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Quantitative designs
and statistical techniques

Stefan Th. Gries

1 Introduction

As is well known, corpus linguistics is an inherently distributional disci-

pline: corpora really only contain strings of elements – letters/characters

in the typical case of corpora as text files, phonemes, or gestures in

the growing segments of auditory or multimodal corpora. That means

that analysts can determine their frequency of occurrence, frequency of

co-occurrence, or their dispersion/distribution in corpora and analysts

have to operationalize whatever they are interested in – meaning, com-

municative function/intention, speaker proficiency, . . . – in terms of how

this will be reflected in such frequencies of (co)-occurrence or dispersions/

distributions. From this perspective, it is obvious that knowledge of

the discipline involving the analysis of frequencies/distributions – a.k.a.

statistics – should form a central component of corpus linguists’ metho-

dological knowledge. However, compared to other social sciences (e.g.

psychology, communication, sociology, anthropology, . . .) or branches of

linguistics (e.g. psycholinguistics, phonetics, sociolinguistics . . .), most of

corpus linguistics has paradoxically only begun to develop this methodo-

logical awareness. For now, let’s assume that corpus-linguistic methods

can be categorized, in terms of howmuch context of the occurrence(s) of a

linguistic phenomenon they consider, into

(i) a group of methods in which the, say, word or pattern under consid-

eration is not studied involving (fine-grained) contextual analysis:

if one only wants to know which of the inflectional forms of the

verb give is most frequent, one does not need to look at the contexts

of these verb forms. These methods involve core corpus-linguistic

tools such as frequency lists, collocations, dispersions, and statistics

computed directly on these.



(ii) a group of methods in which the word or pattern under consideration is

studiedbymeansof adetailed analysis of its context. Thisusually involves

the inspection of concordance lines of an element and their annotation

for various linguistic and/or contextual features: if one wants to deter-

mine when speakers will use the ditransitive (V NPRecipient NPPatient) and

when theprepositional dativewith to (NNPPatient PPto-Recipient), oneneeds to

inspect the whole sentence involving these two patterns and their larger

contexts to determine, for instance, the lengths of the patient and the

recipient, whether the clause denotes transfer or not, etc. Such data are

usually analyzed with general statistical tools, i.e. methods that are

applied in the same way as they are in psychology, ecology, and so on.

Corpus linguistics needs to “catch up” with regard to both of these groups.

With regard to the former, for instance, corpus linguists have used different

association measures to quantify, typically, how much two words are

attracted to each other or how much a word is attracted to a grammatical

pattern, but critical methodological analysis of the commonly used associa-

tion measures is relatively rare. With regard to the latter, for example, with

very few exceptions (such as Biber’s multidimensional analysis or Leech,

Francis, and Xu’s (1994)multivariate exploration of the English genitive alter-

nation) corpus linguistics has only begun to exploremore advanced quantita-

tive tools in the last fifteen years or so – compare that to psycholinguistics,

which has discussed more advanced linear models and how to deal with

subject-specific and lexical item-specific findings at least since Clark (1973).

In this overview, I will discuss statistical tools in corpus linguistics.

Section 2 is devoted to the “first group,” i.e. statistics directly involving

corpus-linguistic tools; Section 3 then turns to the “second group,” i.e.

statistics that are usually applied to the annotation of concordances. In

each section and subsection, I will first discuss some commonly used

methods to provide an easier overview of common questions and meth-

ods; then I will provide some pointers to more advanced and/or currently

under-utilizedmethods, whose exploration or wider use would benefit the

field. Section 4 will conclude with more general comments.

2 Statistics on core corpus-linguistic methods

In this section, I will be concerned with statistical methods that apply

“directly” to the methods of frequency lists, collocations, and dispersion.

2.1 Frequencies of occurrence

2.1.1 Frequency lists
Frequencies of occurrence are the most basic statistic one can provide for

any word or pattern. They come as either token or type frequencies and

typically in one of the following three forms:
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– raw frequencies: give’s frequency in the spoken component of the

ICE-GB is 297;

– normalized frequencies: give’s frequency in the spoken component

of the ICE-GB is ≈0.46575 ptw (per thousand words) or ≈465.75 pmw

(per million words);

– logged frequencies: the natural log ln of give’s frequency in the spoken

component of the ICE-GB is ln 297 = 5.693732 (natural logs are

computed to the base of e = 2.7182818, and e5.693732=297).

Raw frequencies are easiest to interpret within one corpus, normalized

frequencies are most useful when frequencies from differently sized

corpora are compared, and logged frequencies are useful because many

psycholinguistic manifestations of frequency effects operate on a log

scale. For example, if words a and b occur 1,000 and 100 times in a corpus,

a will be recognized faster than b, but not 1000/100=10 times as fast but

maybe log 1000/log 100=1.5 times as fast.

Most often, the frequencies that are reported are word frequencies in

(parts of) corpora. However,many studies are also concernedwith frequen-

cies ofmorphemes, grammatical constructions, words in constructions, or

n-grams/lexical bundles. Examples abound in

– learner corpus research, to document potential over-/underuse by

learners compared to native speakers;

– language acquisition corpora, to document how children acquire

patterns as they increase the number of different verbs (i.e. the type

frequency) filling a slot in a particular construction;

– historical linguistics, to document the in-/decrease of use of particular

words or constructions over time.

In spite of the straightforwardness of the above, there are still several

underutilized methods and desiderata. One is concerned with the fact

that words can theoretically have identical type and token frequencies,

but may still be very differently distributed. Consider Figure 3.1, which
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Figure 3.1 Hypothetical and actual frequencies of the forms of GIVE in the ICE-GB and their
relative entropies (Hrel)
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shows frequency distributions of the lemma GIVE in the ICE-GB, two

hypothetical ones (left and middle panels) and the actual one (from Gries

(2010b) in the right panel). While all three distributions have the same

token frequency (1,229 instances of GIVE) and type frequency (5 different

verb forms), they are obviously very different from each other, which

means one should not just report type and token frequencies. One way

to quantify these differences is with relative entropy Hrel as defined in

(1) and plotted into Figure 3.1.

