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• What does it mean if one says that 'variables A and B 
are correlated'?

• variables (A & B) are correlated if knowing the value 
(range) of A makes it easier to 'predict' the value 
(range) of B than not knowing A

A brief excursus on
the notion of correlation (part 1)
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• What kinds of variables can be 
correlated with each other?

• all kinds of variables can be 
correlated with each other
– null/no correlation

• knowing the level of the categorical 
or ordinal variable A (A1 vs A2 vs A3) 
doesn't help you 'predict' the level 
of the categorical or ordinal variable 
B (B1 vs B2 vs B3)

– strong correlation
• knowing the level of the categorical 
or ordinal variable A (A1 vs A2 vs A3) 
does help you 'predict' the level of 
the categorical or ordinal variable B 
(B1 vs B2 vs B3)

A brief excursus on
the notion of correlation (part 2)
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Ling 105
Predictive modeling in linguistics

Correlations again
Monofactorial -> multifactorial: mpg

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Correlations (of numeric variables)
Correlations of categorical variables



  

5

• Monofactorial tests involve
– 1 dependent/response variable
– 1 independent/predictor variable

• there are two big howevers here, though
– however1, there is probably no linguistic phenomenon that 
is monofactorial – they're probably all multifactorial

– however2, there is probably hardly any situation where 
you should really be doing a monofactorial test

• monofactorial studies have probably nothing to 
contribute to most linguistic work (there, I said 
it!)

• for the sake of simplicity, let's explore this with a 
very mundane non-linguistic example, the efficiency 
of cars measured in mpg

From monofactorial to multifactorial

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Correlations again
Monofactorial -> multifactorial: mpg

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Introduction
Using a monofactorial test …
… and why that's wrong 1
… and why that's wrong 2
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• You read up on this and think about it and
– find a 1992 study that shows that cylinder does
– find a 1996 study that shows that horsepower does
– consider it reasonable physics that weight does

• and then you think that displacement should have an 
effect and collect data to test this correlationally

> summary(test.of.new.hyp <- lm(mpg ~ disp, data=mtcars))
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.599855   1.229720  24.070  < 2e-16 ***
disp        -0.041215   0.004712  -8.747 9.38e-10 ***
Multiple R-squared:  0.7183, Adjusted R-squared:  0.709
F-statistic: 76.51 on 1 and 30 DF,  p-value: 9.38e-10

• but this test is ridiculously anti-
conservative
– you're testing the H1 that disp is rela-
ted to mpg against the H0 that it is not

– you're not testing the H1 that disp is related to mpg 
against the H0 of everything else we already know

 What affects the efficiency
 of cars (measured in mpg)?
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• In other words,
– you're pretending we know nothing about mpg already
– you're leaving all mpg variability up for grabs by disp

• but that's delusional/too generous: you already know 
that cylinder, horsepower, & weight affect mpg

> summary(prior.knowl <- lm(mpg ~ cyl+hp+wt, data=mtcars))
[…]
Multiple R-squared:  0.843, Adjusted R-squared:  0.8263 ***

• option 1: you need to test whether disp adds to
what we already know

> summary(real.test.of.new.hyp <- lm(mpg ~ disp+cyl+hp+wt, data=mtcars))
Multiple R-squared:  0.8486, Adjusted R-squared:  0.8262 ***

> anova(prior.knowl, real.test.of.new.hyp, test="F")
  Res.Df    RSS Df Sum of Sq      F Pr(>F)
2     27 170.44  1    6.1762 0.9784 0.3314
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• In other words,
– you're pretending we know nothing about mpg already
– you're leaving all mpg variability up for grabs by disp

• but that's delusional/too generous: you already know 
that cylinder, horsepower, & weight affect mpg

> summary(prior.knowl <- lm(mpg ~ cyl+hp+wt, data=mtcars))
[…]
Multiple R-squared:  0.843, Adjusted R-squared:  0.8263 ***

• option 2: you need to test whether disp replaces
what we already know

> exp((MuMIn::AICc(test.of.new.hyp) – MuMIn::AICc(prior.knowl))/2)
[1] 765.9413 # prior knowledge is this much more likely to be the right model

• it does neither …
• why?
• disp is >90% predictable from cyl, hp, wt, …
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• We now said that we need multifactorial methods
• however, once you have 2+ independent/predictor 
variables (as in lm(mpg ~ cyl+hp+wt)),
they can behave in two different ways together
– additively, which is what we just saw
– interactively, and the concept of interaction is one of 
the easiest yet also probably one of the most 
underestimated, underutilized, and misunderstood notions

– interaction is related to (effect) modification and a 
special type of conditional dependence: when the 
association between a predictor & the response is not 
constant across another characteristic

– interaction: X doesn't do the same everywhere/always

From monofactorial to multifactorial

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Correlations again
Monofactorial -> multifactorial: mpg

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Introduction
Using a monofactorial test …
… and why that's wrong 1
… and why that's wrong 2

Ling 105
Predictive modeling in linguistics



  

11

What interactions can reveal:
differences in slopes (part 1)

