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Abstract

Much statistical analysis of psycholinguistic data is now being done with so-
called mixed-effects regression models. This development was spearheaded
by a few highly influential introductory articles that (i) showed how these
regression models are superior to what was the previous gold standard and,
perhaps even more importantly, (ii) showed how these models are used
practically. Corpus linguistics can benefit from mixed-effects/multi-level
models for the same reason that psycholinguistics can – because, for example,
speaker-specific and lexically specific idiosyncrasies can be accounted for
elegantly; but, in fact, corpus linguistics needs them even more because
(i) corpus-linguistic data are observational and, thus, usually unbalanced
and messy/noisy, and (ii) most widely used corpora come with a hierarchical
structure that corpus linguists routinely fail to consider. Unlike nearly all
overviews of mixed-effects/multi-level modelling, this paper is specifically
written for corpus linguists to get more of them to start using these
techniques more. After a short methodological history, I provide a non-
technical introduction to mixed-effects models and then discuss in detail one
example – particle placement in English – to show how mixed-effects/multi-
level modelling results can be obtained and how they are far superior to those
of traditional regression modelling.
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1. Introduction and motivation

1.1 A bit of methodological history

By their very nature, corpus-linguistic studies have always been based on
frequencies of occurrence of linguistic elements as well as frequencies of
co-occurrence of linguistic elements with either other linguistic elements or
the co(n)textual characteristics of these linguistic expressions. Essentially,
this means that all corpus-linguistic analyses, wherever they are located on a
purely hypothetical scale from purely qualitative to purely quantitative work,
have been at least implicitly based on statements such as:

• nx =0 – that is, some x does not occur in a (part of a) corpus;
• nx > 0 – that is, some x occurs in a (part of a) corpus either as the

frequently used category of a hapax (i.e., nx =1) or more than once
(i.e., nx > 1);

• nx > ny or nx =n or nx < ny – that is, some x occurs more/less/
equally often than/as some y in a (part of a) corpus;

• any of the above pertaining to particular co(n)texts such as the
presence of some other linguistic expression z, some discourse-
contextual feature z, . . .

Especially over the last ten years or so, corpus linguists have
begun to take this (in some sense obvious) fact into consideration and
have followed the general development in linguistics towards more and
more sophisticated quantitative methods. One might have expected corpus
linguistics to spearhead this development because, following the above logic,
corpus linguistics is inherently quantitative. However, it is other disciplines
that have been more explicitly driving this change in the methodological
landscape. One of these ‘other disciplines’ is psycholinguistics, in which,
for several decades, very many statistical analyses were analyses of variance
(ANOVAs) of experiments involving fully factorial designs with repeated
measures – that is to say, designs in which:

• the number of predictors was usually small (typically, two or three);
• the predictors were all categorical by nature or they were

continuous/numeric by nature but factorised/discretised by the
researcher (e.g., when frequencies were dichotomised into low
versus high); and,

• the predictors were completely crossed so that each subject in
the experiment saw each combination of levels of the predictors
multiple times.

So, one might consider as prototypical an experiment with two
predictors A (with levels A1 and A2) and B (with levels B1 and B2), which
give rise to four kinds of experimental stimuli (A1B1, A1B2, A2B1 and A2B2),
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and every subject sees each of these combinations repeatedly and equally
many times. This design would then be analysed with repeated-measures
ANOVAs, one on averages for the different subjects, one on averages for
the different experimental stimuli, so that the fact that all the data points for
each subject/item are related to one another is accommodated.

Psycholinguistics is currently undergoing a major change in
statistical methodology, one in which the above ANOVA paradigm (a not
uncontroversial method in any case; see Baayen, 2008; and Jaeger, 2008)
is now being superseded by (generalised) linear mixed-effects modelling or
(G)LMM). These models offer a variety of very attractive features: first, and
most straightforwardly, they easily integrate numeric predictors (e.g., lengths
and frequencies) without factorisation. Second, they are better at handling
unbalanced designs, (i.e., designs in which not all experimental situations
are equally frequent).

Third and most importantly, they provide ‘the usual’ type of results
for all predictors of interest (in the context of (G)LMM, these are referred
to as ‘fixed effects’), but they can also address the fact that data points are
related because they were provided by the same subject or for the same
item. This means that they can increase the precision of the regression results
considerably by offering sophisticated ways to partial out, or accommodate,
for instance, speaker- or item-specific effects (or other effects extraneous to
the specific research question; see Johnson, 2009: 363, for the same argument
in the domain of sociolinguistics). In other words, statistical analyses become
more precise because, among other things, the idiosyncrasies of particular
speakers, particular stimuli, etc., do not distort the regression coefficients
of the fixed effects, but are ‘relegated to’ the variance captured by what
are called ‘random effects’, (i.e., adjustments to regression coefficients that
accommodate the way in which each subject/item may be consistently
different from the others). It is useful to reiterate for later that, given the
prototypical factorial design, these speaker- and item-specific random effects
are often fully ‘crossed’ such that each subject sees all stimuli and all stimuli
are seen by each speaker.