(1) a: H ¼ �
Xn

i¼1

pðxÞ � log2 pðxÞ;with log20¼0

b: Hrel ¼ H
Hmax ¼ H

log2number of categories
��

(2) Hrel for give ¼� 441

1229
� log2

441

1229
þ . . .þ 376

1229
� log2

376

1229

� �
� log25 ≈0:91

Entropies and related information-theoretic measures (e.g. surprisal;

see Jaeger and Snider 2008) are not only useful to just descriptively distin-

guish different frequency distributions as above, but also to questions of

language learning or ease of processing in online production.

Even more interesting for frequency lists of words or n-grams is the

question of what the word or n-gram to be counted is or should be. In

some corpora one can make use of multi-word unit tags. For example, the

British National Corpus (BNC) has annotation that shows the corpus compi-

lers considered of course, for example, for instance, according to, irrespective of,

etc. to be one lexical item each,whichmeans onewould count of course, not

of and course separately. However, in unannotated corpora, the situation is

more complicated. Several strategies are possible: first, one can regard

spaces and/or other characters as word delimiters and retrieve words or

n-grams of a particular n using these word delimiters. The identification of

word delimiter characters is not completely uncontroversial – what does

one do with apostrophes, hyphens, etc.? – but far from insurmountable.

However, even then the choice of n is bound to be arbitrary. To find

according to, in spite of, on the other hand, be that as it may, and the fact of the

matter is, one would need to set n to 2, 3, 4, 5, and 6 respectively, but

typically studies just set n to 4 and proceed from there.

A more interesting but unfortunately rarer approach is to let the data

decide which n-grams to consider. While very useful, these approaches

become quite complicated. In one of the first studies to address this

problem, Kita et al. (1994) proposed to use a cost-reduction criterion,

which essentially quantifies how energy (cost) one saves processing a

corpus n-gram by n-gram (where n can be any number greater than 0). For

each word sequence α, one determines its length in words and its fre-

quency freqα and lenα in the corpus. From these, one computes the cost
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reduction K(a) first defined as in (3) and then extended to (4) since word

sequences are not mutually disjoint and any shorter n-gram α will be part

of a longer n-gram β.

(3) KðαÞ ¼ ðlenα � 1Þ � freqα

(4) KðαÞ ¼ ðlenα � 1Þ � ðfreqα � freqβÞ for non-disjoint
n-grams such as in spite = in spite of

Then, all word sequences are sorted by K(a) and the top n elements
are considered individual elements of the vocabulary. Finally, one iterates
and repeats these steps with the new inventory of individual elements.
Consider as an example the n-gram in spite of and its parts as well as three
4-grams it is a part of and their frequencies in the BrownCorpus in Table 3.1.

Assuming that in spite is a unit is not useful given that, whenever one

sees in spite, one nearly always also sees of as the next word, so the

corresponding K-values are very small (see (5); it would be better to assume

that in spite of is a unit). Correspondingly, assuming that in spite of is a unit

leads to much higher K-values (see (6)). Thus, this measure quantifies the

fact that there is little variation after in spite, but a lot more after in spite of.

(5) Kðin spiteðof ÞÞ ¼ ð2� 1Þ � ð55� 54Þ ¼ 1

(6) a: Kðin spite of ðallÞÞ ¼ ð3� 1Þ � ð54� 3Þ ¼ 102
b: Kðin spite of ðtheÞÞ ¼ ð3� 1Þ � ð54� 20Þ ¼ 68
c: Kðin spite of ðthisÞÞ ¼ ð3� 1Þ � ð54� 6Þ ¼ 96

One approach towards the same goal is Gries and Mukherjee’s (2010:
Section 2.2) implementation of lexical gravity G, which also leads to the
notion of lexical stickiness – the degree to which words like to occur in
n-grams (cf. Sinclair’s 1991 idiom principle) rather than on their own (cf.
Sinclair’s 1991 open-choice principle). The most sophisticated approaches in
corpus linguistics so far, however, seem to be Brook O’Donnell’s (2011)
“adjusted frequency list” and Wible and Tsao’s (2011) hybrid n-grams. The
former adjusts frequencies of units on the basis of larger units they occur in
(not unlike Kita et al.’s work); the latter enriches the study of n-grams with
lemma and part-of-speech information (see also the 2010 special issue of
Language Resources and Evaluation on multi-word units). Other approaches in
computational linguistics, whichmay well inform corpus-linguistic research

Table 3.1 The frequencies of several n-grams in the untagged Brown corpus

1-gram Freq 2-gram Freq 3-gram Freq 4-gram Freq

in 21,428 in spite 55 in spite of 54 in spite of all 3
spite 57 spite of 54 in spite of the 20
of 36,484 in ___ of 625 in spite of this 6
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in this area, are Nagao and Mori (1994), Ikehara, Shirai, and Uchino (1996),
Shimohata, Sugio, and Nagata (1997), and da Silva et al. (1999).

2.1.2 Key words
Awidespread application of frequency lists is the comparison of frequency

lists of two corpora, often one (larger and/or more general) reference

corpus R and one (smaller and/or more specialized) target corpus T. This

is useful, for instance, in applied linguistics contexts: if one wants to teach

the English of engineering, it would be useful to have a list of words that

are more frequent in an engineering context than they are in general

English. However, one cannot use a simple frequency list of an English

engineering corpus, because its most frequent words would still be the, of,

in, . . . – these are frequent everywhere. One of the earliest ways to compare

the frequencies of words w1, . . ., n in R and T to determine which words are

“key” to T compared to R involves Damerau’s relative frequency ratio. For

example, if theword Perl occurs in T and R 249 and 8 times respectively and

T and R contain 6,065 and 5,596 word tokens respectively, then this can be

summarized as in Table 3.2. The relative frequency ratio is the odds ratio of

this table, i.e. it is computed as (249/6,065) ÷ (8/5,596) ≈ 28.72 and if it is larger/

smaller than 1, Perl prefers/disprefers to occur in corpus T relative to its

frequency in corpus R. Here we obtain a value much larger than 1, which

means Perl strongly prefers to occur in T.

