually point to one or two tests that address your
question exactly. The following sections exemplify the choice of statistical tests
and how they are then performed using some small examples. I am using the open-
source language and programming environment R (www.r-project.org). Just as in
many other scripting languages or spreadsheet applications, you perform (statis-
tical) operations with functions (which tell R what to do, such as compute a log, a
sum, or a mean), which take arguments (which tell R what to apply a function to
and how). For example, sum(c(1, 2, 3, 4, 5)) applies the function sum to one
argument (a vector containing the numbers from 1 to 5), mean(c(1, 2, 3, 4, 5))

computes the mean of the numbers from 1 to 5, and so on. The sections below will
clarify this.

4 Performing significance tests and computing
confidence intervals

This section exemplifies a small selection of frequently used tests;
Section 4.1 exemplifies tests where the dependent variable is categorical;
Section 4.2 exemplifies cases where central tendencies of ratio/interval and
ordinal variables are tested.

4.1 Frequencies ----------------------------------------------------------------------------------------------------------------------------------------------------------
This section introduces a goodness-of-fit test (Section 4.1.1), a test for

independence (Section 4.1.2), and confidence intervals for percentages of catego-
rical variables (Section 4.1.3).

4.1.1 The chi-square test for goodness of fit
This section discusses the test to use if you have answered the above

questions as follows: you are conducting a study of one dependent categorical

Figure 15.2. A normal distribution (left panel); an exponential distribution (right
panel)
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variable and you want to test whether the observed frequencies of the variable’s
levels – which are independent of each other – are distributed as expected from a
particular probability distribution (e.g., the uniform distribution) or previous
results. For example, you asked fifty subjects to indicate whether they think that
walk is a noun or a verb (of course it can be both – you are interested in the
subjects’ first responses), and you obtained responses such that thirty subjects said
verb and twenty said noun. If you want to test whether these two observed
frequencies, thirty and twenty, differ significantly from the chance expectation
that subjects would have responded verb and noun equally often, then you
compute a chi-square test for goodness of fit. In addition to the above criteria,
this test also requires that 80 percent of expected frequencies are greater than or
equal to five.
First, you enter the frequencies into R in the form of a so-called vector

(a sequence of elements such as numbers or strings) and give names to the
frequencies, using <- as an arrow-like assignment operator and the function c
(for “concatenate”); anything in a line after a pound sign is ignored and merely
serves to provide commentary.

walk <- c(30, 20) # create a vector with the observed frequencies

names(walk) <- c("verb", "noun") # name the observed frequencies

Then you compute the test using the function chisq.test with two arguments: the
vector walk you just created, and a vector p of the expected probabilities, and since
your H0 expects the two parts of speech to be equally frequent, this is two times
0.5. The result of this test you assign to a data structure you can call, say, walk.test:

walk.test <- chisq.test(walk, p=c(0.5, 0.5)) # compute the chi-square test

Nothing is returned, but walk.test now contains all relevant results:

walk.test # show the result

Chi-squared test for given probabilities

data: walk

X-squared = 2, df = 1, p-value = 0.1573

The results shows that the distribution of verbs and nouns does not differ signifi-
cantly from chance: p>0.05. However, you should also make sure that the
assumptions of the test were met so you compute the expected frequencies
(which in this case you do not really need R for). Obviously, both expected
frequencies exceed five so the use of the chi-square test was legitimate.

walk.test$expected # show the expected frequencies

verb noun

25 25

If the assumption regarding the expected frequencies is not met, exact alternatives
for dependent variables with 2 or 3+ levels are the binomial test and the multi-
nomial test respectively; the former is already implemented in the R function
binom.test.
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4.1.2 The chi-square test for independence
The following scenario arises more frequently: you are conducting a

study involving independent observations of two categorical variables, one
dependent and one independent, and you want to test whether the observed
frequencies of the levels of the dependent variable vary across the levels of the
independent variable. For example, if in the above example you not only regis-
tered how often subjects considered walk a verb or noun, but also whether each
subject had a college education or not, then you may have obtained the following
result:
To determine whether the frequencies with which walkwas classified as a noun

or a verb are correlated with the subjects’ level of education, you compute a chi-
square test for independence, which has the same assumption regarding the
expected frequencies as the chi-square test for goodness of fit.
Again, you begin by entering the data. This time, because the data are tabular,