Given these advantages, these kinds of models are now rapidly
becoming mainstream in the psycholinguistic literature. Returning to corpus
linguistics, it is instructive to compare its methodological challenges and
trajectories to those of psycholinguistics. Two observations are particularly
pertinent in this connection. On the one hand, corpus-linguistic observational
data are typically much messier and unbalanced than psycholinguistic
experimental data because many confounding and moderator variables that
psycholinguists can control for (by randomising, blocking, etc.) plague
corpus-linguistic analyses. On the other hand, while that means that corpus-
linguistic statistics would stand to benefit immensely from more advanced
statistics in general, and (G)LMM in particular, they are in fact still further
behind on a cline of statistical sophistication. Indeed, many practitioners
are only beginning to use monofactorial statistics, and fewer have yet
made the move towards regression modelling – ‘linear modelling’ for
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Figure 1: Evolution of statistical methods in psycholinguistics and
corpus linguistics

numeric dependent variables and ‘generalised linear modelling’ for ordinal
and categorical (binary or polytomous) dependent variables – that would
correspond to the previous ANOVA state-of-the-art in psycholinguistics,
and only very few people are (already) using (G)LMM. This comparison
can be shown as in Figure 1, in which heaviness and solidity of lines
represents frequency. Figure 1 is, obviously, a simplification: no goal-
directed/-orientated evolution is suggested, nor is it implied that (G)LMEM
is the endpoint of evolution (see Section 4 for discussion).

1.2 This paper and its objectives

The general goal of this paper is to help to increase the number of
corpus linguists who recognise the problems of the approaches on the
left and, thus, decide to move towards the approaches on the right. This
kind of recognition in psycholinguistics was hurried along considerably
through several publications that not only summarised the advantages of
(G)LMM – most notably Baayen (2008), and papers in special issue of JML
such as Baayen et al. (2008), Quené and van den Bergh (2008), and in
particular Jaeger (2008) – but also provided readers with relatively concrete
instructions on how to perform such analyses themselves; in a sense, the
above publications became the go-to articles for practitioners.

However, in spite of the indubitable quality of the above publications
and the mark they have left on psycholinguistics, there are two reasons why I
think corpus linguistics could still potentially benefit considerably from this
paper. First, most of these papers are psycholinguistic in nature and involve
experimental data of the kind prevalent in psycholinguistic analyses, which
could, understandably, make it more difficult to a core corpus linguist to
translate their messages into ‘his or her language’.

Second, this also means that these papers – as well as, it seems,
most other publications on (G)LMM – only focus on statistical designs in
which the random effects are crossed (along the lines discussed above).
However, a second domain in which (G)LMM is extremely useful is one
that characterises the vast majority of corpus-linguistic studies and that is
routinely ignored (and that pertains to most of my own earlier work, too):
random effects can be not just crossed but also ‘nested’ across multiple levels
(hence ‘multi-level analysis’). For example, in most corpora, speakers/writers
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are nested into files, which are nested into registers, which are nested into
modes. That is, corpora do not usually feature data from each speaker in
each register in each mode – rather, a particular speaker was recorded, which
was transcribed into one file and one file only, which represents one register
and one register only, which represents one mode and one mode only. For
instance, the sentence in Example 1 was produced by one speaker (labelled A)
in one file (S1B-045) representing one sub-register (‘spoken public
dialog’) representing one register (‘spoken dialog’) representing one mode
(‘dialog’) in the British component of the International Corpus of English
(ICE-GB):

(1) And all this happened really before you started picking up a camera
and becoming a movie maker

All of these characteristics from each of these different levels are
hierarchically nested into each other – it is not that, later in this corpus,
the same file name is also used for a file with private dialogue, unscripted
monologue, printed creative writing, etc. This has an extremely important
consequence: both in psycholinguistics and in corpus linguistics, the vast
majority of datasets violate the assumptions of the simplest test that an
analyst might normally think of first – namely, that the data points are
independent of one another. In psycholinguistics, data points are dependent
on one another because subjects provide multiple responses and items are
tested more than once (and these effects are crossed). However, in corpus
linguistics, this is even worse: as in psycholinguistics, speakers/writers often
provide more than one data point, and we have more than one instance of,
say, a constructional choice per verb, but we also have the hierarchically
nested/multi-level structure that the corpus comes in: perhaps the speaker (or
as a convenient heuristic, the file) is not even the right level of resolution for
the current phenomenon – perhaps most of the variability must be explained
by looking at registers? And perhaps the frequent distinction between
modes – speaking versus writing – is actually not relevant for phenomenon
X (for which we need to look at sub-registers)? In other words, at present,
many corpus-linguistic studies make do with a simple chi-squared test or
even a more advanced regression, when in fact the data analysed violate the
assumption of the independence of data points that these tests routinely come
with by ignoring:

(i) speaker-/writer-/file-specific effects and lexically specific effects;
and,

(ii) the multiple levels of structure that corpus data typically come in.

As a consequence, the results that the majority of corpus-linguistic
studies report are likely to be very anti-conservative (i.e., too likely to return
a significant result) and imprecise (because the results are tainted to an
unknown degree by idiosyncrasies from which one can, and should not,
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generalise) and, just to acknowledge that quite openly, this also applies
potentially to several earlier studies of mine. What is needed is an approach
that combines the logic of mixed-effects modelling (to deal with the variation
resulting from (i) and the logic of multi-level modelling (to deal with
the variation resulting from (ii). Thus, the hopefully not too high-flying
goal of this paper is to become for corpus linguistics what the above-
quoted papers have become for psycholinguistics: a first go-to resource that
explains to corpus linguists what (generalised) linear mixed-effects/multi-
level modelling ((G)LMM/MLM) has to offer and that provides them with
a concrete example and some instructions on how to perform such analyses.
While, given the complexity of these modelling approaches, the coverage can
not, of course, be exhaustive, I hope that the attractiveness of the methods to
be exemplified below will help make them more common in the discipline
and, thus, benefit us all in terms of the greater precision and reliability of the
results.