Another approach towards identifying key words involves G2, which has

been popularized by Dunning (1993) and Scott (1997). For the above data,

G2=270.71, a value indicating very high keyness of Perl for corpus T.1

2.2 Frequencies of co-occurrence
For many linguistic questions, the frequency of occurrence of a word/

patterns P alone is not sufficient – rather, what is required is the frequency

of P co-occurring with some other linguistic element S, T, . . .. Typically,

when P, S, T, . . . are words, this co-occurrence is referred to as collocation

(and P, S, T, . . . are collocates); when P is a construction/pattern, this

co-occurrence is referred to as colligation or collostruction (and S, T, . . . are

called collexemes of P). In both cases, a central concern is being able to rank

Table 3.2 Damerau’s (1993) relative frequency ratio

Corpus T Corpus R

Perl 249 8
All words 6,065 5,596

1 Many corpus linguists seem to use Paul Rayson’s log-likelihood calculator (at http://ucrel.lancs.ac.uk/llwizard.html) but

cite Dunning (1993) for the formula, which actually uses a different formula. The above result uses the general G2

formula in statistics, i.e. the one mentioned by Dunning.
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collocates/collexemes S, T, . . . in terms of their direction and strength of

association with P: the words strong and powerful are near synonyms, but

which of them is more likely to be used with tea and howmuch so? Or, the

words alphabetic and alphabetical seem to be very similar semantically,

but can we glean how they differ by identifying the words they “like to

co-occur with,” such as order and literacy?

More than eighty different measures have been discussed; see

Wiechmann (2008) and Pecina (2010) for overviews, and even those do not

cover the most recent developments (e.g. Zhang et al. 2009 and studies

discussed below). Nearly all thesemeasures derive from a 2×2 co-occurrence

table such as Table 3.3 (of which Table 3.2 is a reduced version in that it

omitted the not-P row). If one studied the collocation alphabetical order, then

(i) P could represent alphabetical, S could be order, and not-P and not-S would

represent all other words, and (ii) the frequency a would represent the

frequency of alphabetical order, which one is interested in, bwould represent

the frequency of alphabetical without order, c would represent the frequency

of orderwithout alphabetical, and dwould represent all bigrams with neither

alphabetical nor order.

Typically, association measures involve computing the frequencies one

would expect to see in cells a–d if the distribution in the table followed

straightforwardly from the row and column totals (see Gries 2013a: 182).

(7) lists a few widely used association measures for the frequencies for

alphabetical order in the BNC: a = 87, b = 145, c = 33,559, and d = 99,966,209.

From this, it follows that aexpected = (87+145)·(87+33,559)/(100,000,000) =

0.078, etc.

(7) a: pointwise Mutual Information ¼ log2
87

0:078
≈10:12

b: z ¼ a� aexpectedffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aexpected

p ≈ 311:11 and t ¼ a� aexpectedffiffiffi
a

p ≈9:32

c: G2 ¼ 2 �
X4
i¼1

obs � log obs

exp
≈1; 084:84

It is impossible to single out one association measure as “the best” since
they often produce quite different rankings of collocates/collexemes. In
the domain of collocation, Mutual Information is known to inflate with low

Table 3.3 Schematic co-occurrence table of token
frequencies for association measures

S not S Totals

P a B a+b
not P c d c+d
Totals a+c b+d a+b+c+d
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expected frequencies, t is known to prefer more frequent collocations,
and G2 is a quasi-standard. In the domain of collostructions, the –log10
p-value of the Fisher-Yates exact test is used most often (because it is
probably the most precise test and a good reference; see Evert 2008:
1235); it remains to be hoped that collocation studies adopt this exact
test more.

In spite of the large number of proposed measures, the field still has

much to explore. Two areas are particularly noteworthy. The first of these

is only concerned with collocations and is concerned with the range of

words around a word P that are included. Just as with n-grams, practi-

tioners usually seem to make an arbitrary choice, and frequent choices

are 4, 5, or 10 words to the left and to the right, yielding context windows

of 8, 10, or 20 words. However, Mason (1997, 1999) has provided a much

better solution to this problem, which is unfortunately hardly ever used.

He proposes to explore larger contexts of words around P and then for each

slot before or after P he computes the entropy of the frequency distribu-

tion of the collocates in that slot (along the lines of Section 2.1.1 above).

The lower the entropy value, the more a slot deserves attention for the

unevenness of its distribution. Table 3.4 exemplifies this approach: the

most frequent collocates of the in a small corpus are shown in the first

column together with their frequencies around the in columns 2–4 (3-left,

2-left, 1-left) and 6–8 (1-right, 2-right, 3-right). For example, the circled

frequency shows the word program occurs 57 times in the position 1-right

of the. Column 9 shows the entropies of each collocate’s frequency distri-

bution and column 10 shows the mean position of the collocate: for you

and on, those are ≈-1, which means these prefer to show up one word

before the; for program and software, they are ≈1, which means these prefer

to show up one word after the. Finally, the last row exemplifies Mason’s

approach by showing the entropies for the collocate columns (computed

on more data than are shown here), and one can see a frequent pattern:

Table 3.4 Toy example for 3L-3R collocations of the with row and column
entropies

Word/Pos 3L 2L 1L NODE 1R 2R 3R Hrel Mean

the 9 3 0 194 0 3 9 0.70 0.00
of 0 6 30 0 27 11 0.68 0.61
program 1 2 2 57 1 0 0.25 0.79
to 6 9 16 0 6 10 0.86 −0.21
or 4 8 0 0 14 1 0.62 0.11
is 6 3 0 0 12 4 0.69 0.48
and 5 3 3 0 8 5 0.86 0.29
you 4 11 0 0 4 2 0.67 −0.95
on 2 3 13 0 1 1 0.61 −1.00
a 10 0 0 0 2 5 0.52 −0.65
software 1 1 0 6 9 0 0.58 1.12
Hrel 0.75 0.75 0.64 0.60 0.67 0.72
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entropies grow with the distance from the node word, which is the tech-

nical way of saying that the more slots away one gets from the word of

interest, the less systematic patterning one will find.

The second area in need of additional research is concerned with the

nature of the association measures per se: just about all – and all that are

regularly used – have two potentially undesirable characteristics: they are

– bi-directional, i.e. they assign a value to, say, the collocation of course and

do not distinguish whether the association of of to course is greater/less

than that of course to of;

– based on token frequencies of, again, say, of and course alone and do not

take into account how many different words these two words co-occur

with (let alone the entropies of these type frequencies; see Gries 2012a,

2014).