Stefan Th. Gries
UC Santa Barbara & JLU Giessen
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Muslims are talked about negatively more …
… and what a real multifactorial study may look like
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• Let's assume one is 
interested in how media 
coverage of the word Muslim 
changes over time (any 
resemblance to real studies, 
published or on-going, is
not coincidental)

• let's assume a discourse-
analytic approach finds that 
Muslim is used with a growing 
number of negative overtones

• let's assume this is backed 
up by a correlation measure: 
r=0.97, p<0.001

• however, one needs the 
interaction WORD:TIME …

What interactions can reveal:
differences in slopes (part 1)

Stefan Th. Gries
UC Santa Barbara & JLU Giessen
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• drop1(lm(NEGEVAL ~ TIME * WORD * SOURCE), test="F")

                 Df      F  Pr(>F)  
TIME:WORD:SOURCE  8 78.543 <0.0001
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• Subjects and direct objects in 60 main and 60 
subordinate clauses are studied

• half of the subjects and objects are in main clauses, 
the other half in subordinate clauses

• the dependent variable is the length of the 
subjects/objects in syllables …

• that is, we are dealing with a multifactorial design
– independent variable 1: clause type (main vs. subord.)
– independent variable 2: grm relation (subj. vs. obj.)

• example results
– monofactorial finding 1: mean length main < mean length subord

– monofactorial finding 2: mean length subj < mean length obj

• given these monofactorial findings,
– which of the four combinations will exhibit the longest 
constituents?

– which of the four combinations will exhibit the shortest 
constituents?

What often happens in multifactorial 
approaches: an example

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
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Additive effect

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

mean (subject) <
2.5

mean (object)

mean (main) <
2

mean (subordinate)

clause type and 
grammatical relation 
influence length 
additively

> summary(lm(LENGTH ~ 1 + GRAMREL + CLAUSE + GRAMREL:CLAUSE, data=s1))
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.01   0.016297 123.396   <2e-16 ***      the intercept +
GRAMREL: subj→obj         2.49   0.023048 108.349   <2e-16 ***      this          +
CLAUSE: main→subord       2.00   0.023048  86.789   <2e-16 ***      this          (i.e. additive behavior)
GRAMREL:CLAUSE            0.00   0.032595   0.145    0.885          predicts 6.5 (as it should w/ no iact)

Ling 105
Predictive modeling in linguistics

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Introduction
Main effects only
Interaction: 'type 1'
Interaction: 'type 2'
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One kind of interaction

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

mean (subject) <
0.5

mean (object)

mean (main) <
1.5

mean (subordinate)

clause type and 
grammatical relation 
influence length 
interactively

> summary(lm(LENGTH ~ 1 + GRAMREL + CLAUSE + GRAMREL:CLAUSE, data=s2))
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.01    0.01630   123.4   <2e-16 ***      the intercept +
GRAMREL: subj→obj         2.99    0.02305   130.0   <2e-16 ***      this          +
CLAUSE: main→subord       4.00    0.02305   173.6   <2e-16 ***      this          (i.e. additive behavior)
GRAMREL:CLAUSE           -4.99    0.03259  -153.3   <2e-16 ***      predicts 9 but we need to predict 4

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Introduction
Main effects only
Interaction: 'type 1'
Interaction: 'type 2'
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Another kind of interaction

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

mean (subject) <
3

mean (object)

mean (main) <
3

mean (subordinate)

clause type and 
grammatical relation 
influence length 
interactively

> summary(lm(LENGTH ~ 1 + GRAMREL + CLAUSE + GRAMREL:CLAUSE, data=s3))
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)               2.01    0.01630   123.4   <2e-16 ***      the intercept +
GRAMREL: subj→obj         1.99    0.02305   86.66   <2e-16 ***      this          +
CLAUSE: main→subord       2.00    0.02305   86.79   <2e-16 ***      this          (i.e. additive behavior)
GRAMREL:CLAUSE            2.00    0.03259   61.51   <2e-16 ***      predicts 6, but we need to predict 8

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Introduction
Main effects only
Interaction: 'type 1'
Interaction: 'type 2'
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• Example: predicting mistakes in L2-English dictation
– indep. vars: mistakes in L1-German dictation and class

• model 1: ENGL ~ GER + CLASS + GER:CLASS

• model 2: ENGL ~ GER + CLASS

• 1: better variance explanation (p<10-10)
• 2: different (more accurate) coefficients

– model 1's estimate for a student in class A who made 17 
mistakes in German is off by 8.7% - model 2: 19.2% off!