Towards the above objectives, Section 2 provides a brief
but necessary introduction to (G)LMM on the basis of very small
constructed datasets just to highlight the general logic of the method.
More linguistically then, Section 3 discusses a linguistic phenomenon
of particle placement, the constituent order alternation exemplified in
Example 2, with CONSTRUCTION being a binary response with two
levels:

(2) a. John picked up the book. CONSTRUCTION: V-Part-DO
b. John picked the book up. CONSTRUCTION: V-DO-Part

Particle placement has been very thoroughly researched in terms of
its fixed effects so it is well-known which determinants have which, and how
strong an, effect on the choice of construction in both mono- and multi-
factorial analyses (see Gries, 2003; and Szmrecsanyi, 2005, 2006). At the
same time, this alternation has also been shown to be subject to exactly the
kinds of effects that (G)LMM/MLM deals with much better than traditional
multi-factorial regression methods – namely, lexically specific effects as well
as sub-register-specific effects (see Diessel and Tomasello, 2005; and Gries,
2006). For these reasons, this alternation is the perfect test bed to showcase
(G)LMM/MLM and its advantages: we know what the results should be
like so we can focus on the new contributions that the method will make.
For many reasons, in this paper I will use the open-source programming
language and environment R (3.1.1 patched, R Core Team, 2014) for the
statistical analyses as well as the packages lme4 (Version 1.1–7, Bates
et al., 2014) and rms (Version 4.2–0, Harrell, 2014). R code and results
will be shown like this in a non-proportional font; note that
the output will often be abbreviated. The paper presupposes no knowledge
of these modelling methods but some textbook-level familiarity with basic
regression modelling and/or R (see, for example, Gries, 2013: Chapter 5) is
useful.
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2. (G)LMM: a very brief introduction by example

In this section, I will introduce the logic and application of (G)LMM on the
basis of several small datasets. Three things are important to bear in mind.
First, as will become obvious, the data are simulated and have been designed
to have particular immediately obvious characteristics. Second, I am using
a linear regression model for this initial explanation. Both of these choices
have been made for didactic/expository reasons. I am using simulated data
because these data have characteristics that, when plotted, illustrate clearly
the patterns that (G)LMEM are particularly good at detecting, and this is
something that authentic data would make much more difficult. Second, I
am not using a logistic/multinomial model, (i.e., a model with a categorical
response), for this example even though such models are more typical of
corpus-linguistic applications. This is because these latter kinds of models
involve additional conceptual steps (e.g., the use of link functions) that
make the exposition less transparent than desirable. Third, the examples in
this section are clearly not representative of the real-life applications and
challenges of (G)LMM because, as will be seen presently, my examples
involve only three speakers (to facilitate plotting, etc.) whereas real-life
applications will be more complex. However, the example in Section 3 is
a fully fledged one that mirrors what corpus linguists would actually study
much more accurately and I recommend Gelman and Hill (2006: Sections
11.5 and 12.7) for detailed discussion of when (G)LMMs are most effective.

2.1 Introduction: the traditional approach

Imagine a dataset in which you try to model a numeric response y1 as a
function of a numeric predictor x1. You have thirty data points – ten from
each of three speakers (labelled just 1, 2 and 3). Given the current state of the
art in corpus linguistics, it is reasonable to expect this to be analysed with a
linear regression and summarised as shown in Figure 2 (in which the plotted
numbers represent the data points from the speakers); the regression equation
in the first line is to be read as ‘use a linear model (lm) to fit the response y1
(Y1) as a function of (∼) of an intercept (1) and (+) a predictor x1 (X1).2

2 Mentioning the intercept in this regression equation, as I do here with 1+, is redundant,
strictly speaking; I only do this here for maximal explicitness and expository clarity.

http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-001.jpg&w=333&h=50
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Figure 2: Results of a linear regression on Dataset 1

The regression results and the regression line indicate that there is
a positive correlation (for every one-unit increase of x1, y1 increases by
0.1682), but the correlation between x1 and y1 is not significant (multiple
R2 =0.022, p=0.4387). To any human reader, however, it seems obvious
that there is a very strong and very similar correlation between x1 and
y1, just at different levels of x1, and this will be the topic of the next
section.

2.2 Varying intercepts

In this case, even the simplest (G)LMM can help because, rather than being
restricted to one intercept for all three speakers (0.8696 in the above linear
model), it can let every speaker get his or her own intercept and then adjusts
the slope to make best use of the different intercepts (1|SPEAKER1 means
‘fit a separate intercept (1) for each of the three different speakers included
in the variable/vector SPEAKER1’):3

3 One might wonder why SPEAKER1 is not included as a ‘regular’ fixed effect. The reason
for this is that the goal of analysis is not to generalise to future results for the same three
speakers but to results that would be obtained from different speakers from the population for
which the three speakers of SPEAKER1 are (it is to be hoped) representative.

http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-002.jpg&w=218&h=206
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Figure 3: Results of a (G)LMM with varying intercepts on Dataset 1

Figure 3 shows these results visually. Specifically, the dotted line is
the overall regression line (with the intercept of ≈0.13 and a slope of ≈0.95
shown in the output, above). The three solid lines are the regression lines
representing how the overall intercept is adjusted for each speaker while
keeping the same slope (0.95377) for all speakers. For example, the arrow
shows how the intercept of the overall regression line is adjusted for speaker
3 by ≈−0.37 (i.e., downwards).