you use the function matrix with two arguments: a vector of observed frequencies
by column and the table’s number of columns (ncol). It is again also useful to
provide names to the data by adding row and column names in the form of vectors
using the function list:

walk <- matrix(c(16, 9, 4, 21), ncol=2) # create a matrix with the observed

frequencies

dimnames(walk) <- list(Walk=c("noun", "verb"), Education=c(">= college",

"< college")) # name the dimensions of the matrix

walk # look at the matrix

Education

Walk >= college < college

noun 16 4

verb 9 21

You then use the function chisq.test with the matrix walk as its only argument and
assign the results to walk.test again (overwriting the earlier results):

walk.test <- chisq.test(walk) # compute the chi-square test

walk.test # show the result

Pearson’s Chi-squared test with Yates’ continuity correction

data: walk

X-squared = 10.0833, df = 1, p-value = 0.001496

For 2�2 tables R automatically applies a continuity correction to the data (see
Sheskin 2007: 628f.); if that is not desired, use correct=FALSE as another

Table 15.2 Fictitious data from a forced-choice part-of-speech selection task

College education = yes College education = no Totals

walk = noun 16 4 20
walk = verb 9 21 30
Totals 25 25 50
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argument to chisq.test. The result shows there is a clear correlation between the
part of speech assigned to walk and the education level of the subjects: p<0.05.
Before you explore what the correlation looks like, you should again test

whether the expected-frequencies assumption is met, and it turns out it is:

walk.test$expected # show the expected frequencies

Education

Walk >= college < college

noun 10 10

verb 15 15

Finally, what kind of correlation do the data support? The quickest way to find out
involves the so-called Pearson residuals, which correspond to the difference
between each cell’s observed minus its expected frequency, divided by the square
root of the expected frequency. If a Pearson residual is positive/negative, then the
corresponding observed frequency is greater/less than its expected frequency.
Second, the more the Pearson residual deviates from 0, the stronger that effect.
In R, this is easy to compute:

walk.test$residuals # show the Pearson residuals

Education

Walk >= college < college

noun 1.897367 −1.897367

verb −1.549193 1.549193

The effect is that subjects with college education assigned the part of speech
noun more often than expected, whereas subjects without a college degree
assigned the part of speech verb more often than expected. This effect is also
obvious from a graphical representation of the data (e.g., a so-called mosaic plot),

< college>= college

Education

no
un

ve
rb

W
al

k

Figure 15.3. Mosaic plot for the data in walk
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in which the large areas for the “>=college:noun” and “<college:verb” combina-
tions represent the effect you already inferred from the residuals:

mosaicplot(t(walk)) # create a mosaic plot

(The t() just transposes the table so its row–column organization corresponds to
the abovematrix.) If the assumption regarding the expected frequencies is not met,
an exact alternative for 2�2 tables is the Fisher-Yates exact test; this test, as well as
extensions to variables with more than two levels, is implemented in the R
function fisher.test.

4.1.3 Confidence intervals for percentages
This section is concerned with how to compute a confidence interval

for an observed percentage. For example, in a corpus sample of 815 instances of
the verb to run, you may have found that 203 of these (24.91 percent) involve the
prototypical sense “fast pedestrian motion.” To better evaluate that percentage
in the population, you now want to determine its 95 percent confidence interval.
The required R function is called prop.test, and it needs three arguments: the
number of relevant instances in the sample that make up the percentage (a.k.a.
successes), the overall sample size, and the argument correct=FALSE, which
means that you do not apply a continuity correction (for the sake of comparison
with other software):

run.ci <- prop.test(203, 815, correct=FALSE) # compute the confidence

interval

run.ci$conf.int # show the confidence interval

[1] 0.2206115 0.2799023

attr(,"conf.level")

[1] 0.95

That is, following Sheskin’s logic from above, you can be 95 percent confident
that the true percentage of this sense out of all instances of to run is between 22.06
and 27.99 percent. If you apply this approach to the walk data from Section 4.1.1,
you obtain the result shown below. Importantly, the non-significant result from
above is suggested by the fact that the confidence intervals overlap.

walk.verb <- prop.test(30, 50, correct=FALSE) # compute the confidence

interval

walk.verb$conf.int # show the confidence interval

[1] 0.4618144 0.7239161

attr(,"conf. level")

[1] 0.95

walk.noun <- prop.test(20, 50, correct=FALSE) # compute the confidence

interval

walk.noun$conf.int # show the confidence interval

[1] 0.2760839 0.5381856

attr(,"conf. level")

[1] 0.95
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4.2 Central tendencies -------------------------------------------------------------------------------------------------------------------------------------
This section introduces a test of means from independent samples

(Section 4.2.1), the corresponding test for medians (Section 4.2.2), a test of means
from dependent samples (Section 4.2.3), and the computation of confidence
intervals for means (Section 4.2.4).

