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This paper surveys a variety of methodological problems in current quantitative corpus linguistics. Some 
problems discussed are from corpus linguistics in general, such as the impact that dispersion, type frequencies/
entropies, and directionality (should) have on the computation of association measures as well as the impact that 
neglecting the sampling structure of a corpus can have on a statistical analysis. Others involve more specialized 
areas in which corpus-linguistic work is currently booming, such as historical linguistics and learner corpus 
research. For each of the problems, first ideas/pointers as to how these problems can be resolved are provided 
and exemplified in some detail.
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1. Introduction

For several decades now, corpus linguistics has been among the fastest-growing methodologi-
cal disciplines in linguistics. For instance, in his outgoing column as the editor of Language, Joseph 
(2004:382) comments explicitly on the increase of corpus and internet data; another example is 
Janda (2013), who discusses in detail the ways in which cognitive-linguistic theory in particular has 
made a ‘quantitative turn’. Given this development and the somewhat obvious observation that 
corpora contain nothing but frequencies/probabilities—of occurrence or of co-occurrence—it is not 
surprising that linguistics in general has become much more quantitative/statistical in nature, a trend 
we also witness in corpus linguistics: For example, 10 or 15 years ago it would have been quite 
difficult to find papers with multifactorial statistical techniques in corpus-linguistic papers—now, 
monofactorial statistical tests at least are much more frequent, and multifactorial statistical methods 
are on the rise.

In spite of this welcome development, change in the field of linguistics is slow, and corpus 
linguistics in particular is limited in two ways: First, in computational ways in the sense that probably 
the majority of corpus linguists are still relying on a small set of often commercial and proprietary 
point-and-click kind of corpus search tools (such as WordSmith Tools, MonoConc Pro, or AntConc); 
given the severe constraints that this results in (see Clark-Sánchez 2013; Gries 2010a, 2011), it is 
gratifying to see how more and more practitioners now avoid all these constraints by switching to 
programming languages such as R or Python.

The second kind of limitation involves statistical methods: While the overall amount of statis-
tical expertise in the field is growing, corpus linguists should both widen and deepen their expertise 
to go beyond the handful of widely used methods. By that I do not only mean that corpus linguists 
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need to use more different statistical tests (while that is generally true, the choice of a particular 
test is of course mostly dictated by the particular research question), but also that there needs to be 
a growing awareness that some choices that corpus linguists traditionally make may be pro blematic 
and would benefit from a different perspective. In the next section of this paper, I want to 
exemplify several such problems and survey some solutions to them. Specifically, I shall discuss 
potentially problematic choices or omissions in the area of general corpus statistics, in particular 
the choice of association measures for co-occurrence data, that is, measures with which corpus 
linguists quantify the degree of association between two linguistic expressions (e.g. two words or 
a word and a syntactic pattern/construction). In addition, I shall briefly comment on the underutilized 
notion of dispersion, that is, a measure that quantifies how evenly distributed elements are in a 
corpus, and thus also relates to the notion of corpus homogeneity. Finally, I shall demonstrate 
how the current typical neglect of the hierarchical structure of corpora poses severe problems. 
More specialized areas are currently booming, it seems: diachronic corpus linguistics, which needs 
to deal with the problem of how temporally-ordered corpus data are grouped into temporal stages 
for subsequent analysis; and learner corpus research, which needs to move on from decontextualized 
studies of over- and underuse to more comprehensive models of learner language and its 
differences to native language.

2. General corpus statistics

2. 1 Co-occurrence information

One of the most fundamental notions in corpus linguistics is the distributional hypothesis, that 
is, the working assumption that linguistic elements that are similar in terms of their distributional 
patterning in corpora also exhibit some semantic or functional similarity. Firth (1957:11) captured 
this notion in his famous dictum ‘[y]ou shall know a word by the company it keeps’, but Harris’s 
(1970:785f.) following statement actually makes the same case much more explicitly:

[i]f we consider words or morphemes A and B to be more different in meaning than A and 
C, then we will often find that the distributions of A and B are more different than the 
distributions of A and C. In other words, difference of meaning correlates with difference 
of distribution.

That is, a linguistic expression E—morphemes, words, constructions/patterns, . . .—can be 
studied by exploring what is co-occurring with E and how often. The simplest possible way to do 
this would be by raw co-occurrence frequency or, more likely, conditional probabilities such as 
p(function|E) or p(contextual element(s)|E). Since raw frequencies will be distorted by words that 
are highly frequent everywhere, a more frequent way is to use association measures (AMs), that is, 
statistics that quantify the strength of mutual association between two elements such as a function 
or a contextual element on the one hand and E on the other. Most AMs are based on co-occurrence 
tables of the kind exemplified in Table 1, which contain observed frequencies of (co-)occurrence of 
a linguistic expression E (e.g. a particular word) and functions/contexts X (e.g. a particular construc-
tion). In such a table, a, or obs a (for ‘observed frequency a’), refers to the frequency with which 
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E is observed with/in function/context X, etc.; examples for widely used AMs include Mutual 
Information (MI), the t-score, the z-score, log-likelihood G2, pFisher-Yates exact, and many more (see Evert 
2009 for how these measures are computed and discussion of their characteristics).

 2.2 Problems with the quantification of co-occurrence

2.2.1 Problem: multi-word AMs are not conservative enough

Despite their frequency of use, AMs of the above kind are not unproblematic. One smaller 
problem is the fact that they do not easily generalize to n-grams (uninterrupted strings of n words), 
or multi-word units (such as according to, in spite of, etc.). At this point, MI for n-grams—
log2(

obs a/exp a)—is often simply computed on the basis of complete conditional independence, 
which will tend to underestimate expected frequencies of a and, thus, overestimate the strength of 
association. If one computes the MI of in spite of in the untagged Brown corpus by comparing the 
observed frequency of in spite of of 54 against an expected frequency based on complete indepen-
dence, MI becomes an extremely high value of 12.25. However, if one computes MI by comparing 
the same observed frequency of in spite of to the one expected from the occurrences of in spite and 
of, then that MI-value decreases to 4.76. Thus, corpus linguistics needs to explore more adequate 
and conservative ways to extend AMs to n-grams.