The difference in the results is striking in both the numeric output
and the plot. Again, there is a positive correlation, but now for every one-
unit increase of x1, y1 increases by more than 5.5 times as much as before
(0.95377 instead of 0.1682), the effect of x1 is highly significant (t =56.25
and, not shown, �2 =126.9, df =1, p < 10−10) and, now that the different

http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-003.jpg&w=218&h=199
http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-004.jpg&w=333&h=135
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speakers are not forced to share the same intercept anymore, the model
has a very high degree of explanatory power (R2

conditional =0.998). Thus,
by accounting for the fact that the data points of each speaker are not
independent and modelling them as speaker-specific results – giving them
separate intercepts – a non-significant result of a model that anyway violated
its assumptions suddenly turned into a highly significant result with nearly
perfect predictive accuracy.

2.3 Varying slopes

Imagine now a dataset with the same structure (two variables, y2 and x2),
three speakers and thirty data points. As Figure 4 indicates, the ‘regular’
linear regression model from the first block of code is significant (p≈0.009)
but can again not explain the data well (multiple R2 =0.2177; see the left-
hand panel).

The (G)LMM with varying intercepts in the following block of code
does better (R2

marginal =0.376, R2
conditional =0.83) but is still not a really good

model of the data (see the right-hand panel).4

Given the plot, it is clear that this dataset has been constructed such
that the three speakers have the same intercept (approximately 0.8) but what
seem to be different slopes. Figure 5 exemplifies the corresponding (G)LMM
analysis (in which (0+X2|SPEAKER2) means ‘do not fit separate intercepts
for each speaker, but separate slopes for X2 for each speaker’) and also

4 The R2-values reported here summarise the predictive power of the fixed effects only
(R2

marginal) and of both fixed and random effects (R2
conditional) and were computed following

Nakagawa and Schielzeth (2013); see also Johnson (2014).

http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-005.jpg&w=333&h=49
http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-006.jpg&w=333&h=78
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Figure 5: Analysis of Dataset 2: results of a (G)LMM with varying
slopes

visualises these results. Again, the dotted line is the overall regression line
(with the intercept of ≈0.8 and a slope of ≈1.52 shown in the output below).
The three solid lines are the regression lines representing how the overall
slope of the regression line is adjusted for each speaker. For example, the
arrow shows how the overall regression line is adjusted for speaker 2 by
≈–0.59 (i.e., downwards).

This result is interesting in how it differs from that of Dataset 1.
There, it was the (G)LMM that showed that a result that seemed insignificant
after a traditional linear regression was in fact significant once speaker
idiosyncrasies were taken into account. Here, it is the other way round: while
the (G)LMM with one joint intercept but a different slope for each speaker

http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-008.jpg&w=218&h=204
http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-009.jpg&w=333&h=120
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accounts for the data nearly perfectly (R2
conditional≈0.999), the overall effect

for x2 (the slope of 1.521) is actually not significant anymore (t =1.74 and,
not shown, �2 =2.767, df =1, p=0.096) and has virtually no explanatory
power (R2

marginal≈0.042). Thus, (G)LMM can make results more precise in
both directions: finding significant results where regular regression does not
and finding that results are not significant even though a regular regression
returns a significant result.

2.4 Varying intercepts and slopes

Imagine, finally, yet another dataset with, again, the same structure (two
variables y3 and x3, three speakers and thirty data points). As before, a linear
regression indicates a positive correlation (for every one-unit increase of x3,
y3 increases by 0.3533) but the correlation between x3 and y3 is not significant
(multiple R2≈0.099, p≈0.091) and, as before, it does not take much training
to see in Figure 6 that the linear regression line does not account for the data
well.

To save space, I do not provide graphs and results for (G)LMM
analyses with varying intercepts and varying slopes and only wish to
observe that while both these models already do much better than the
‘regular’ linear regression, they are, again, not convincing when one plots
the resulting regression lines. Rather, what is needed here is a (G)LMM
that has separate intercepts and separate slopes for each speaker (as
determined by model comparison tests (not shown, pvarying intercepts < 10−11

and pvarying slopes < 10−15); in the code quoted below (1+X3|SPEAKER3)
means ‘fit separate intercepts (1) and (+) slopes of x3 for each speaker
(X3|SPEAKER3)’.

http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-010.jpg&w=334&h=50
http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-011.jpg&w=333&h=85
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Figure 6: Results of a linear regression on Dataset 3

This model results in a virtually perfect fit (R2
marginal =0.872,

R2
conditional =0.998), with an effect of x3 on y3 that is significant

(t =3.401 and, not shown, �2 =56.203, df =1, p < 10−13) but is again very
different – namely, nearly six times as strong as the linear regression would
make us believe (2.0491 rather than 0.3533). Figure 7 visualises the result
in the same way as before; the left and right arrows show the adjustment to
Speaker 3’s intercept and slope.