4.2.1 The t-test for independent samples
This section introduces one of the best-known tests for central ten-

dencies, which you apply if you are studying data involving a normally distributed
ratio/interval-scaled dependent variable and a binary independent variable (with
independent data points), and you want to test whether the averages of the
dependent variable in the two groups (i.e., the two means) defined by the inde-
pendent variables differ significantly from each other. For example, you may be
interested in two different subtractive word-formation processes, blending and
complex clipping. The former typically involves the creation of a new word by
joining the beginning of a source word with the end of another (brunch, fool-
osopher, and motel are cases in point), whereas the latter involves fusing the
beginnings of two source words (scifi and sysadmin are examples). You are now
comparing the two processes in terms of how similar the source words are to each
other, where said similarity is operationalized on the basis of the Dice coefficient,
essentially the percentage of shared letter bigrams out of all bigrams.
As usual, the first step is to get the data into R, but in cases like these, you

usually load them from a tab-separated file that was created with a spreadsheet
software and has the so-called case-by-variable format: the first row contains the
column names, the first column contains the case numbers, and each row describes
a single observation in terms of the variables defined by the columns. Table 15.3
exemplifies this format on the basis of an excerpt of data from Gries (2013:
Section 4.3.2.1).
This is how you read such a .txt file like the above into a data frame word.

form in R:

word.form <- read.delim(file.choose()) # load the data from a text file

Table 15.3 Dice coefficients of source words for complex clippings
and blends

CASE PROCESS DICE

1 ComplClip 0.0678
2 ComplClip 0.0704
3 ComplClip 0.0483
. . . . . . . . .
79 Blend 0.1523
80 Blend 0.1507
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The data from each column are now available by combining the name of the data
frame (word.form) with a dollar sign ($) and the column name (e.g., PROCESS).
It is usually advisable to briefly check the structure of the data frame to make sure
that importing the data has been successful; the function str displays the structure
of a data structure:

str(word.form) # inspect the structure of the data

'data.frame': 80 obs. of 3 variables:

$ CASE : int 41 42 43 44 45 46 47 48 49 50 . . .

$ PROCESS: Factor w/ 2 levels "Blend","ComplClip": 2 2 2 2 2 2 2 . . .

$ DICE : num 0.0678 0.0704 0.0483 0.0871 0.0813 0.0532 0.0675 . . .

Apart from the above criteria for the t-test, especially the assumption of normal-
ity, the t-test also requires that the variances of the data points in the two groups
are homogeneous (i.e., not significantly different). Since the default test for
variance homogeneity also requires the data points to be normally distributed,
this criterion should be tested first. One R function that can be used is shapiro.
test, which takes a vector of data points and tests whether these data points differ
significantly from normality. However, since we have two groups of data points –
one for blends, one for complex clippings – there is a better way, using the
function tapply:

tapply(word.form$DICE, word.form$PROCESS, shapiro.test) # test for normality

This means: take the values of tapply’s first argument (word.form$DICE), split
them up into groups by tapply’s second argument (word.form$PROCESS), and
apply tapply’s third argument (shapiro.test) to each group:

$Blend

Shapiro-Wilk normality test

data: X[[1L]]

W = 0.9727, p-value = 0.4363

$ComplClip

Shapiro-Wilk normality test

data: X[[2L]]

W = 0.9753, p-value = 0.5186

Both p-values are not significant, indicating that the Dice coefficients in each
group do not differ from normality. You can therefore proceed to test whether the
variance of one group of Dice coefficients differs significantly from the other. The
function var.test can take a formula as input, which consists of a dependent
variable, a tilde, and (an) independent variable(s).1 In this case, word.form
$DICE is the dependent variable, and word.form$PROCESS is the independent
variable:

1 If you cannot test for homogeneity of variances with var.test because your data violate the
normality assumption, you can use the function fligner.test, which requires the same kind of
formula as var.test.
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var.test(word.form$DICE ~ word.form$PROCESS) # test for variance homogeneity