There are two measures, each of which addresses one of these problems,

but both need much more exploration and no single measure addresses

both problems. As for the former, Ellis (2007) was the first to mention a

specifically bi-directional association measure, ΔP from the associative

learning literature, in corpus linguistics, which was then used in Ellis

and Ferreira-Junior (2009). ΔP is ≈0 when no association is present and

greater/less than 0 if one word attracts/repels the other (with +1 and –1

being the maximum and minimum values respectively). Consider

Table 3.5 with frequency data on of course and the two ΔPs (of → course in

(8a) and course → of in (8b)) as an example.

(8) a: DPcoursejof ¼ pðcoursejof Þ � pðcoursejotherÞ

¼ 5; 610

174; 548
� 2; 257

10; 235; 320
≈ 0:032

b: DPof jcourse ¼ pðof jcourseÞ � pðof jotherÞ ¼ 5; 610

7; 867
� 168; 938

10; 402; 001
≈ 0:697

Clearly, the word of does not attract course much – many words can and

do occur after of – but the word course attracts of strongly – not many other

words occur frequently before course. SeeMichelbacher, Evert, and Schütze

(2011) for a discussion of conditional probabilities and ranks of association

measures (the latter are promising but come with a huge computational

Table 3.5 Co-occurrence table for of and course in the spoken component of
the BNC

course: present other Totals

of: present 5,610 168,938 174,548
other 2,257 10,233,063 10,235,320
Totals 7,867 10,402,001 10,409,898
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effort) and Gries (2013b) for a validation of ΔP using multiword units and

control 2-grams.

As for the latter problem, lexical gravity G (see Daudaravičius and

Marcinkevičienė 2004) is an interesting attempt to include type frequencies

of collocations in association measures. This measure takes into considera-

tion how many different word types make up a token frequency. Using

Table 3.5 as an example again, nearly all association measures would only

“note” that there are 2,257 instances of course that are not preceded by of, but

they would not consider howmany different words these 2257 tokens repre-

sent. The most extreme possibilities are that these 2,257 tokens would be

– 2,257 different word types, which means that course was preceded by

altogether 1 (of) + 2,257 (other) = 2,258 different word types;

– 1 word type only, which means that coursewas preceded by altogether 1

(of) + 1 (other) = 2 different word types.

All other things being equal, the first scenario would lead to a higher G-value

because, anthropomorphically speaking, in both cases of managed to sneak

into the slot before course 5,610 times, but in the first case, it would have

managed that although coursewas so promiscuous in terms of allowingmany

different types in front of it, and this is what Gwould “reward” with a higher

value. These and other developments are all in dire need of investigation.

2.3 Dispersion
Another topic that is evenmore important but at least as understudied is the

notion of dispersion, the degree towhich any (co-occurrence) frequency of P

is sensitive to how evenly P is distributed in a corpus. For example, if one

explores which verbs “like to occur” in the imperative on the basis of the

ICE-GB, then many of the most attracted verbs are what one would expect:

let, see, look, go, come, and others – however, two verbs returned as highly

attracted stick out: fold and process (see Stefanowitsch andGries 2003). Closer

inspection reveals that these are fairly frequent in the imperative (esp. given

their overall rarity), but occur in the imperative inonly a single one of all 500

files of the ICE-GB. Thus, while their association measures suggest fold and

process are strongly attracted to the imperative, their dispersion throughout

the corpus suggests that this is such ahighly localized phenomenon that it is

hardly representative of how fold and process are used in general.

Ever since some early work in the 1970s (see Gries 2008 for the most

comprehensive overview, data for several corpora, and R functions),

researchers have attempted to develop (i) dispersion measures that indicate

how (un)evenly an item P is distributed in a corpus or (ii) adjusted frequen-

cies, i.e. frequencies that are adjusted (downwards) for elements that are

unevenly distributed. For instance, both amnesia and properly occur 51 times

in the ICE-GB but one would probably not ascribe the same importance/

centrality (e.g. for foreign-language learners) to both: amnesia and properly
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occur in 2 and 47 files of the ICE-GB respectively so adjusted frequencies

proposed by Juilland for both are ≈14 and ≈43.5 respectively, which under-

scores what, here, is intuitively clear: amnesia is much more specialized.

Unfortunately, this problem is a very general one: any statistic in corpus

linguistics is ultimately based on frequencies in parts of corpora, which

means that both dispersion and the notion of corpus homogeneity should

always be consideredpotential threats to our studies.Gries (2006) exemplifies

(i) how even the simplest of phenomena – frequencies of present perfects –

can exhibit large variability across different divisions of a corpus and

(ii) how the degree to which speakers’ unconscious linguistic choices can

be explained can differ hugely between different corpus parts; his recom-

mendation is to always explore and quantify the homogeneity of the corpus

for the pertinent phenomenon and at a certain level of granularity.

Given the straightforward logic underlying the notion of dispersion, the

huge impact it can have, and the fact that dispersion can correlate as

strongly as frequency with experimental data (see Gries 2010c), dispersion

and corpus homogeneity should be at the top of the to-do list of research

on corpus-linguistic statistics.

3 General statistics

In this section, I will now turn to statistical tools that are often applied to

annotation of corpus data, i.e. to data that emerge from the description –

linguistic, contextual, or otherwise – of concordance data; Section 3.1 is

concernedwith confirmatory statistics (andmentions descriptive statistics

in passing); Section 3.2 with exploratory statistics.

3.1 Confirmatory/hypothesis-testing statistics
Confirmatory statistics can be classified according to two main

characteristics:

– the number of independent variables, or predictors (often, the sus-

pected causes of some observed effect). A design can be monofactorial,

which means one analyzes the relation between one predictor and one

response/effect (see Section 3.1.1), or it can be multifactorial, which

means one analyzes the relation between two or more predictors and

one response/effect (see Section 3.1.2);

– the nature of the dependent variable(s), or effect(s)/response(s), which is

usually either categorical (e.g. a constructional choice: ditransitive or

prepositional dative) or numeric (e.g. a reaction times in ms) and which,

thus, affects the choice of statistic chosen: categorical responses usually

lead to frequencies whereas numeric responses often lead to averages or

correlations.
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3.1.1 Monofactorial statistics
Monofactorial statistical analyses have been relatively frequent in corpus

linguistics for quite a while; the most frequent test is probably a chi-

squared test for independence, which tests whether an observed distribu-

tion is different from a random distribution. Aarts (1971) is a classic early

case in point. She studies the distribution of NP types in English clauses to

explore, for instance, what kinds of NPs occur in subject slots. As Table 3.6

shows, subject slots prefer structurally lighter NPs: subjects are pronouns/

names 86.2 percent of the time (5,821/6,749 = 0.862) whereas non-subjects are

pronouns/names 46 percent only of the time (2,193/4,770 = 0.4,597); accord-

ing to a chi-squared test (see Gries 2013a: section 4.1.2.2), this is extremely

unlikely if there is no correlation between subjecthood and NP lightness.