To conclude, while this section could only scratch the surface and
dealt, merely, with numeric dependent variables (y1, y2 and y3) rather than the
categorical dependent variables that are more frequent in corpus linguistics, I
hope it has become clear how much more precision and reliability (G)LMM
has to offer, not to mention the fact that the regular fixed-effects regression
would really not even have been permitted in each case given the dependence
of the data points. Again, they can protect both against statistical Type I and
Type II errors and the better regression coefficients that result allow for better
explanation of the phenomena under investigation. In the following section,
I discuss the example of particle placement, which will involve a binary
categorical dependent variable and add the multi-level perspective that corpus
data routinely require. In spite of the didactic nature of this paper, given
considerations of space, I cannot discuss all aspects of regression modelling
in detail here; instead, I will provide some guidance on the general logic
of the overall process and the multi-level perspective as well as help with
regard to the interpretation of the results; the discussion here is modelled
after Gries’s (2013) characterisation of regression modelling.

http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-012.jpg&w=218&h=205
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Figure 7: Analysis of Dataset 3: results of a (G)LMM with varying
slopes and intercepts

3. A ME/MLM analysis of particle placement

3.1 The data

The data studied here are those from Gries (2006: Section 4): 1,192 instances
of CONSTRUCTION: V-DO-Part and 1,129 instances of CONSTRUCTION:
V-Part-DO from the ICE-GB. Since the main point of this paper is didactic,
each of these instances was annotated for only two fixed effects:

– TYPE: the type of head of direct object: ‘lexical’ or ‘non-lexical’;
– LOGLENGTH: the logged length of the DO in words.5

More importantly for our purposes is the annotation of examples for
random effects and hierarchical information. Thus, every instance was also
annotated for the variables represented in Table 1. The left three variables
reflect the hierarchically nested structure of the ICE-GB; the right two
variables represent lexically specific effects.

Thus, Example 1 (‘. . . before you started picking up a camera. . . ’),
would be annotated as in Table 2.

5 We will ignore here the fact that these two variables are correlated. Regression modelling
with residualised versions of these predictors had no impact on whether the main interaction
was significant or not and the overall shape of the curve of predicted probabilities.

http://www.euppublishing.com/action/showImage?doi=10.3366/cor.2015.0068&iName=master.img-013.jpg&w=218&h=217
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dessorC)tfelotnithgirmorf(detseN

Mode Register Sub-register Verb Particle

Spoken Dialogue Private, public take up

Monologue Scripted, unscripted put out

Mixed Broadcast bring in

Written Printed
Academic, creative,
instructional non-academic,
persuasive, reportage

get pick off down

Non-printed Letters, non-professional . . . . . .

Table 1: Random effects annotated in the particle placement data

CONSTRUCTION TYPE LOGLENGTH MODE REGISTER SUBREGISTER VERB PARTICLE

V-Part-DO lex 0.6931472 spoken dialogue public pick up

Table 2: The annotation of Sentence 1

3.2 A ‘regular’ fixed-effects only logistic regression

If this dataset were to be analysed statistically, the analysis most likely
to be found would be a binary logistic regression without random effects
(BLR) that models, or tries to predict, the probability of the dependent
variable CONSTRUCTION: V-Part-DO (the second level of CONSTRUCTION

alphabetically) on the basis of three predictors: the numeric independent
variable LOGLENGTH, the categorical independent variable TYPE, and
the interaction of the two, which allows the regression to ‘consider’ the
possibility that the effect of LOGLENGTH might not be the same for
TYPE: LEXICAL and TYPE: NON-LEXICAL, and this would be represented
in R by a regression equation CONSTRUCTION ∼ (‘as a function of’)
LOGLENGTH*TYPE; these would be its results:
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In a nutshell, the three predictors, the two fixed-effect independent
variables and their interaction, are significantly correlated with the choice of
construction (p < 0.0001); the correlation is strong (Nagelkerke R2 =0.609),
and the classification accuracy is high (C =0.888 and 79.02 percent of all
constructional choices are predicted correctly), as can be seen from the code
available from my website.6 A few brief comments on what the coefficients
mean: these coefficients reflect predicted probabilities of CONSTRUCTION:
V-Part-DO (after the ilogit transformation):7

– the value for the intercept indicates the predicted probability of
CONSTRUCTION: V-Part-DO when LOGLENGTH =0 and TYPE:
NON-LEXICAL: ilogit(–3.8146)=0.0216;

– the value for LOGLENGTH, 3.5359, indicates how the predicted
probability of CONSTRUCTION: V-Part-DO changes for every unit-
increase of LOGLENGTH (when TYPE: NON-LEXICAL); since the
sign is positive, that means, the longer the DO, the more likely
CONSTRUCTION: V-Part-DO becomes;

– the value for TYPE: LEXICAL, 3.3788, indicates how the predicted
probability of CONSTRUCTION: V-Part-DO changes when the
DO type changes from NON-LEXICAL to LEXICAL (when
LOGLENGTH:=0); since the sign is positive, this means that if the
DO is lexical, CONSTRUCTION: V-Part-DO becomes more likely;

– the value for the interaction, –2.1119, indicates that the above-
mentioned effect that LOGLENGTH has when TYPE: NON-
LEXICAL becomes weakened when TYPE: LEXICAL.

If researchers are already so advanced as to use multi-factorial
modelling, then this is probably the most widely used kind of analysis of
such data. However, it is at least incomplete, if not inappropriate, because it
pretends that the 2,321 data points are all independent of one another, which
we know they are not: they exhibit inter-relations because they were produced
by fewer than 2,321 speakers, because of the lexical items in the verb-particle
constructions, and because of the levels of corpus sampling. Thus, let us now
turn to the better kind of analysis.