F test to compare two variances

data: word.form$DICE by word.form$PROCESS

F = 0.6632, num df = 39, denom df = 39, p-value = 0.2042

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.3507687 1.2539344

sample estimates:

ratio of variances

0.663205

Again, the p-value indicates a non-significant result: the variances do not differ
from each other significantly and you can finally use the t-test for independent
samples. The function is called t.test and it is usually used just like var.test (i.e.,
with a formula):

t.test(word.form$DICE ~ word.form$PROCESS) # compute a t-test

Welch Two Sample t-test

data: word.form$DICE by word.form$PROCESS

t = 16.4104, df = 74.928, p-value < 2.2e-16

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

0.05991431 0.07647069

sample estimates:

mean in group Blend mean in group ComplClip

0.1381300 0.0699375

Not only do you get the group means at the bottom, which show that the mean for
blends is about twice as high as that for complex clippings, you also see that that
result is highly significant: p<<<0.05. A graphical representation that summarizes
such data in a very clear and comprehensive way is the so-called box plot, which
requires the function box plot, a formula, and usually the argument notch=TRUE:

box plot(word.form$DICE ~ word.form$PROCESS, notch=TRUE) # create a box plot

This plot provides a lot of information and should be used much more often
than it is:

� the thick horizontal lines correspond to the medians;
� the upper and lower horizontal lines indicate the central 50 percent of the

data around the median (approximately the first and third quartiles);
� the upper and lower end of the whiskers extend to the most extreme

data point which is no more than 1.5 times the length of the box away
from the box;

� values outside of the range of the whiskers are marked individually as
small circles;

� the notches of the boxes provide an approximate 95 percent confi-
dence interval for the difference of the medians: if they do not overlap,
then the medians are probably significantly different (see Sheskin
2007: 40–4 for very comprehensive discussion).
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If you cannot use the t-test because the data are not normally distributed, you
can use the U-test instead, which is discussed in the following section. If you
cannot use the t-test because the variances are not homogeneous, you can
either use a version of the t-test which was designed to be less affected by
unequal variances (the t-test by Welch, which is in fact R’s default) or again
the U-test.

4.2.2 The U-test
There are two main reasons to use a U-test. One is that you are

studying data involving an ordinal-scaled dependent variable and a binary
independent variable (with independent data points), and you want to test
whether the averages of the dependent variable in the two groups (i.e., the two
medians) defined by the independent variables differ significantly from each
other. The other was mentioned at the end of the previous section: you have
data that would usually be analyzed with a t-test for independent samples, but
assumptions of the t-test are not met. The U-test also assumes that the data in
the two groups are from populations that are distributed identically, but
violations to this requirement affect the test results much less than those of
the t-test (which is probably why this criterion is often not even mentioned in
textbooks.)
Given the overall similarity of the two tests and in the interest of brevity, I will

exemplify theU-test only on the basis of the same data as the t-test for independent

0.
15

0.
10

0.
05

Blend ComplClip

Figure 15.4. Box plot of the Dice coefficients for the two subtractive word-
formation processes
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samples. The name of the required function is wilcox.test and it requires the by
now already familiar formula as input:

wilcox.test(word.form$DICE ~ word.form$PROCESS) # compute a U-test

Wilcoxon rank sum test with continuity correction

data: word.form$DICE by word.form$PROCESS

W = 1600, p-value = 1.434e-14

alternative hypothesis: true location shift is not equal to 0

Given the large difference between the medians (recall Figure 15.4) and the highly
significant result of the t-test, it is not surprising that the U-test also returns a
highly significant result. (R also returns a warning not shown above because of the
fact that there are three ties – i.e., three Dice values that are attested more than
once. However, this is no need for concern since R automatically adjusts the way
the p-value is computed accordingly.)