Another well-known application of chi-squared tests is Leech and

Fallon’s (1992) study of what word frequency differences between the

Brown and the LOB corpus might reveal about cultural differences

between the USA and the UK. Predating Damerau’s relative frequency

ratio, they use a difference coefficient and chi-squared tests to identify

words that are more/less frequent in AmE/BrE than one would expect if

there was no difference between the varieties. As a final example, Mair

et al. (2002) compare part-of-speech frequencies between the 1960s LOB

corpus and its 1990s counterpart FLOB; using G2 they find that frequencies

of nouns increase considerably over time.

Turning to other monofactorial explorations, Schmitt and Redwood

(2011) is an example of the use of correlations. They used the Pearson

product–moment correlation r to address the question of whether English-

Language Learners’ knowledge of phrasal verbs (numeric scores in tests) is

related to the verbs’ frequency in the BNC and find a significant positive

correlation: on the whole, the more frequent the phrasal verb, the higher

the performance of learners. In addition, they use a t-test to see whether

learners’ reception and production scores differ, and they do.2 Another

example from the same domain is Durrant and Schmitt (2009), who com-

pare the use of adjective–noun and noun–noun collocations by learners

Table 3.6 The distribution of different types of NPs across subject/non-
subject slots (Aarts 1971: table 4.5)

Pronouns/names ±Determiner + head Totals

Subject 5,821 928 6,749
Non-subject 2,193 2,577 4,770
Totals 8,014 3,505 11,519

2 Unfortunately, their characterization of their statistical test does not reveal which t-test they used. Also, while they t-test

whether learners perform differently well in productive and receptive tests, they do not test what learner corpus

researchers might actually be most interested in: whether corpus frequency has different effects on production and

reception, for which multifactorial methods of the kind discussed in Section 3.1.2 would have been required.
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with that of native speakers, which were extracted from essays and whose

strength was quantified using different association measures. The values

of the association measures were classified into bands respectively so the

authors could explore native and non-native speakers’ use of collocations

of particular strengths with t-tests. One kind of result suggests that non-

native speakersmake greater use of collocations in terms of tokens but not

when type variability is considered as well. As a last example, Wiechmann

(2008) explores how well corpus-linguistic association measures (on the

association of verbs to NP/S complementation patterns) predict the results

of eye-tracking experiments. Again using a correlational measure (R2 s of

(quadratic) regression models), he finds that, apart from the theoretically

problematic measure of Minimum Sensitivity (see Gries 2012a: 491f.),

the association measure of pFisher-Yates exact test predicts the experimental

data best.

While I will provide more detailed suggestions regarding how statistics

in corpus linguistics can generally be improved below, two commentsmay

already be pertinent here. One is that corpus linguists often do not seem to

explore in detail whether the assumptions of tests are met. Many common

significance tests require particular shapes or properties of the data stu-

died, but usually there is little mention of whether these assumptions

were tested let alone met. With observational data, normality especially

is very rare, whichmeans that alternative tests (e.g. Kendall’s τ or theU-test

as in Borin and Prütz’s 2004 study of n-gram type frequencies of native

speakers and learners) or more general tests, such as the under-used

Kolmogorov–Smirnov test, may often be more appropriate; see Gries

(2013a) for discussion of these tests.

The other general point is that corpus linguists need to be more aware

that no linguistic phenomenon is ever monofactorial. Any monofactorial

test can only be a (dangerous) shortcut, given that what is really required

for confirmatory statistics is a kind of analysis that combines three

characteristics (see Gries and Deshors 2014):

– they aremultifactorial in the above sense: they considermultiple causes

for linguistic choices (such as the choice of an of vs. an s-genitive) into

consideration;

– they involve interactions between the linguistic predictors so that one

can determine whether a particular predictor (is the possessor of a geni-

tive construction specific or non-specific?) has the same effect regardless

of other predictors (is the possessor singular or plural?): maybe specific

possessorsmake itmore likely that speakerswould produce an s-genitive,

but only (or especially) when the possessor is also singular . . .;

– they involve interactions between linguistic predictors on the one hand

and data-type predictors on the other. Data-type predictors include, for

example, L1 (is the speaker a native speaker or a learner of some

variety?), REGISTER (which register/genre is a data point from?), TIME
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(which time period is a data point from?) etc. Including such interac-

tions is necessary if one wants to determine whether the linguistic

predictors have the same effect in each L1/variety, in each register, at

each time period, etc.: maybe specific possessors make it more likely

that speakers would produce an s-genitive, but only (or especially) when

the speaker is a Chinese learner (as opposed to a German learner or a

native speaker) of English . . .

Unfortunately, multifactorial analyses taking all this into consideration,

which are usually regressionmodels (see Gries 2013a: ch. 5), are still in the

minority. Tono (2004) is a rare exemplary study that takes especially the

third characteristic into consideration. Mostly, studies either run no sta-

tistics at all and only report observed frequencies, or they run (many)

monofactorial statistics on datasets regardless of whether the data are

mono- or multifactorial. Table 3.7 represents an example.

Table 3.7 suggests a monofactorial perspective because it seems as if the

choice of tense (in the two rows) is dependent on the corpus (the four

columns), but the dataset is in factmultifactorial: the frequencies of tenses

can depend on the times the corpora represent, the variety, and a potential

interaction as shown in a schematic regression equation in (9), in which

the tilde means “is a function of.”

(9) TENSE ~ VARIETY (AmE vs. BrE) + TIME (1960s vs. 1990s) + VARIETY:TIME

Hundt and Smith (2009: 51) state, among other things, that “[simple pasts]

have also decreased over time” but appropriate multifactorial analysis

with a binary logistic regression (see the following section) shows that

the slight change of frequencies of past tenses is insignificant. In fact, the

only significant effect in this data set is VARIETY – there is no diachronic

effect of TIME and no interaction of VARIETY with TIME. As for this effect of

VARIETY, Hundt and Smith (2009: 51) state that “we are – again – dealing

with stable regional variation,” which is correct, and the exact result

(present perfects are more likely in BrE than in AmE) is represented in

Figure 3.2. However, if one calculates effect sizes (see Section 4 below) the

effect is so weak (Nagelkerke R2=0.0017, C=0.524) that it is hardly worth

mentioning (and dangerously close to what one might just obtain from

variation due to sampling rather than a real varietal difference).