3.3 A (G)LMM/MLM analysis

While (G)LMM/MLM is currently a hot topic in linguistics, there are still
many methodological questions that are hotly debated, answered differently
in every new article one reads, or answered in some references and glossed
over in others (see Gries, 2013: 335–). I, therefore, do not lay claim to

6 See: http://tinyurl.com/stgries/research/overview-research.html
7 The ilogit, or inverse logit, transformation transforms a value y from the range -∞ ≤ y ≤ ∞
to the range of a probability scale 0 ≤ ilogit(y) ≤ 1: 1/(1+exp−y).
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presenting the universally accepted best possible analysis of the dataset.
Rather, I will follow a stepwise model selection procedure outlined in Zuur
et al. (2009: Chapter 5), which can be summarised as follows:

(i) begin with a model that contains the most comprehensive fixed-
effects structure that can be fit given the variables to be explored
and find the optimal random-effects structure (varying intercepts
for one or more predictors and/or varying slopes for one or more
predictors); and,

(ii) once the optimal random-effects structure has been found, find
the optimal fixed-effects structure.

In both these steps, ‘optimal’ means according to some criterion such
as significance testing/p-values or information criteria. With p-values this
would mean that the final model, m, contains (i) only random effects that
make m significantly better than if these were not in m and (ii) only fixed
effects predictors – again, independent variables and their interactions – that
make m significantly better than if these were not in m or that are required
for higher-level interactions.

3.3.1 Step I: finding the optimal random-effects structure

As a first step, we define the three new variables that most explicitly reflect
the nested structure of the data: LEVEL1, LEVEL2 and LEVEL3. Then
we fit a first model that, as above, contains all fixed effects – LOGLENGTH,
TYPE, and their interaction LOGLENGTH:TYPE – as well as varying
intercepts for each level of corpus sampling – (1|LEVEL1), (1|LEVEL2),
(1|LEVEL3) – and for each verb (1|VERB) and each particle (1|PARTICLE).
Given the logic outlined in Sections 2.2 and 2.4, that means that the baseline
probability of CONSTRUCTION: V-Part-DO can be different for each of these
random effects; in other words, the model allows every corpus part (at each
level of corpus organisation), every verb and every particle to have a different
baseline ‘preference’ for CONSTRUCTION: V-Part-DO.8

8 As indicated, there is currently a debate concerning what the maximal random-effects
structure is with which one should begin a model selection process. One currently influential
paper is Barr et al. (2013), who recommend that the most comprehensive random-effects
structure possible be used (i.e., random intercepts and slopes for all predictors, independent
variables and their interactions). Since this would blow up the model equations beyond what
can be reasonably dealt with in an introductory paper, I kept matters ‘simple’ and did not
include varying slopes in any of the random effects specifications. It is also for the sake of
simplicity that I have not mentioned issues such as how to deal with collinearity of
predictors, non-significant predictors one nevertheless wishes to retain in the model, or how
p-values should be adjusted when testing on the boundary, etc.; all these things are discussed
in references that I recommend in the final section of this paper.
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The summary of the random effects looks like this: the larger the
values for the variances/standard deviations, the more variability is located
‘within’ that random effect; this suggests that, in this case, the (crossed)
random effects of lexical items contribute more than the (nested) random
effects of the corpus organisation.

To trim down the random-effects structure, let us first test whether
the random effect with the largest amount of variance can be omitted: if that
one did not make a significant contribution, this would suggest that the other
random effects would not either. To that end, we first fit a new, smaller model
that is just like model.1.sep but does not contain (1|VERB).

After that, we compare that new model without the random
effect (1|VERB), model.2.sep, to the old model with that random effect,
model.1.sep, with the anova function:9

9 Just like most other aspects of (G)LMEM, this use of anova to determine whether random
effects can/should be included in a model (following Zuur et al., 2009) is not uncontroversial.
For example, Gelman and Hill (2006: 271, original emphasis) state that it is ‘not appropriate
to use statistical significance as a criterion for including particular group indicators.’
However, just like Zuur et al., Baayen (2008) uses anova to determine which of two models
with identical fixed effects but different random effects is better (e.g., in Sections 7.1 and
7.5.4); the same strategy is followed by West et al. (2007), Larson-Hall (2010: 263), Gałecki
and Burzykowski (2013: 298), and it is used in the mixed-effects modelling book by Bates
(2010), the main creator of the R package lme4.
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The difference between the models is significant, which means
(1|VERB) needs to stay in our model or, put differently, we need to stick
with model.1.sep and cannot use the simpler alternative of model.2.sep
because distinguishing different baseline constructional preferences for verbs
is significantly necessary (and also supported by the smaller AIC-value of
the first model; cf. Gries, 2013: 261). What about the random effect with the
second largest variance, (1|PARTICLE)? A similar model comparison shows
that (1|PARTICLE) is also required:

The random effect with the next smaller variance is LEVEL3, i.e.,
SUBREGISTER. A model comparison analogous to the one above shows that
this, too, needs to stay in the model: distinguishing different constructional
preferences for sub-registers is significantly necessary:

Now what about LEVEL2, (i.e., REGISTER)? Here, for the first
time, we see we need to abandon our first model, model.1.sep, because
model.5.sep, the model in which we do not care about registers, is not
significantly worse than the model in which we do (and probably because
the sub-registers already account for most of the variability registers
would account for, though this need not always be the case). Thus,
model.5.sep becomes our new reference model, which is again also supported
by the fact that the AIC-value of model.5.sep, is smaller than that of
model.1.sep).