2.2.2 Problem: nearly all AMs are symmetric/bidirectional

An even more important problem is that nearly all AMs are symmetric: the association of 
expression E to context C is presumed to be symmetric/bidirectional. However, associations in 
general and associative learning are certainly not (always) symmetric, which is why, ideally, corpus 
linguistics would explore the use of directional AMs. Some work on this area exists, in particular 
Michelbacher et al. (2007, 2011), who explore two different conceptual options.

First, they explore the correlation of conditional probabilities from adjective—noun collocations 
with the University of South Florida Association Norms, but find the measure lacking in 
identifying symmetric associations; in addition, conditional probabilities do not normalize the 
observed percentage against any baseline.

Second, they explore a measure based on the differences of ranks of AMs (such as chi-squared 
values). For such rank measures, a collocation x y is explored by

– computing all AMs for collocations with x, ranking them, and noting the rank for x y;
– computing all AMs for collocations with y, ranking them, and noting the rank for x y;
– comparing the difference in ranks.

T able 1: Schematic co-occurrence frequency table

E Elements other than E Totals

Function/context X a b a + b
Functions/contexts other than X c d c + d
Totals a + c b + d a + b + c + d
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In tests analogous to those of conditional probabilities, this rank measure does not perform well 
with asymmetric associations but a little better with symmetric ones; in the additional classification 
task, the rank measure came with an even higher error rate than conditional probabilities. In 
Michelbacher et al.’s (2011) study, additional rank measures are also based on raw co-occurrence 
frequencies, G2, and t, and the corpus-based data are compared to the results of a free association 
task undertaken specifically for that study. The results of the rank measures in that study are much 
more compatible qualitatively and quantitatively with the subjects’ reactions in the experiment; of 
the rank measures, G2 performs best.

While this sounds promising, the computational effort that goes into these calculations is 
immense, since the computation of one AM for the collocation x y requires the computation of all 
AMs for all collocations with x and then separately for all collocations with y. In addition, in spite 
of the huge computational effort involved in the thousands of ranked G2-values, they do not perform 
better than conditional probability (Michelbacher et al. 2011:270). Finally, the rank-measure based 
approach is a very promising one, but probably not cognitively realistic in any sense. Against this 
background, the measure of ΔP from the associative learning literature seems a particularly interest-
ing alternative (see Ellis 2006 for its introduction into linguistics). It, too, is based on tables such 
as Table 1, but can distinguish the association from X to E (see (1a)) from the association from E 
to X (see (1b)).

( 1) a. |E X

a c
P

a b c d
Δ = −

+ +

 b. |X E

a b
P

a c b d
Δ = −

+ +

For example, all traditional AMs would return a high value for of course (see Gries 2013:144), 
but it is ΔP that recognizes that the association between of and course is not symmetric: of is not 
a good predictor that course would follow whereas course is a strong predictor that of will precede. 
In fact, Gries (2013) finds that similarly strong asymmetric collocations are quite frequent—26% 
of his sample of 2-grams are exhibiting high G2-values reflecting strong association, but are missing 
the fact that these are very asymmetric associations. (2a) lists some 2-grams in which the first word 
is much more predictive of the second than vice versa; (2b) lists some 2-grams in which the first 
word is much less predictive of the second than vice versa (as with of course).

(2)  a. apart from, according to, upside down, contrary to, ipso facto, irrespective of
 b. at least, per annum, status quo, for instance, de facto, vice versa

In sum, ΔP is by design more sensitive than traditional AMs since it can tease apart directional-
ity effects; it is very easy to understand and compute; its computation/interpretation does not require 
assumptions (such as normality, which is very rare in corpus data); it avoids problems of the Null 
Hypothesis Significance Testing paradigm because it does not test the observed distributional data 
against an illusionary null hypothesis distribution; finally, it has received experimental support both 
in psychology and in linguistic work by Ellis and colleagues, and Gries (2013) at least mentions a 
way in which it could be used to explore n-grams. It would therefore behoove corpus linguists to 
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explore this measure in more detail; ultimately, maybe it can even help explore mismatches between 
corpus and experimental data of the type reported in Mollin (2009), for example, who finds a lack 
of correlation between association data from the Edinburgh Associative Thesaurus and co-occurrence 
data from the British National Corpus (BNC) explored bi- rather than unidirectionally.

2.2.3 Problem: nearly all AMs involve only token frequencies

The next AM problem to be discussed here is perhaps just as fundamental as the symmetry 
problem, but even less recognized and explored: namely that the computation of nearly all 
AMs involves only the four token frequencies represented in Table 1. That is, a crucial piece of 
information that none of the usual measures includes is

–  minimally, the type frequencies that make up the frequencies b and c, that is, how 
many different elements not-E are there with the same function/context X (for b) and 
how many different functions/contexts not-X are there that E is used with? The answer 
to these two questions would be two numbers, the two type frequencies underlying b 
and c., for example 10 and 20. 

–  And even more useful would be the token frequencies of all the types that make up 
the token frequencies b and c. For b, that would mean how many different elements 
not-E there are with the same function/context X and how frequent each of them is 
with X, and the corresponding question for c. The answer to this question for b would 
be 10 token frequencies and, maybe, their entropy or some other summary statistic.

Given the importance of type frequencies or entropies for many domains (productivity, language 
change, language acquisition, . . .), it is amazing how little alternatives to AMs that utilize type 
frequencies or entropies have been explored in corpus linguistics proper. Studies from neighboring 
disciplines (Baayen 2010b; McDonald & Shillcock 2001; Recchia et al. 2008) all show that 
contextual-diversity measures, such as contextual distinctiveness and/or entropy-related measures, 
are better predictors of psycholinguistic behavioral data than token-frequency statistics alone, so 
corpus linguistics has its work cut out for it.

Within corpus linguistics, Daudaravičius & Marcinkevičienė (2004) were the first to make 
this topic known to a wider audience. They proposed a measure called lexical gravity G as defined 
in (3). As can be inferred from this equation, all other things being equal G increases as nw1w2, 
ntypes after w1, or ntypes before w2 increases, and G decreases as nw1 or nw2 increases.