4.2.3 The t-test for dependent samples
The t-test discussed in Section 4.2.1 above involved a test of means

from independent samples – in this section, I will discuss its counterpart for
dependent samples. More specifically, you use the t-test for dependent samples
if your data involve two groups of pairwise-associated data points on a ratio/
interval scale and you want to test whether the means of the two groups are
significantly different. The t-test for dependent samples also comes with the
additional requirement that the pairwise differences between the samples’ data
points are normally distributed.2

As an example, consider a case where ten students take a grammar test and
score a particular number of points. Then, they participate in an exercise
session on the tested grammar topic and take a second grammar test; the
question is whether their scores have changed. First, you enter the data of the
ten subjects into two vectors before and after; crucially, the data points have to
be in the same order for both before and after. That is, if the first data point
of before belongs to subject 1, then so must the first data point of after, and
so on.

before <- c(4 ,17, 8, 7, 13, 13, 3, 6, 12, 13) # create the 1st vector

after <- c(16, 16, 16, 17, 23, 22, 8, 20, 23, 11) # create the 2nd vector

To compute the pairwise differences between the two tests, you just subtract one
vector from the other; R will perform a pairwise computation for you:

differences <- before-after # compute pairwise differences

differences # show the pairwise differences

[1] -12 1 -8 -10 -10 -9 -5 -14 -11 2

2 Reference works differ with regard to this criterion. Some cite the criterion mentioned above (that
the pairwise differences must be normally distributed); others state that the data points in the two
populations represented by the two samples must be normally distributed.
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To test whether these differences are normally distributed, you can proceed as
before:

shapiro.test(differences) # test for normality

Shapiro-Wilk normality test

data: differences

W = 0.874, p-value = 0.1112

Obviously, they are: p>0.05, which means you can perform a t-test for dependent
samples. The function for this test is again t.test, but there are two small changes.
First, to indicate that this time you need a t-test for dependent samples, you add the
argument paired=TRUE. Second, when you did the t-test for independent samples
and the U-test, you had one vector/factor per variable: the vector DICE for
the dependent variable and the factor PROCESS for the independent variable,
and then you used a formula. This time, you have one vector per level of the
independent variable: one for the level “test before the treatment” (before) and one
for the level “test after the treatment” (after). That means you cannot use the
formula notation, but you just separate the two vectors with a comma:

t.test(before, after, paired=TRUE) # compute t-test for dependent samples

Paired t-test

data: before and after

t = −4.4853, df = 9, p-value = 0.001521

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

−11.433079 −3.766921

sample estimates:

mean of the differences

−7.6

The result of the second test is on average 7.6 points better than the first, and that
difference is very significant; p<0.01: it seems as if the treatment led to a
substantial increase – in fact, to an increase of nearly 80 percent (since the
means of before and after are 9.6 and 17.2 respectively). How can this result be
represented graphically? One way would be to plot the vector differences in the
form of a histogram. You use the function plot with the argument type=“h” to plot
the histogram, and the argument sort(differences) sorts the differences to be
plotted in ascending order; the remaining arguments define the x- and y-axis
labels to yield the left panel of Figure 15.5. It is plain to see that most differences
are highly negative, which shows that the after values are larger.

plot(sort(differences), type="h", xlab="Subject", ylab="Difference: before –

after") # plot a histogram of the differences

A second graphical representation is shown in the right panel: Each subject is
represented by an arrow from that subject’s score in the before-treatment test to the
subject’s score in the after-treatment test. The improvement is reflected in the fact
that most arrows go upward, and the two numbers on the left indicate the speakers
whose results did not improve.
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If you cannot use a t-test for dependent samples, a non-parametric alternative is
the Wilcoxon test. The function for this test is again wilcox.test, just add the
argument paired=TRUE.

4.2.4 Confidence intervals for means
This section is concerned with how to compute a confidence interval

for an observed mean. For example, you may have conducted a second experi-
ment of the type in the previous section, with more subjects participating in a
before- and an after-treatment test. You now want to know the mean of this
second after-treatment test, as well as its 95 percent confidence interval. First,
you enter the data:

after.2 <- c(10, 21, 8, 15, 23, 11, 12, 11, 13, 15, 21, 10, 9, 14, 9, 14, 12,

4, 16, 13, 19, 19, 22, 18, 19) # enter the data

The function to compute confidence intervals for means is again t.test, and it
requires the vector with the data points and conf.level with the desired confidence
level. However, the computation of such a confidence interval requires that the
data are distributed normally, which is why you need to run shapiro.test again.

shapiro.test(after.2) # test for normality

data: after.2

W = 0.9698, p-value = 0.6406

The data are distributed normally so you can proceed:

t.test(after.2, conf.level=0.95) # compute the confidence interval

data: after.2

t = 14.5218, df = 24, p-value = 2.194e-13

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

12.28478 16.35522

sample estimates:

mean of x

14.32
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Figure 15.5. Graphical representation of the differences between before and after
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The mean number of points of this second group’s after-treatment results after.2 is
14.32, with a 95 percent confidence interval of 12.28 (lower bound) and 16.36
(upper bound). If you compute the same kind of confidence interval for after, you
will see that the confidence intervals of after and after.2 overlap, which suggests –
but not demonstrates – that the means are not significantly difference (which is
confirmed by a t-test).