Can we then also assume that the difference between speaking and
writing (LEVEL1 or MODE) plays no significant role? We generate a sixth
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model and compare it to what is now our new reference model, model.5.sep.
The answer is ‘yes’:

With all this work, we have now completed Step I of Zuur et al.’s
model selection strategy. With the caveats mentioned in Footnotes 4 and 5,
we have now identified the optimal random-effects structure, which turns
out to be much more complex than corpus-linguistic studies usually assume.
Whatever the results of the fixed-effects part of the analysis in the next
section will be, we have already established that it is very much necessary
to incorporate verb- and particle-specific effects into the statistical analysis,
and on top of that we have also already learned that the statistical analysis
benefits significantly from distinguishing the thirteen different sub-registers
of the ICE-GB whereas distinguishing the registers or speaking from writing
does not do anything. Let us now move on to finding the optimal fixed-effects
structure.

3.3.2 Step II: finding the optimal fixed-effects structure

We proceed according to the same logic as before, just with fixed-effects this
time: we create a new model that is the same as an old reference model,
but delete – this time fixed – effects from it, where we follow the usual rule
that effects can only be deleted if they are neither significant themselves nor
participate in a significant higher-order interaction (see Gries, 2013: 260). In
this case, we only have two fixed-effects independent variables and their one
interaction so we test whether this interaction can be deleted:

The interaction LOGLENGTH:TYPE cannot be deleted with a
significant loss in explanatory power, which means no more model
simplification can be attempted; we already have the right fixed-effects
structure.
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3.3.3 Interpreting the final (G)LMM/MLM model

First, to get a slightly more interpretable output, we switch from the variable
name LEVEL3 back to that of SUBREGISTER, refit the model with this, and
explore the summary output. At the top, we find the three remaining random
effects and the amounts of variance they account for.

Below that, we find a ‘regular’ regression output with coefficients
and their significance tests. Since these are on a log odds scale, which
is not easy to interpret, we explore a plot of predicted probabilities such
as Figure 8: LOGLENGTH is on the x-axis, the predicted probability of
CONSTRUCTION: V-Part-DO is on the y-axis, and the two lines (with shaded
confidence intervals) reflect the effect of the interaction LOGLENGTH:TYPE

on the predicted probabilities (fixed-effects only).
That is to say, we can see that, the longer the DO, the more V-Part-

DO is predicted (which is what every study of particle placement found);
but, as with the traditional binary logistic regression, we can also see that
this effect is different for the two types: when the DO head is non-lexical,
very short DOs strongly prefer V-DO-Part, but V-Part-DO becomes more
preferred quickly; but when the DO head is lexical, V-Part-DO is used with
longer DOs and becomes more preferred more slowly.

Since these effects are similar to that of the BLR in Section 3.2,
the question arises how good this (G)LMM/MLM result is especially when
compared to the BLR? Put differently, how much do we benefit from having
done the (G)LMM/MLM analysis? It turns out that this latter model does
a very good job: R2

marginal =0.57 and R2
conditional =0.748, the classification

accuracy is 88 percent (compared to 79.02 percent), and the C-value is
0.955 (compared to 0.888). In other words, not only did we do the right
analysis – because the data violated the assumptions of regular logistic
regressions – but we are also rewarded with a model that is more precise and,
therefore, highly significantly better than the previous one (pbinomial < 10−29).
In the next and final section of this case study, let us therefore explore how
the (G)LMM/MLM analysis differs from the BLR.
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Figure 8: Predicted probabilities of CONSTRUCTION: V-Part-DO, given
LOGLENGTH:TYPE

3.3.4 The differences between the BLR and the (G)LMM/MLM
approach

As a first general step, let us see where the two kinds of models differ
in their classifications, which is represented in Figure 9. While both
constructions are about equally frequent in the data, Figure 9 shows that the
(G)LMM/MLM approach is particularly better than the BLR in predicting
V-DO-Part correctly: of the 1,192 instances of V-DO-Part in the data,
the (G)LMM/MLM classifies 999 (83.8 percent) correctly, while the BLR
classifies only 816 (68.5 percent) correctly – for the V-Part-DO constructions,
the classifications of both models are much more similar (92.4 percent and
90.2 percent, respectively).

However, this is a rather coarse resolution and it is more interesting
to see, for all the effects included in the model, where the (G)LMM/MLM
approach fares better than the BLR. One of many ways to explore this is to
compute for each verb, particle and sub-register, how much more often the
(G)LMM/MLM approach makes the correct classification compared to the
BLR approach (in percent). For verbs and particles, these results are shown in
the left- and right-hand panel respectively of Figure 10, in which the (logged)
frequency of occurrence of a verb/particle in verb-particle constructions is on
the x-axis and the improvement of the (G)LMM/MLM approach in percent
is on the y-axis.

First, the graph clearly shows yet again how important it is to use
lexically specific effects in our corpus-linguistic analyses: there are many
verbs and particles whose classification accuracy is improved by 20 percent,
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Figure 11: Classification improvements of the (G)LMM/MLM over the
BLR per sub-register. Spoken sub-registers are plotted in italics

or even much more, when the more appropriate (G)LMM/MLM approach is
used. Also, it is worth anticipating a likely objection: note that the degree to
which the (G)LMM/MLM approach is better is not a straightforward function
of the frequency of the verbs/particles. Thus, the argument ‘Once we have
more data everything will be classified better even with BLRs’ is flawed:
even for some medium- or even higher-frequency verbs and particles (such
as get/have and together/back), substantial improvements in classification
accuracy are obtained.