(3) Grav ity G (w1, w2) = 1 2 1 1 2 2

1 2

log w w types after w w w types before w

w w

n n n n

n n

⋅ ⋅⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Unfortunately, there has been very little follow-up on this notion. Two exceptions are Gries 
(2010b) and Gries & Mukherjee (2010). The former study uses a cluster analysis of sub-registers 
(of the BNC Baby) based on G-values for all 2-grams in the corpus and compares it to one based 
on t-values, and finds that the former is able to just about perfectly recreate the sampling decisions 
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of the corpus compilers (whereas the latter performs worse). Specifically, the G-based cluster 
analysis

– perfectly distinguishes speaking from writing;
– perfectly distinguishes fiction, news, and academic registers within writing;
– identifies even similar sub-registers within news and academic sub-registers.

The latter study explores an extension of G to the identification of n-grams in different variet-
ies of English. More precisely, it shows how one can use G to identify n-grams, and how a G-based 
cluster analysis of spoken and written data from four different varieties (British, Hong Kong, 
Indian, and Singaporean English) perfectly distinguishes speaking from writing.

In sum, there are compelling arguments to include type frequencies from theoretical consider-
ations as well as from neighboring disciplines such as psycholinguistics or computational linguistics, 
and there are promising first results within corpus linguistics proper, but more exploration is 
definitely required. In particular, all of the above approaches only deal with the minimal amount of 
information one should include—the more comprehensive information regarding token and type 
frequency distributions and entropies still awaits first exploration.

2.3 Problems with ignoring distribution in the structure of the corpus

2.3.1 Pro blem: (co-)occurrence may be underdispersed

The next AM problem to be discussed here concerns another important dimension of corpus 
data that the traditional kind of AM approach based on Table 1 does not reveal. Specifically, in 
the previous section it was shown how almost all AMs do not fully utilize the information that is 
summarized in b and c in Table 1 because b and c do not provide the type frequencies (let alone 
the entropies) making up the b and c tokens. However, another problem is that the co-occurrence 
frequency a in Table 1 does not provide the information of how (un)evenly across the corpus the a 
co-occurrences of element E and function/context X are found. Consider Figure 1 for an example 
in which a was arbitrarily set to 180: the upper panel shows that these 180 co-occurrences may be 
clustered with high frequencies in a very small section of a 500-part corpus (such as the British 
Component of the International Corpus of English, ICE-GB) or, as in the lower panel, much more 
widely distributed with smaller frequencies. This distributional notion is known as dispersion (see 
Gries 2008 for a recent overview of many dispersion measures) and not only can it be quantified 
(see the DP-value in Figure 1, which reflects clumpiness), but it also has important consequences 
for corpus-linguistic analysis as well as for psycholinguistic or more general applications.

As for the implications for corpus-linguistic analysis, consider the question of which verbs 
are likely to be used in imperatives. A perfectly normal traditional corpus-linguistic account could 
approach that question by computing for each verb lemma in a corpus that occurs in the imperative 
at least once an AM that quantifies the association between that lemma and the imperative 
based on tables such as Table 1 and then rank the verbs according to their association strength. 
Stefanowitsch & Gries (2003) did just that using the ICE-GB and obtained the ranking in (4):
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(4)  let, se e, look, listen, worry, fold, remember, check, process, try, hang on, tell, note, add, 
keep, ...

Most verbs in (4) make perfect sense as lemmas to be associated with the imperative, but fold 
and process are somewhat surprising. Closer inspection reveals that the high frequency of each of 
these two verbs in the imperative that is responsible for them ending up in the top 10 list is due to 
just a single one out of 500 files, namely a file with an excerpt from an origami book (for fold) 
and a file with an excerpt from a cook book (for process). Clearly, that shows that the AM-based 
ranking can be quite misleading in the sense that fold and process appear to be more strongly 
associated to the imperative than remember or try, whereas this is a register artifact that can be 
recognized once the dispersions of the a co-occurrences are studied. While high frequencies of 
co-occurrence will in general be correlated with a wider dispersion, this correlation is never perfect 
and cannot be taken for granted, as we have just seen. Thus, it stands to reason that the analysis of 
co-occurrence data using AMs can benefit considerably from taking dispersion into consideration. 
This could be done, for instance, as demonstrated above, by computing AMs for co-occurrence data, 
but also dispersion measures so that one can compare the elements’ dispersion values to their 

Figure 1: T wo (extreme) ways in which 180 co-occurrences may be distributed across a corpus 
consisting of 500 parts (files): an extremely uneven/clumpy distribution (upper panel) and a much 

more even distribution (lower panel)
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AM-values and/or their frequencies of co-occurrence with/in the function/context X in question. If 
one does the latter for the verbs in the ditransitive in the ICE-GB, Figure 2 is a clear case showing 
a correlation between co-occurrence frequency (on the x-axis) and dispersion (on the y-axis).

Thus, in this case and unlike in the above imperative example, co-occurrence frequencies, 
frequency-based AMs, and dispersion measures yield quite similar verb rankings—however, only 
by exploring all these dimensions can we be certain that the different dimensions present in the 
corpus data do in fact converge.

As for the implications for psycholinguistic and more general (theoretical) applications, dispersion 
has by now been shown to be relevant in domains other than core corpus linguistics, too. For instance, 
Simpson-Vlach & Ellis (2005) and Ellis et al. (2007) have shown that even the simplest conceivable 
dispersion measure—range, the (normalized) number of corpus parts in which (co-)occurrences 
are attested—has significant predictive power above and beyond raw frequency in the study of 
academic formulas; Casenhiser & Goldberg (2005) have found that the evenness of the distribution 
of verb types in a novel construction (which, in fact, amounts to its entropy) is correlated with 
how well children and adults learn a novel syntactic construction; Gries (2010c) has shown how 
many dispersion measures or related adjusted frequencies are better predictors of psycholinguistic 
behavioral data than corpus frequencies, etc. To the extent that corpus linguists want their work 
to be interdisciplinary, to also impact neighboring fields, they should add the exploration of disper-
sion measures to any study of co-occurrence data, if only to protect themselves against invalid 
generalizations based on overly clumpy, and thus non-representative, data. In that sense, exploring 
dispersion offers necessary protection against biases due to corpus heterogeneity.