Table 3.7 Hundt and Smith’s (2009) observed frequencies of English present
perfects and simple pasts in LOB, FLOB, Brown, and Frown

LOB FLOB Brown Frown Totals

Pres. perfect 4,196 4,073 3,538 3,499 15,306
Simple past 35,821 35,276 37,223 36,250 144,570
Totals 40,017 39,349 40,761 39,749 159,876
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Unfortunately, similar examples of multifactorial datasets that are not

analyzed multifactorially abound, which is why the recognition that

corpus-linguistic statistics has to go multifactorial is maybe the most

important recommendation for the field’s future development.

3.1.2 Multifactorial statistics
Perhaps the most important tool in confirmatory statistics in corpus

linguistics is, or should be, the generalized linear model and its exten-

sions, a family of regression models, which serve to model a response/

dependent variable as a function of one or more predictors. Crucially, in

the GLM and its extensions, the dependent variable can be of different

kinds: they can be

– numeric (as when one models, say, numeric test scores as in the above

discussion of Schmitt and Redwood 2011), in which case the GLM boils

down to “regular” linear regression models;

– ordinal (as when one tries to predict the etymological age of a verb on

the basis of characteristics of the verb; see Baayen 2008), in which case

one might compute an ordinal logistic regression;

– binary or categorical, in which case onemight compute a binary logistic

regression (as when above the choice of a tensewasmodeled on TIME and

VARIETY) or a multinomial regression (or a linear discriminant analysis);

– frequency counts (aswhen one tried to predict howparticular frequency

disfluencies happen in particular syntactic environments), in which

case one might compute a Poisson regression.

In the same way, predictors can also be numeric, ordinal, binary or cate-

gorical variables (or any interactions between such variables, see above),

and the results of such regressions are predictions (either raw values for

linear and Poisson regression or predicted probabilities of outcomes for

logistic regressions as in Figure 3.2 and multinomial regressions). The

earliest such confirmatory studies that I am aware of – see below for earlier

multivariate exploratory methods – are Leech, Francis, and Xu’s (1994) use

of loglinear analysis to explore the alternation between of– and s-genitives

and Gries’s (2000, published 2003a) use of linear discriminant analysis to

The final model: TENSE ~ VARIETY

0.08

Predicted probabilities of present perfects (with 95% confid. intervals):

BrE

AmE

0.09 0.10 0.11 0.12

Figure 3.2 The effect of VARIETY on TENSE
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study particle placement, the alternation of John picked up the squirrel and

John picked the squirrel up. Following these studies and various replications

and extensions – see Gries (2003b) and Kendall, Bresnan, and van Herk

(2011) on the dative alternation, Diessel and Tomasello (2005) on particle

placement in child language acquisition, Szmrecsanyi (2005) on analytic/

synthetic comparatives, particle placement, and future tense, Hinrichs

and Szmrecsanyi (2007) on genitives, etc. – such regression analyses have

become adopted more frequently, though, see above, not widely enough.

Most of these applications involve binary logistic regressions, i.e. speaker

choices of one of two alternatives, butmultinomial regression is also slowly

becomingmoremainstream. Buchstaller (2011) explores the use ofmultiple

quotation markers (say vs. go vs. be like vs. be all, and others) in a diachronic

corpus of Tyneside speech andfinds that the effects of AGE, SOCIALCLASS, TENSE,

and NARRATIVE on the choice of quotation marker change over time.

Similarly, Han, Arppe, and Newman (forthcoming) model the use of five

Shanghainese topic markers on the basis of TOPICLENGTH, TOPICSYNTCAT, GENRE,

and other variables. An example for ordinal logistic regression is Onnis and

Thiessen (2012), who model levels of syntactic parse depths in English and

Korean as a function of n-gram frequencies and two conditional probabil-

ities and show, e.g. that cohesive phrases tend to bemore frequent and that

“the patterns of probability that support syntactic parsing are clearly

reversed in the two languages.” As a final example, Tono (2004) uses a

method that is essentially equivalent to Poisson regressions, namely log-

linear analysis, to explore differences between the acquisition of verb sub-

categorization frames in an EFL context.3

While the more widespread adoption of the above tools would already

constitute huge progress, there is still a variety of additional improve-

ments that would be useful. First, regressions can be followed up in a

variety of ways. One very important one of these is referred to as general

linear hypothesis (GLH) tests (see Bretz, Hothorn, and Pestfall 2010). While

some scholars now routinely follow Occam’s razor and do a regression

model selection in which they eliminate insignificant independent vari-

ables (as was done above, when, for instance, the interaction VARIETY:TIME

was discarded from the discussion of Hundt and Smith’s data), what is

much rarer is the use of GLH tests to determine whether, say, keeping all

levels of a categorical predictor distinct ismerited. For example, onemight

studywhether the animacy of a possessor affects the choice of an s-genitive

and annotate possessors in concordance lines for the following six levels of

animacy: abstract vs. concrete/inanimate vs. plants vs. animals vs. super-

human beings vs. humans. However, even if animacy of the possessorwere

3 Interestingly, Tono (2004) changes numeric predictors – target and interlanguage frequencies – into categorical (or,

strictly speaking) ordinal factors with three levels (low vs. medium vs. high). This kind of discretization of numeric

variables is a not infrequent strategy but, as Baayen (2010) has shown, incurs some loss of power in the statistical

analysis. Had Tono done a Poisson regression, this step would not have been necessary; however, this minor issuemust

not detract from the otherwise very informative statistical analysis.
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to play a significant role in the decision for an s-genitive, this does not

mean that it would be necessary to distinguish all these levels – maybe

choices of genitives can be sufficiently well explained even if one just

distinguishes two levels: a low-animacy group (conflating abstract, con-

crete/inanimate, and plants) and a high-animacy group (animals, superhu-

man beings, and humans). GLH tests can be a very powerful tool for

studing such questions, discerning structure in data, or disproving ana-

lyses; see Gries (forthcoming) for a small GLH-based re-analysis of corpus

data first discussed by Hasselgaº rd and Johansson (2012).