What about the sub-registers? A similar plot can be drawn and is
represented in Figure 11.

Again, it clearly defies what might seem to be straightforward
expectations: increased classification accuracy is neither straightforwardly
correlated with sample size nor with corpus linguists’ most cherished
contrast: speaking versus writing. However, it is clear that the sub-registers
differ strongly from one another (which is why the random effect of
SUBREGISTER had to be included) and that they differ strongly in terms of
how much they benefit from their idiosyncrasies being taken into account.
Funnily enough, it is the sub-register ‘creative’ that benefits nearly the least
from its particular characteristics being taken into account, but one would
probably need a real (Biberian) multi-dimensional analysis to try to make
sense of the sub-register effects here.

The final way to explore the data further, which is to be exemplified
here, would be to look at how the significant interaction of the fixed effects,
LOGLENGTH:TYPE, plays out in the different sub-registers (averaging over
all verbs and particles). This is represented in Figure 12, which is a finer
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Figure 12: The interaction of LOGLENGTH:TYPE per sub-register:
lexical DOs are shown in the left-hand panel; non-lexical ones in the
right-hand panel. The order of sub-registers plotted into the left-hand
panel corresponds to the order of the curves

resolution of Figure 8 in that each sub-register’s predicted-probability curve
is shown separately. Again, it would take more detailed analysis than can be
provided in this methodological how-to paper, but it is clear that, especially
with (the more frequent) lexical DOs there is a huge degree of variation that
a BLR would just miss.

4. Conclusion

Mixed-effects modelling, a method of doing regression analyses in which
idiosyncrasies of sampled units – speakers, words, etc. – can be accounted
for elegantly, is a tool that is becoming more and more frequently used,
especially in psycholinguistic analyses of (mostly) experimental but also
observational data. Given the fact that corpus-linguistic data are much more
unbalanced and messier than experimental data, it is time that corpus linguists
avail themselves of that same family of methods. Not only would this end the
way in which corpus linguists nearly always violate basic assumptions of
our statistical tests – because we would finally take into consideration that
our data points are not, usually, independent – but it would also allow us
to, again finally, take more seriously the exploration of corpus data on the
multiple levels of sampling that corpora come in. The multi-level aspects
of mixed-effects modelling in the previous literature on this method in
psycholinguistics or sociolinguistics has hardly ever been discussed at all
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in corpus linguistics and is exemplified here for the first time. We know for a
fact that there is variability in the corpus – just not on which level(s) – but just
pretending ‘It’s speaking versus writing’ or ‘It’s register’ does not help: we
need to check all those levels at the same time and the technique(s) discussed
in this paper, while no cure-all, can help (see Gries and Deshors, forthcoming,
for a fully fledged application to learner corpus data).

The potential that a more widespread adoption of these methods have
can hardly be overstated. How many papers are there in which authors study a
corpus and distinguish between speaking and writing without ever exploring
the other levels of resolution on the corpus they could have adopted? (See
Gries, 2006, for much discussion.) How many papers are there in which
authors study a corpus and do not take into consideration that the results
might be skewed because some speakers provide more data than others
(see Johnson, 2009, for a nice analysis of simulated data demonstrating the
effects this can have)? If we want to avoid violating the basic assumptions
of our data, avoid missing significant effects that are actually there (recall
Section 2.2 where a regular regression failed to see the strong correlation
that a (G)LMM/MLM could detect) and if we want to avoid assuming
significant results that are actually not there (recall Section 2.3 where a
regular regression returned a significant correlation that a (G)LMM/MLM
showed did not exist), then we need to make sure that we use the best
statistical methods available and that we apply them correctly (by making
sure that we bear in mind, and also test the assumptions, that these best
practices rely on, using both statistical and visualisation tools).

However, this is not to say that the current kind of (G)LMM/MLM
is the final one method we will ever need. Not only is this technique
still undergoing development both conceptually and in terms of its
implementation in statistical software, but it also suffers from the same
kind of ‘problem’ from which most regression methods suffer: the fact that
correlation is only a necessary condition, but not proof, of correlation. In
addition, researchers always need to battle over all the other issues that
pose risks to regression modelling (collinearity, etc.). Thus, (corpus) linguists
would be well advised to keep their eyes and minds open for:

• Resolutions of currently debated questions with regard to
(G)LMM/MLM such as the relevance of maximal random-effects
structures, computation of p-values, etc.;

• Improvements of (G)LMM/MLM such as multi-model inferencing
(see Burnham and Anderson, 2002, in general, and Kuperman and
Bresnan, 2012, for an application in linguistics);

• Other different approaches that have characteristics very relevant to
empirical linguistics such as structural equation modelling (which
targets causal relations) in mind in order to make sense of their
complicated data or Bayesian networks (see Theijssen et al., 2013).
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Regardless of current reservations and future improvements of
(G)LMM/MLM, as well as future developments in statistical methodology
relevant to linguistics, if this paper provides corpus linguists with a starting
point to delve into this area (more) deeply – useful references to explore
include Faraway (2006), Gelman and Hill (2006), West et al. (2007), Gałecki
and Burzykowski (2013), Crawley (2013) or Finch et al. (2014) to name but
a few – then it has fulfilled its main goal.
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