Figure 2: Ve rbs’ attraction to the ditransitive in the ICE-GB: dispersion (on the y-axis) plotted 
against logged co-occurrence frequencies (on the x-axis)
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2.3.2 Proble m: ignoring the hierarchical structure of the corpus

The final problem to be discussed in this section is concerned with the fact that the vast 
majority of statistical analyses in corpus linguistics—be they chi-squared tests, simple correlations, 
generalized linear models (GLM, e.g. binary logistic regressions), . . .—violate a fundamental 
assumption of these statistical methods: that the data points are independent of each other. Rather, 
there are three different ways in which many corpus data points can be seen as related to each 
other, the first two of which are well-known from psycholinguistic work:

–  Speakers/writers in corpus data/files often provide more than one data point in a concordance 
so that all data points from a particular speaker/writer are related to each other (as they 
may reflect that speaker’s idiosyncratic behavioral patterns). In psycholinguistics, this is 
often addressed with F1-or related ANOVA statistics.

–  For many grammatical patterns, concordance lines will involve the same lexical item so 
that all data points with that lexical item are related to each other (as they may reflect that 
lexical item’s idiosyncratic patterning). In psycholinguistics, this is often addressed with 
F2-or related ANOVA statistics.

–  Corpora often come with a hierarchically-nested structure in which speakers are nested into 
files, which in turn are nested into sub-registers, which in turn are nested into registers, 
which in turn are nested into modes (e.g. spoken versus written). Thus, there are multiple 
levels of corpus organization at which effects may be located, but these levels are typically 
not all tested.

While it is usually freely admitted that corpus data are much more messy/noisy than (often 
carefully) controlled psycholinguistic experimental data, the massive interrelatedness of corpus data 
along the above three lines is typically ignored. In this section, I exemplify how this is problematic by 
comparing an analysis that, as usual, ignores this interrelatedness to one that takes it into consideration. 
As a small example, whose actual linguistic implications I shall not be concerned with, let us con-
sider the question of who is more likely to use I or you—men or women—and where/when (early/
late in a conversation and/or early/late in a sentence); maybe there is an assumption that women 
are generally less likely to use I . . . Using an R script (R Core Team 2014), I extracted all 
instances of I and you (when tagged as PNP) from all 21 files of the British National Corpus World 
Edition (XML) whose names begin with ‘KR’. For each instance, I retrieved/annotated the following 
variables:

–  MATCH: whether the speaker used I or you;
–  FILE: the name of the file in which a speaker used I or you;
–  SPEAKER: a unique identifier for the speaker who used I or you;
–  SEX: the sex of the speaker, female versus male;
–  SENTENCE: the square root of the ID number (from 1 to n) of the sentence in the files 

in which a speaker used I or you (the square root transformation was used to make the 
distribution of SENTENCE more normal);
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–  DISTANCE: the natural log of the number of characters in the sentence before the I or you in 
question (after tags etc. had been removed; the log transformation was used to make the 
distribution of DISTANCE more normal).

This is a data set that requires a multifactorial method of analysis such as a binary logistic 
regression. Let us assume that one decided to begin with a first maximal model that tries to predict 
MATCH, that is, the choice of I and you on the basis of all fixed-effects predictors—SEX, SENTENCE, 
and DISTANCE—as well as their pairwise interactions, and that one used a backwards model selection 
process in which the least significant predictor is deleted till only significant predictors are left. It 
turns out that this model selection process involves the elimination of the interactions SENTENCE:DISTANCE 
(p = 0.058) and SEX:DISTANCE (p = 0.05) and results in a highly significant model (L.R chi-squared 
881.9; df = 6, p < 0.0001); the coefficients of this model are listed in Table 2.

Note that, while the regression model is highly significant, its predictive power is extremely 
weak: R2 = 0.055, C = 0.613, and the classification accuracy is a mere 58.3%, which is not signifi-
cantly better than chance. The nature of the effects is somewhat clear from Table 2, but for ease of 
interpretation is also visually represented in Figure 3: speakers are more likely to use you later in the 
utterance (left panel) and women are more likely to use you later in the conversation whereas men and 
speakers of unknown sexes are more likely to use I later in the conversation (right panel).

Figure 3: The significant effects of the final model of a GLM, which does not take the 
relatedness of data points into consideration: the effect of predictors on the predicted probability 

of using you (rather than I) (on the y-axis)

Table 2: Res ults of the final model of the generalized linear model (rounded)

Predictor b se z p pdeletion

Intercept –0.742 0.044 –16.721 <0.0001
SEXunknown versus female/male 0.044 0.032 1.391 0.164 <0.0001
SEXfemale versus male 0.197 0.034 5.761 <0.0001
DISTANCE 0.193 0.008 24.925 <0.0001 <0.0001
SENTENCE –0.004 0.001 –3.961 <0.0001 <0.0001
SEXunknown versus female/male:SENTENCE 0.003 0.001 4.139 <0.0001 <0.0001
SEXfemale versus male:SENTENCE –0.008 0.001 –10.365 <0.0001
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While this procedure is what most corpus linguists would do—those that have moved beyond 
chi-squared tests, that is—it is, strictly speaking, flawed because it does not take into consideration 
that the data points are not independent of each other. A much better (though still improvable) 
approach would be a generalized linear mixed-effects model (GLMEM) in which these interdepen-
dencies were taken into consideration. Since the speakers are nested into the files—each speaker 
occurs in one and only one file—one might choose the same maximal fixed-effects structure as 
above—SEX, SENTENCE, and DISTANCE as well as their pairwise interactions—but also include what 
are called random effects into the analysis. Random effects can be defined as effects whose levels 
in the sample do not cover all possible levels in the population, as opposed to fixed effects, whose 
levels in the sample cover all possible levels in the population. Typical examples of the former 
include SPEAKER (because not all speakers of a language are part of the sample), LEXICALITEM 
(because not all lexical items that can be used in a pattern will occur in a sample), TEXTSOURCE 
(because not, say, all newspapers from which one could have sampled are in the sample), etc.; 
examples of the latter include SEX (female versus male; there are no other levels), PREVIOUSLYMEN-
TIONED (no versus yes, there are no other options), etc. While a traditional GLM returns only a regres-
sion equation that includes one intercept as well as one coefficient for each predictor, a GLMEM 
allows the researcher to be more flexible and, essentially, also obtain for every level of every random 
effect included adjustments to the overall intercept as well as adjustments to differences of means 
and slopes. This way, the relatedness of the data points, speaker-specific, lexical-item-specific, . . . 
effects, are taken into consideration.