Second, such regression analyses can be fruitfully combined. Gries

and Deshors (2014) develop what they call the MuPDAR approach (for

Multifactorial Prediction and Deviation Analysis with Regressions). This approach

is designed to advance learner corpus research and involves three steps

and two regressions:

i. a regression R1 in which some phenomenon P is studied in native

speaker data with a logistic or multinomial regression;

ii. the computation of native-speaker-based predictions for learner data;

iii. a regression R2 which tries to model where the learners did not make

the choices the native speakers would have done and why.

Gries and Deshors apply this approach to the use of may and can by native

speakers and French and Chinese learners of English. First, their R1 deter-

mines which factors govern native speakers’ use of may and can. Second,

they apply these results to the learner data and predict for each learner use

of may and can which of the two modals a native speaker would have

chosen. Third, they explore the cases where the learners did not do what

the native speakers would have done to determine what features of the

modals the learners still have (the most) difficulties with.

Third, a range of other interesting statistics can help corpus linguistics

tackle other statistical challenges. One example is the approach of

Structural Equation Modeling, which is designed to help identify causal

effects from correlational effects; see Everitt and Hothorn (2011) for an

applied introduction. Also, the approach of mixed-effects modeling enjoys

a growing popularity in (corpus) linguistics. This method augments the

traditional regression methods from above with the ability to include

random effects – e.g. subject-, file- or word-specific effects – into the

analysis, which has three advantages: (i) it addresses the problem that

many statistical techniques assume that the individual data points are

independent of each other, which is usually not the case in corpus data

where one speaker/writer may provide many concordance examples;

(ii) this approach can handle the kind of unbalanced data that corpora

provide much better than traditional methods; (iii) since these models

help account for, say, subject- or word-specific variability, their results

are usually much more precise. Once a variety of uncertainties that still

accompany this approach are addressed (see Gries 2013a: 335f.), this will
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be one of the most powerful tools in corpus linguistics; see Bresnan et al.

(2007) for perhaps the inaugural application of this method (to the dative

alternation) in corpus linguistics, Baayen (2008: ch. 7 for illustration), and

the technique of generalized estimation equations as a potentially more

flexible alternative.

Other examples are methods that can help corpus linguists handle

the kinds of noisy/skewed data that often violate the assumptions of

regression approaches but that are still quite rare in corpus linguistics;

examples include classification and regression trees, conditional infer-

ence trees, or Random Forests, which, with some simplification involve

the construction of flowchart-like tree structures based on successively

more fine-grained binary splits of the data; see Hastie, Tibshirani, and

Friedman (2009) for technical discussion, Torgo (2011) for more applied

discussion, and Bernaisch, Gries, and Mukherjee (2014) for a recent

corpus-linguistic application. In addition, the whole field of robust sta-

tistics provides a huge array of tools to handle the kind of skewed and

outlier-ridden data corpus linguists face very day. Nonlinearities in data

may be studied using generalized additive models; see Zuur et al. (2009).

Finally, the most interesting alternatives to regressions that I have seen

in many years are Baayen’s (2011) naı̈ve discriminative learning algo-

rithm and Theijssen et al.’s use of Bayesian Networks / memory-based

learning, both of which have the potential to revolutionize the field in

how they provide psycholinguistically more motivated statistics than

regression models and allow researchers to build causal models on

data that do not meet the usual requirements of regressions (lack of

collinearity, for instance).

3.2 Exploratory / hypothesis-generating statistics
Apart from the many confirmatory approaches discussed so far, there is

also a large range of so-called exploratory tools, i.e. methods which usually

do not test hypotheses and return p-values but that detect structure in data

that the analyst must then interpret. One of the most widely known

methods is of course Biber’s multidimensional analysis (MDA); see Biber

(1988, 1995) for the most comprehensive treatments. In a nutshell, per-

forming an MDA involves

i. annotating a corpus for a large set of relevant linguistic characteristics;

ii. generating a table of normalized frequency counts of each linguistic

feature in each part of the corpus;

iii. computing a factor analysis (FA) on this table, which is a method that

will group together those annotated linguistic features that behave

similarly in the different corpus parts;

iv. interpreting the co-occurrence patterns in terms of the communica-

tive functions that the co-occurring features perform.
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Biber (1988) identified five dimensions of variation, which are selectively

summarized in Table 3.8. MDA has been one of the most influential

quantitative methods in corpus linguistics and has spawned a large num-

ber of follow-up studies and replications, many of which usedMDA results

for the characterization of new registers. In addition, MDA has probably

been amain reasonwhy FA, and its statistical sibling, principal component

analysis (PCA), have become popular in corpus-linguistic circles long

before regression modeling has; see Biber (1993) for an application to

word sense identification.

Other exploratory tools that are widespread are cluster-analytic

approaches. Just like FA/PCA, cluster-analytic approaches try to identify

structure in multivariate datasets, but unlike FA/PCA, they do not require

the data to be numeric and they return their results in an intuitively

interpretable tree-like plot called a dendrogram (see Figure 3.3). Many

different kinds of cluster analysis can be distinguished but the most

frequent in corpus linguistics is hierarchical agglomerative cluster analy-

sis, which approaches datasets containing n items such that it tries to

successively amalgamate the n items into larger and larger clusters until

all items formone cluster; it is then the researcher’s task to determine how

many clusters there are and what, if anything, they reflect. Other tech-

niques are phylogenetic clustering, which is more flexible than hierarch-

ical clustering in that it does not require all elements to form one cluster at

some point; k-means clustering, where the analyst defines the desired/

suspected number k of clusters, and the analysis returns the n items

grouped into k clusters for interpretation; and others.