5 Some final remarks

The above discussion could only discuss a small selection of tests and
their assumptions and application. In this final section, I will briefly discuss four
notions that are worth exploring: directional hypotheses, transformations, missing
data, and multiple/post hoc tests.
First, given space constraints, all of the above discussed so-called non-

directional alternative hypotheses and two-tailed tests – that is, tests of hypotheses
that postulate a difference/an effect, but not the direction of said difference (e.g., a
is not equal to b). However, if you not only expect some difference, but also the
direction of that difference (a is larger than b), you can formulate a directional
hypothesis and compute a one-tailed test. This is advantageous because, if you
have a directional hypothesis, the effect you need to find in order to get a
significant result is smaller; in other words, your prior knowledge will be
rewarded. Thus, this should be among the first topics for further study.
Second, we have seen that parametric tests of ratio/interval data rely on

distributional assumptions that need to be tested before, say, a t-test for independ-
ent samples can be computed. If those assumptions are not met, then one way to
proceed is to use a test for ordinal data, as was discussed above at the end of
Section 4.2.1. However, not only are tests that only utilize the ordinal information
of data less powerful than their parametric counterparts, but for many more
complex tests, non-parametric or exact alternatives are also not readily available.
Therefore, an alternative to non-parametric tests is to apply a transformation to the
original data, which, if the right transformation is applied correctly, can reduce the
impact of outliers, normalize distributions, and homogenize variances. The most
frequently used transformations of a vector x are the square-root transformation
(sqrt(x)), the logarithmic transformation (log(x)), the reciprocal transformation
(1/x), the arcsine transformation (2*asin(sqrt(0.25)) or asin(sqrt(0.25))), and the
square transformation (x^2); if your data violate distributional assumptions, such
transformation may be quite useful.
Third, observational and experimental data are often incomplete: particular

types of corpus examples are not attested or cannot be annotated unambiguously;
subjects do not respond to particular stimuli or do not show up for the after-
treatment test. While a detailed treatment of the analysis ofmissing data is beyond
the scope of this chapter, it is important to point out that missing data must not be
ignored: they should be carefully recorded and investigated for patterns to
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determine whether they are in fact already a noteworthy and interpretable finding
in and of themselves. For example, if a particular experimental stimulus exhibits a
large number of non-responses, this may reveal something interesting about that
stimulus or the studied hypothesis, or it may lead to you discarding the data from
that stimulus from the statistical analysis. Thus, an analysis of missing data should
be an indispensable analytical step.
Finally, a word on multiple/post hoc tests. Multiple testing arises when you

perform several significance tests on the same dataset, and they are post hoc if you
(decide to) perform these multiple tests only after you have performed a first test.
An example of the first situation would be if you collected reaction times to words
as well as, say, six predictors describing the words, and then ran all possible (six)
pairwise correlations between the predictors and the reaction times as opposed to
one multifactorial study. An example of the second situation would be if you
tested the effect of one categorical independent variable with four levels a, b, c,
and d on a ratio/interval dependent variable, obtained a significant result, and then
ran all six pairwise comparisons of means: a vs b, a vs c, a vs d, b vs c, b vs d, and c
vs d. The first situation is problematic because you might be accused of “fishing
for results,” but also for an additional statistical reason which also applies to the
second situation: If you perform one significance test with a significance level of
95 percent, there is a probability of 0.05 that the decision to reject the null
hypothesis is wrong. However, if you perform n independent significance tests
each with a significance level of 95 percent, there is a probability of 1–0.95n that at
least one rejection of a null hypothesis is wrong; for n=6, this probability is already
1–0.956≈0.265. Thus, when you perform multiple tests, it is common practice to
adjust your significance level from 95 percent for each test. For six post hoc tests,
it would be necessary to adjust the significance level to 99.14876 percent, because
0.99148766=0.95. However, even with such a so-called correction for multiple
testing, testing all possible null hypotheses is to be discouraged. More discussion
of these topics and all previous ones can be found in Crawley (2007); Baayen
(2008); Johnson (2008); and Gries (2013).
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