When one then does an analogous model selection process by eliminating non-significant fixed 
effects, once the same interactions are deleted as before—with very different p-values, though: 
SENTENCE:DISTANCE (p = 0.216) and SEX:DISTANCE (p = 0.224)—and one arrives at a final model with 
the coefficients represented in Table 3.1

 Table 3: Results of the final model of the GLMEM (rounded)

Fixed-effects predictors b se z p pdeletion

Intercept –0.982 0.106 –9.245 <0.0001
SEXunknown versus female/male 0.0026 0.083 0.031 0.975 0.523
SEXfemale versus male 0.099 0.085 1.163 0.245
DISTANCE 0.23 0.009 26.874 <0.0001 <0.0001
SENTENCE –0.001 0.002 –0.444 0.657 0.525
SEXunknown versus female/male:SENTENCE 0.002 0.002 0.866 0.386 0.002
SEXfemale versus male:SENTENCE –0.004 0.001 –3.469 0.0005

Random effects (varying intercepts)

FILE sd = 0.026

FILE/SPEAKER sd = 0.821

1 For the sake of simplicity, I did not also trim down the random-effects structure. For all intents and purposes, 
the results are identical; see Gries (forthcoming) for discussion of such modeling and the corresponding R 
code.
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What about the classificatory power of this model? While it is still not as good as one would 
theoretically want it to be, it is much higher than the previous one: marginal R2 = 0.044 and con-
ditional R2 = 0.24, C = 0.717, and the classification accuracy is now at 65.7%, which is now 
highly significantly better than chance.2 Before we compare the two models, let us again first look 
at the visualization of the significant highest-order effects, which are shown in Figure 4.

As for the commonalities: both models contain the same fixed effects and in both models the 
effect of DISTANCE is probably the same. However, there are also many (more) marked differences. 
The most obvious was already mentioned: the GLMEM achieves a much higher and highly significant 
classification accuracy. Then, the GLMEM can see that, once file and speaker information is 
included, SENTENCE is not significant, whereas it is significant in the GLM. Most important, how-
ever, are the differences for the crucial interaction most of interest, SEX:SENTENCE. First, the GLM 
assigns to this interaction a p-value that is 24 orders of magnitude smaller (i.e. more significant) 
than the GLMEM. Second and more interestingly, the above two models were fitted with user-defined 
orthogonal contrasts—something else that happens way too rarely in corpus linguistics—to see 
easily (i) whether the speakers of an unknown sex are different from those where the sex is known, 
and (ii) whether female and male speakers behave differently. Since the GLM does not take the 
relatedness of the data points of each speaker into account, it returns results that are quite different 
from the more precise GLMEM:

–  With regard to the contrast of female versus male, the GLM returns a highly significant 
coefficient that is ≈2 times as high as the non-significant coefficient for female versus male 
from the GLMEM. In other words, the GLM strongly overestimates this contrast, much of 
which is in fact due to speaker-specific behaviors.

Figure 4: The significant main effects of the final model of a GLMEM, which takes the 
relatedness of data points into consideration: the effect of predictors on the predicted probability 

of using you (rather than I) (on the y-axis)

2 Marginal and conditional R2 were computed following the logic of Nakagawa & Schielzeth (2013); marginal 
R2 quantifies the fit based on only the fixed effects, conditional R2 quantifies the fit based on all effects.
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–  With regard to the contrast of female versus male, the GLM returns a highly significant 
coefficient for female versus male that is >2 times as high as the highly significant coef-
ficient for female versus male from the GLMER. Again, while the contrast is significant in 
both models, the GLM strongly overestimates its strength.

Space does not permit a more detailed discussion of these data or of the specifics of mixed-
effects and multi-level modeling here (see Gries forthcoming for some more details in a corpus-
linguistic context). It should have become clear, however, that much of what happens in corpus data 
is a result of word-/speaker-/file-/register-specific random effects rather than of the fixed effects we 
as corpus linguists are usually interested in. GLMs or any other statistical tool that does not take 
the relatedness of data points into consideration run the risk of severely overestimating the size and 
significance of effects. But to make matters worse, it is just as possible that GLMs underestimate 
the size and significance of effects—the problem is there is no way of knowing the direction of 
error of GLMs ahead of time. It is therefore imperative that corpus linguists follow the lead of 
recent developments in psycholinguistics and make mixed-effects/multi-level modeling a central 
analytical tool: without it, we will never know how much of an effect is interesting, and how much 
is just due to particular speakers sampled in a corpus.

2.4 Interim summary

Given the distributional hypothesis discussed above, the quantitative exploration of co-
occurrence data is the most fundamental methodological tool in corpus linguistics and the last few 
decades have produced a plethora of papers and findings that are based on co-occurrence frequen-
cies, co-occurrence probabilities, association measures, and other statistical approaches (most often 
regression-analytic methods). While much of that work has, of course, been successful because, for 
example, high token frequencies in b and c are positively correlated with high type frequencies, and 
high token frequencies in a are negatively correlated with clumpy distributions, it is unclear how 
potentially skewed the results are for cases where those correlations do not hold. A study that tries 
to identify multi-word units while at the same time trying to address all these AM issues mentioned 
above is Wahl (in progress).

In addition, ignoring the repeated-measurements nature as well as the hierarchical structure of 
the corpus data not only violates the fundamental assumptions of most statistical methods—the 
independence of data points—but also distorts our results in unpredictable ways. Thus, most of the 
approaches above are relatively easy ways in which we can try to make our co-occurrence-based 
studies more robust; there is no reason not to pursue those strategies if corpus linguistics as a whole 
wants to evolve in tandem with what happens in other disciplines.

3. More specialized applications

The three problems discussed above have implications for most corpus-linguistic studies: 
the issue of underdispersion, or clumpiness in distribution, is a threat to any statistic based on 
frequency data—because they all involve frequencies of occurrence and of co-occurrence. Likewise, 
the lack of bidirectionality and of type frequencies and their distributions in the computation of AMs 



106

Stefan Th. Gries

is a threat to virtually all studies based on co-occurrence data. However, at this point in time, 
quantitative corpus linguistics is becoming more and more established also in specific linguistic 
subdisciplines, which raise their own, more specialized problems. In this section, I shall discuss one 
example each from two areas in which corpus research is currently booming. In §3.1, I shall discuss 
the issue of studying temporally-ordered corpus data in a way that is both bottom-up/exploratory 
and principled/objective; in §3.2, I shall turn to the field of learner corpus research and the question 
of how to make the best use of what native and non-native learner corpora have to offer.