Given their flexibility, cluster analyses can be and have been applied in

very many contexts where large and potentially messy datasets were

explored for possibly complex correlational structures that would remain

invisible to the naked eye; Moisl (2009) provides a general overview, three

recent applications are Divjak and Gries (2006, 2008), who apply cluster

analysis to finely annotated co-occurrence data for nine synonymous

Table 3.8 Dimensions of variation in Biber (1988)

Factor High positive loadings High negative loadings

1: involved vs. informational
production

private verbs, that deletion nouns, long words

2: narrative vs. non-narrative
discourse

past tense verbs, third person
pronouns

present tense verbs,
attribute adjectives

3: situation-dependent vs. ela-
borated reference

time and place adverbials wh-relative clauses on
object and subject
positions, pied-piping

4: overt expression of
argumentation

infinitives, prediction modals –

5: abstract vs. non-abstract
style

conjuncts, agentless passives –
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Russian verbs meaning “to try,” Szmrecsanyi and Wolk (2011), who use

clustering and other tools within quantitative corpus-based dialectometry,

and Hilpert and Gries (2009), who discuss a specific kind of clustering,

Variability-based Neighbor Clustering, which can identify temporal stages

of development in diachronic corpus data such as longitudinal language

acquisition data or historical corpora.

While cluster analysis is not uncommon in contemporary corpus lin-

guistics, there is a variety of follow-up methods that have not been widely

adopted yet. These methods can help researchers identify how many

clusters to assume for a given dendrogram. For example, it is not immedi-

ately obvious how many clusters the dendrogram of English consonant

phonemes in the left panel of Figure 3.3 represents: any number between

two and five seems possible. The right panel exemplifies one approach to

this question, a statistic called average silhouette widths, which quantifies

how similar elements are to the clusters which they are in relative to how

similar they are to other clusters; in this case, this statistic “recommends”

that four clusters should be assumed.

Many more exploratory statistical tools are only used occasionally at

this point. Examples include (multiple) correspondence analysis (see

Greenacre 2007 for technical details and implementation and Glynn

2010 for an application to the distributional behavior of bother) or

multidimensional scaling (see Sagi, Kaufmann, and Clark 2011 on how

collocates of docga/dog and deo/deer document semantic broadening and

narrowing respectively).

4 Discussion and concluding remarks

In spite of having discussed many techniques and desiderata, this chapter

could only scratch the surface of quantitative analysis and design in corpus

linguistics – most quantitative applications/tools would easily merit an

article on their own. As just one example, consider studies concerning

the productivity of linguistic elements: Baayen’s (1993, 1994) work broke

the ground on studies of morphological productivity with applications
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Figure 3.3 Cluster-analytic results for English consonant phonemes (from Gries 2013a)
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ranging from linguistic theory to literary scholarship on vocabulary

richness, and Zeldes (2012) is a recent extension of this work to syntax,

but lack of space precludes more detailed discussion of these and other

works. In addition to the many pointers for future research and explo-

ration above, I will conclude with a few more basic comments and

recommendations.

First, in addition to the mere knowledge of what techniques are avail-

able, we also need firm guidelines on what is important in statistical

analysis, what is important to report, and howmethods and results should

be reported (see again note 2). Other fields have had long and intense

discussions about these things – corpus linguistics, unfortunately, has

not. We should be prepared to be inspired by how other disciplines with

similar kinds of questions and data have come to grips with these chal-

lenges; from my point of view, ecology and psychology are most relevant

to us, and Wilkinson and the Task Force on Statistical Inference (1999)

provide many essential tips (e.g. to always include effect sizes to distin-

guish significance from effect size and make analyses comparable).

Let me briefly adduce an example of what happens if even elementary

rules of statistics are not followed, in this case the rule that, if one com-

putesmany significance tests on one and the same dataset, then one needs

to adjust one’s significance level (see Gries 2013a: 273f.). The point of this

example is not to bash a particular linguist or study – it is only by being

able to point out very concrete dangers in existing studies that we learn.

The case in point is Egan (2012), who discusses translations of through and

reports a table (see Table 3.9) in which eight senses of through are con-

trasted in 28 pairwise chi-squared tests.

However, this analysis is quite problematic. One very minor problem is

what is presumably just a typo, but since Egan does not provide any

actually observed frequencies, there is no way to know whether the com-

parison between Channel and Means resulted in 3.4 or 34. Much more

importantly, Egan seems to have adopted a critical chi-squared value

Table 3.9 Chi-squared values with 2 df for pairwise comparisons
(Egan 2012: table 1; figures in italics represent chi-squared values with
p > = 0.05 acc. to Egan)

Perc Space Channel Other Means Idiom Time Clause

Perc 9 6.2 20.9 20.1 54.6 35.5 53.4
Space 9 0.2 11 8.8 76 20.3 37.8
Channel 6.2 0.2 2.3 3.4 15.5 6.7 17.3
Other 20.9 11 2.3 5.6 10 4.1 17.6
Means 20.1 8.8 34 5.6 24 2.6 6.6
Idiom 54.6 76 15.5 10 24 17.2 37.6
Time 35.5 20.3 6.7 4.1 2.6 17.2 7.4
Clause 53.4 37.8 17.3 17.6 6.6 37.6 7.4
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of ≈5.99, the chi-squared value for p=0.05 at df=2. However, Egan did not

adjust his critical chi-squared value for the fact that he runs 28 tests on a

single dataset. Thus, while he reports 22 significant contrasts out of 28, an

adjustment (Hommel’s method) results in only 14 significant contrasts,

and since it is the “significant” differences upon which his possible net-

work of through is based, this network essentially collapses: perception

senses are not significantly different from all other senses. Similar pro-

blems are common: see Gries (forthcoming) for a discussion of a similar

flaw in Laufer and Waldman (2011) and Gries (2005b) on how corrections

for multiple testing address the issue of too many significant values in

keywords analyses. Thus, corpus linguists need to be more aware of the

fairly straightforward notion of the multiple-testing problem and ways to

address it with corrections and especially corrections that aremore power-

ful than the Bonferroni correction (such as corrections recommended by

Holm 1979, Hochberg 1988, or Hommel 1988).

Given all of the above, it may seem as if corpus linguists are supposed to

spend quite some time on learning a large number of sometimes quite

complex statistical tests. That perception is accurate. As I have asked else-

where, why is it that corpus linguists look at something (language) that

consists of distributional/frequency-based probabilistic data and is just as

complex as what psychologists, cognitive scientists, etc. look at, but most

of our curricula do not contain even a single course on statistical methods?

If we want to make serious headway in our analyses of corpus data, then,

given the complexity of our data, we must commit to learning statistical

methodology, and hopefully the above succeeded at least in providing an

overview of foundational and useful tools that, if adopted, can help us

advance our discipline.
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