3.1 Temporally-ordered data and the problem of identifying stages

Temporally-ordered corpus data play an important role in two different areas in linguistics. 
On the one hand, there is the area of first language acquisition. In that area, corpus data are both 
longitudinal and cross-sectional and in order: (i) to discern longitudinal trends in the data for one 
or more children, (ii) to identify children at comparable levels of development for cross-sectional 
analysis, or (iii) to increase sample sizes and/or filter out outliers, it is often useful to be able to 
group the temporal data for children into different stages.

On the other hand, there is the area of diachronic historical corpus linguistics, in which corpus 
data are—given the relevant time spans—usually cross-sectional, covering, for instance, several 
centuries of the history of a language. Given that historical data are not collected in the carefully 
controlled ways in which psycholinguists (try to) collect language acquisition corpus data, such 
historical data are often quite heterogeneous so that here, too, it is useful to be able to group tem-
poral data and at the same time clean the data of outliers in a principled fashion. Figure 5 exempli-
fies these challenges. The left panel shows the change of the mean length of utterances (MLU) 
in words of one Russian child from age 2 to age 4.5 years from Sabine Stoll’s Russian first language 
acquisition corpus (see Stoll & Gries 2009 for details), and while it is clear that there is the 
expected overall increase over time, it comes with many ups and downs and no clear separation 
into stages. The right panel shows the change of the proportion of third person singular (e)s out of 
third person singular (e)s and (e)th over more than two centuries in the Parsed Corpus of Early 
English Correspondence and, again, there is the expected increase to the contemporary form, but 
again with many ups and downs and different possibilities to divide the time points into stages (see 
Gries & Hilpert 2010 for details).3

3 One may wonder whether, following the logic of Baayen (2010a), discretization of numeric data (such as TIME 
or AGE) into a factor with ordinal levels is ever useful. As usual, the answer depends on what one wants to do 
with the data. While I agree with Baayen that, in most cases, discretization is probably not necessary and 
may even be detrimental, in cases where a regression is to be fit that includes some version of TIME or AGE as 
a predictor, it seems that the messiness of the raw TIME or AGE values (see again Figure 5) poses problems 
for regression-analytic approaches. Gries & Hilpert (2010) compared a model fit with raw values of TIME 
to a model fit with the five stages of TIME they arrived at using variability-based neighbor clustering 
(VNC) and the latter model fit was better. Still, this is not to be understood as a blanket one-size-fits-all 
recommendation—such decisions need to be made on a case-by-case basis. For instance, in the case of the 
much more monotonous trend represented in Figure 6 below, for regression-analytic purposes at least, using 
the raw values of TIME may prove just as useful as using VNC-derived mean frequencies.
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The fact that there are overall increasing trends can be easily tested with correlation coefficients 
such as Kendall’s τ or others. However, not only can such data violate the assumptions of 
frequently used statistical tests such as linear regression, but many frequently used statistics also 
provide too little information about the data. In particular, such statistics do not necessarily answer 
questions such as: (i) Are there different stages in the data, and if so, how many?; (ii) Do these 
different stages exhibit kinds of trends?

A frequent exploratory method to answer the first question, namely to discern sub-structure(s) 
in corpus data, is hierarchical cluster analysis, a statistical tool that groups data points into clusters 
on the basis of the points’ pairwise similarity (such as the differences between MLU values or 
differences between percentages of (e)s). However, such cluster analyses cannot straightforwardly 
be applied to such temporally-ordered data: The computation of the similarity matrix of, say, the 
percentages of (e)s will return extremely high similarities for data points 150 years or more apart. 
However, a cluster analysis should not group such distant data points together given that, in 
historical data, grouping data points that might be 150 or more years apart makes little sense lin-
guistically just as, in language acquisition data, grouping data points that might be 2 or more years 
apart makes little sense cognitively. Thus, what is required is a modification of the cluster-analytic 
approach that makes it operate locally, rather than allow it to merge data points that are too far 
apart.

One such approach is variability-based neighbor clustering (VNC; see Gries & Hilpert 2008). 
VNC differs from traditional clustering approaches in that it only permits temporally adjacent data 
points to be clustered together. Specifically, it is an iterative approach which, during each iteration, 
tests all adjacent (clusters of) points of time for their similarity, determines which two (clusters of) 
points of time are most similar to each other, merges those into one new cluster of (cluster of) points 
of time, and iterates. This way, widely disparate time periods cannot be merged into a (diachronic-
ally or acquisitionally) unrealistic cluster, but stages and outliers can be identified in a principled 
and replicable way.

Consider Figure 6 as a simple example. The left panel shows the development of the 
frequencies/10K words of just because in the Time magazine corpus. Obviously, there is a trend 

Figure 5: Examples of heterogeneous temporal corpus data: MLU data in first language 
acquisition (left panel) and proportions of third person singular (e)s (right panel)
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such that just because is becoming more frequent (and a rank correlation would reveal this trend to 
be significant (τ = 0.743, p = 0.005). The right panel still shows the observed frequencies of just 
because (greyed out) but overlays the result of a VNC analysis. As is typical in hierarchical cluster 
analyses, the analyst has to choose a similarity metric and an amalgamation rule, and this analysis 
used variation coefficients for the former and concatenation for the latter. The VNC algorithm 
then returns three clusters (1920s–1950s, 1960s–1980s, and 1990s–2000s) and allows the analyst to 
compute (and represent with dashed horizontal lines) the mean observed frequency of just because 
in each time period.

This kind of approach has interesting potential. It can be used just to identify stages in 
historical data, which can be interesting in its own right. Then, as alluded to earlier in fn. 3, such 
stages can also in turn be utilized for subsequent analysis such as in regression-analytic approaches. 
Obviously, the method can also be applied to language acquisition data to identify developmental 
stages of children or to identify recordings that behave out of the ordinary given all the other 
recordings before and after them.

For example, Figure 7 shows the results of an application of VNC to frequencies of grammatical 
patterns in 13 recordings of a Korean child (in chronological order) from Patricia Clancy’s Korean 
first language acquisition corpus (see Clancy 2003). The left panel shows a VNC dendrogram that 
not only identifies three distinct multi-recording clusters, but also shows that the first recording, 
where the child is youngest, is somewhat of an outlier. Once three clusters are assumed, then one 
can compute for each cluster mean (normalized) frequencies of occurrence. In this case, one can 
see the following tendencies:

–  Zero becomes less frequent over time;
–  P becomes more frequent over time;
–  N and DP do not change much/markedly.

Figure 6: The development of the frequency of just because in several decades of Time 
magazine: frequency/10K words (left panel) and a three-cluster VNC dendrogram with cluster 

mean frequencies (right panel)
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In all of the above, VNC was used on data in which the measured data could be univariate 
(just one frequency as in the case of just because) or multivariate (several frequencies (of 
grammatical patterns) as in the language acquisition data), but where the dimension along which 
the clustering happened and along which VNC restricted it to neighboring elements was one-
dimensional: time. Another interesting extension is using VNC for the analysis of data where there 
is more than one dimension, as when one studies geographical data in a quantitative dialectology 
setting and wants to prevent a regular hierarchical cluster algorithm from merging geographically 
very distant regions. The VNC algorithm can be adjusted correspondingly. Figure 8 shows an 
application of VNC to a matrix that provides normalized frequencies for 62 lexico-grammatical 
features for more than 30 regions in the U.K. If one wants to determine which regions emerge from 
the frequency data, however, one would probably not want to cluster Banffshire (BAN) together 
with South Devon (DEV). Thus the VNC algorithm is tweaked so that it only allows the clustering 
of counties that are next to other counties, whereas other counties can occur either in isolation or 
as part of an already merged cluster of counties.

Figure 8 shows three different steps in the iteration schedule:

–  In the left panel, some first smaller clusters have emerged mainly in the south (one in the 
Cornwall and Devon regions and one in the Kent, East Suffolk, and London regions) as 
well as one small one involving Dumfriesshire and a larger one around Manchester.

–  In the center panel most of the south is now interconnected (although Cornwall/Devon 
remain separate from the rest); not much has changed in the middle area.

–  In the right panel, most of the country is now inter-connected apart from the very north—
around Banffshire, Sutherland, Ross, and the Hebrides.

Figure 7: The application of VNC to language acquisition data: VNC analysis of frequencies of 
grammatical patterns of 13 recordings of a child called Wenceng (left panel); bar plots of mean 

percentages of patterns in the three age clusters identified in the VNC analysis (right panel) (data 
courtesy of P.M. Clancy)
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Thus, VNC can contribute to the (methodologically already quite sophisticated) domain of 
quantitative dialectology by helping to identify structures in corpus-linguistically described regions 
of a country or other larger regions that can then be interpreted against the background of 
other empirical or theoretical work. Given the increasing availability of historical corpora and 
regionally-stratified corpora, this method may therefore be a useful addition to the corpus-linguistic 
toolkit.

3.2 Learner corpus research and the problem of missing/impoverished context

The final corpus-linguistic domain to be discussed here is learner corpus research, that is, the 
branch of corpus linguistics exploring corpora containing non-native speaker (NNS) speech and/or 
writing. This field has become increasingly vibrant over the last 15 years or so, given the increasing 
availability of learner corpora. Much of this work is contrastive in the sense that NNS language 
is compared to the target of the learner as well as his L1(s), and an increasing amount of work 
approaches learner corpus data from a cognitively-informed perspective. Unfortunately, many 
studies in this field are quantitatively quite simplistic and restricted to the description of over- 
and underuses of linguistic elements in NNS language, accompanied by univariate or bivariate 
chi-squared tests. Examples include:

Figure 8: The extension of VNC to two-dimensional geographical data: three iterations 
(#14 (left), #20 (center), #31 (right)) from clustering British counties on the basis of frequencies of 

lexico-grammatical features (data courtesy of B. Szmrecsanyi; see Szmrecsanyi & Wolk 2011 
for different analyses, discussion, and more references)
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–  Aijmer (2002), who explores the frequencies of use of modal verbs in NS English (in the 
LOCNESS corpus) and NNS English (in the Swedish component of the ICLE corpus) with 
multiple chi-squared tests.

–  Altenberg (2002), who discusses frequencies/percentages of uses of English make and 
Swedish göra in four different constructional patterns and an ‘other’ category.

–  Hasselgård & Johansson’s (2011) case study of the use of quite in the LOCNESS corpus 
and four components of the ICLE Corpus (Norway, Germany, France, and Spain) involving 
chi-squared tests comparing quite’s frequency (both on its own and with a colligation) from 
the ICLE components to its LOCNESS frequency.

Typically, such quantitative analyses are lacking not only because of all the issues raised above, 
but also because they are not ‘comparing/contrasting what non-native and native speakers of a 
language do in a comparable situation’ (Péry-Woodley 1990:143, quoted from Granger 1996:43, 
our emphasis). This is because many studies reduce the notion of comparable situation to a single 
co-occurring factor/predictor, such as when Altenberg (2002) explores the use of make based on one 
predictor—patterns that make co-occurs with—or when Hasselgård & Johansson (2011) explore the 
use of quite based on one predictor—its colligation. Given the many factors that co-determine, say, 
which word of a set of near synonymous words is chosen, or which of two or more grammatical 
constructions is chosen, such studies cannot be anything but severely impoverished.

Thus, if the goal of learner corpus research is to determine how native speaker (NS) language 
and NNS language differ, a more comprehensive definition of comparable situation is needed, which 
will typically require the annotation of multiple features of the instances of the word/pattern in 
question. This in turn means that all these multiple features have to be included in the statistical 
analysis so as to determine which of these features has what kind of effect in the company of 
all other characteristics. Two main possibilities to do all this are available: both require corpus data 
on the element E under consideration that come from both NS and NNS data and that have been 
annotated with regard, ideally, to all the features that one has reason to believe affect the choice of 
E. Then, first, one can fit a regression in which:

–  The dependent variable is either a binary or polytomous choice (for a binary or multino-
mial logistic regression) or a frequency (for a Poisson regression); for the choice of 
of- versus s-genitives, this would be the binary variable GENITIVE: of versus s.

–  The predictors are all the annotated features as well as their statistical interactions (usually 
only up to the second or third degree); for the choice of of- and s-genitives, these may 
include the animacy of the possessor and the possessed, the length of the possessor and the 
possessed, the givenness of the possessor and the possessed, and many more; ideally, this 
would be a mixed-effects/multi-level model with random effects as required by the data/
question(s).

–  All the predictors from the previous bullet point are also allowed to interact with a 
predictor called CORPUS or L1.

 
What is the rationale for the latter two guidelines? The rationale for the second guideline is 

that if one does not include the interaction, say, ANIMACYPOSSESSOR:ANIMACYPOSSESSED, then one has 
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no way of finding out whether the preference of animate possessors for s-genitives holds regardless 
of whether the possessed is concrete or not. The rationale for the third guideline is that if one does 
not include the interaction, say, ANIMACYPOSSESSOR:L1, then one has no way of finding out whether 
the preference of animate possessors for s-genitives holds in both NS and one or more NNS groups 
to the same degree (given the presence of all other (significant) predictors), which is precisely the 
kind of question that much learner corpus research is interested in but can often not answer because 
too few relevant predictors have been included (see Gries & Wulff 2013 and Gries & Deshors 
2014 for examples and discussion).

There is a second approach (called MuPDAR, for Multifactorial Prediction and Deviation 
Analysis with Regressions) that is even more promising. It involves the following steps:

(i)  Fit a first regression R1 that conforms to the first two bullet points above, but only to 
the NS data.

(ii)  If and only if R1 results in a good fit and classification accuracy, then apply the regres-
sion equation thus obtained from R1 to the NNS data to obtain for every NNS data point 
a prediction of what a NS would have done in the very same situation, which will serve 
as the gold standard.

(iii)  If and only if R1’s NS regression equation also results in a relatively good fit with the 
NNS data, fit a second regression R2 in which the dependent variable now is either a 
binary variable specifying whether the NNS made the same choice as a NS (yes versus 
no) would have made, or a continuous variable quantifying how much of the NNS choice 
was compared to what an NS was expected to say/write (this variable is 0 if the NNS 
made the NS choice, and a number other than zero, but between –1 and +1 if not).

It is this regression approach that precisely answers the core question of learner corpus 
research—in this linguistically and maybe contextually complex situation where the NNS had to 
make a choice, did he make a nativelike choice, ‘Yes or no?’. And it is this regression approach 
that requires and at the same time guarantees a comprehensive definition of comparable situation—
a hopefully large number of annotated factors describing the situation in which the NNS had to 
make a choice.

Gries & Adelman (2014) is a study using this approach:

(i)  Fit a first mixed-effects regression R1 that models whether Japanese NS realize a subject 
in a sentence on the basis of whether the referent of the subject is contrastive (a variable 
called CONTRAST) and how given it is (a variable called GIVENNESS).

(ii)  Apply the regression equation thus obtained from R1 to the non-native speakers of Japanese 
corpus data to obtain for every NNS data point a prediction of whether an NS would 
have realized the subject there, yes or no.

(iii)  Fit a second mixed-effects regression R2 in which the dependent variable is a binary 
variable specifying whether the NNS made the same choice as an NS (yes versus no).

Using a polynomial to the second degree to model the predictor GIVENNESS, they find that 
the NNS are on the whole quite close to the NS behavior, but (i) different speakers exhibit quite 
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different degrees of proficiency, and (ii) all NNS struggle most with making nativelike choices with 
intermediate degrees of givenness and non-contrastive referents:

–  When the referent is contrastive, they realize it in the subject position as NS would.
–  When the referent is non-contrastive and highly given or completely new, they do not 

realize it in the subject position or realize it in the subject positions as NS would.
–  When the referent is non-contrastive and somewhat given, then faced with this middle-

ground degree of givenness, their degree of nativelikeness decreases.

This approach, too, needs to be refined and developed further, however. It goes without saying 
that it is cognitively and contextually much more realistic and statistically more appropriate 
than decontextualized frequencies and/or chi-squared tests.  So, again, it remains to be hoped that 
analytical strategies like this one will gain more ground in learner corpus research, the research on 
varieties, and any other domain where one part of the corpus data can be considered a standard or 
target with which the others can be meaningfully compared.

4. Concluding remarks

By way of a brief conclusion, corpus linguistics has made enormous headway in the recent 
past. To grow from a not particularly widely used method, geographically somewhat restricted to 
several Northern and Central European countries, to one of the most widely applied methods in 
linguistics of all sorts of theoretical persuasions worldwide in 15 to 20 years is no small feat. How-
ever, this is no time to rest on our laurels—now that corpus linguistics has become mainstream, and 
that’s a good thing, we too must continue to refine our methods just as other fields have to. Many 
areas in psycholinguistics and computational linguistics have made interesting discoveries, have 
developed useful tools, have adopted great methods from neighboring fields, but corpus linguistics 
is unfortunately not leading the pack and must take care not to lose momentum either in terms of 
its own evolution or in terms of how it helps to shape linguistics as a whole. The present paper is 
an attempt to provide a snapshot of current problems, both in corpus linguistics in general and 
in selected hot topic areas, as well as to provide ideas and (first) suggestions about how to cope 
with these problems; I hope it will succeed as a call to (methodological) arms, and thus trigger 
developments that will help our field advance once more.
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語料庫語言學量化研究的問題及其解決方案

Stefan Th. Gries

加州大學聖塔芭芭拉分校

目前迅速發展的語料庫語言學面臨眾多研究方法的挑戰。與語料庫語言學本身相關

的方法論問題──資料的散布離差、詞種頻率／亂度、與資料隱含的方向性問題等，直

接影響語料相關性指標的計算；忽視語料庫的資料取樣結構也與之後的統計分析結果直

接相關。歷史語言學與學習者語料庫研究等領域應用語料庫語言學時，也有方法論的問

題。本文詳細討論以上所提到的問題，並具體提出實例演示相對應的解決方法。

關鍵詞：關連性度量，詞次／詞種頻率，混合效應／多層次模型，以變異性為本的連結
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