• 3: different (more accurate) p-values

What interactions can reveal:
mean vs. slope

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

An example involving frequencies
The dictation example from 104
The diachronic alternation example from 104

model 1 Sum Sq Estimate Std. error t p
GER 2931.69 1.1292 0.1054 10.713 <0.0001

3010.3 0.565 2.3098 0.245 0.8074
241.73 1.0308 0.1354 7.613 <0.0001

Residual var. 316.95

CLASS A→B
GER:CLASS A→B

model 2 Sum Sq Estimate Std. error t p
GER 2931.69 1.75395 0.08726 20.101 <0.0001

3010.3 17.44117 0.85627 20.369 <0.0001
Residual var. 558.68

CLASS A→B

Ling 105
Predictive modeling in linguistics
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What interactions can reveal:
mean vs. slope

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

An example involving frequencies
The dictation example from 104
The diachronic alternation example from 104
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• A way out? If CLASS plays a role, we test the effect 
of GER separately in each class …

• model 3: ENGL[CLASS=="A"] ~ GER[CLASS=="A"]
– estimate for GER: 1.13, p<0.0001

• model 4: ENGL[CLASS=="B"] ~ GER[CLASS=="B"]
– estimate for GER: 2.16, p<0.0001

• the coefficients are different, which suggests an 
interaction, but …

• 4: separate tests of ENGL~GER per class never 
contrast the separate coefficients for GER in the two 
classes:
– the interaction does not show up in either model
– thus, 1.13 is never explicitly compared to 2.16
– thus, the interaction does not get a p-value
– thus, one does not know whether the difference between 
the two slopes of 1.03 (1.13-2.16) is significant or not

– model 1 is not the only, but the best, way to do this

What interactions can reveal:
mean vs. slope

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

An example involving frequencies
The dictation example from 104
The diachronic alternation example from 104
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• Sometimes, interactions are the whole point, even if 
authors don’t notice that …

• I once saw a conference presentation where someone 
wanted to discuss how a response was affected by a 
predictor differently over 3 time periods (each 
represented by a different corpus representative of 
one time period) …

• why is this useless?
– you see the slopes are different
across the corpus: 2.7>2.3>1.9

– you see each slow is * different
from 0 (p-values)

– you do not see whether they are
* different from each other!

• we need 1 big regression model
where the slope of PREDICTOR
can be different in each corpus

• the interaction PREDICTOR:CORPUS

What interactions can reveal:
differences in slopes (part 2)

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths
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• Instead, we need 1 big regression model where the 
slope of PREDICTOR can be different in each corpus

• i.e. where the effect of PREDICTOR is not the same 
everywhere …,

• i.e. we need the interaction PREDICTOR:CORPUS
• if one does that here,

– the interaction is not significant (p=0.09833 ns)
– none of the differences between the slopes of the 3 
corpora is significant

• thus, if the effects of PREDICTOR and CORPUS are 
significant, the results would be this

• in that case, there is a diachronic effect - RESPONSE 
is decreasing over time/CORPUS - but the author 
wanted the effect of PREDICTOR to change of 
time/CORPUS!

What interactions can reveal:
differences in slopes (part 2)

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics
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The dictation example from 104
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• What affects 
the probabi-
lity of 
putting the 
particle of a 
trans. phras. 
verb before/ 
after the DO?
– picked up N
– picked N up

Another (linguistic) example/reminder

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

An example involving frequencies
The dictation example from 104
The diachronic alternation example from 104
Two more examples using graphs

moderator (→
interaction)
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• What affects 
the probabi-
lity of 
correct
diagnoses of 
fetal health 
during preg-
nancy?
– predictors
– interactions 
between them

– confounds

Another (non-linguistic) example/reminder

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

An example involving frequencies
The dictation example from 104
The diachronic alternation example from 104
Two more examples using graphs

Variable 2
well-trained

staff?
TRUE vs. FALSE

Variable 1 Variable 3
ultrasound clean hospi-
available? tal floors?

TRUE vs. FALSE TRUE vs. FALSE

Response
correct

health diagn?
TRUE vs. FALSE

Variable 2
well-trained

staff?
TRUE vs. FALSE

Variable 1 Variable 3
ultrasound     interaction clean hospi-
available? tal floors?

TRUE vs. FALSE TRUE vs. FALSE

confound

Response
correct

health diagn?
TRUE vs. FALSE

Ling 105
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• No, because of … Occam's razor
– prefer models with fewer parameters over models with 
more parameters
• i.e., prefer models with fewer predictors over models with 
more predictors

• i.e., prefer predictors with fewer levels over predictors 
with more levels

• i.e., prefer linear models to non-linear models
• i.e., prefer additive relationships to interactions

• what does "prefer" mean?
– typically, it means 'if two models that try to account 
for data don't differ (enough), use the simpler one'
• enough = according to p, or
• enough = according to AIC, …

So we just add predictors/interactions
until we're blue in the face?

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Occam's razor
Model selection
What to report awhen you have a (final) model
Additional considerations

Ling 105
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• Models and their selection
– model = formal characterization of the relation between

• predictors
– independent variables
– their interactions
– (sometimes even levels of predictors)

• dependent variables, or responses
• usually in the form of a regression equation
• note: many tests you already know are actually the simplest 
cases of regression modeling: r, t-test, X2, …

– model selection = the process of developing the most 
appropriate model for a given data set
• direction of model selection

– backwards selection
– forward selection
– bidirectional

• criterion of model selection
– p-values (of different kinds)
– AIC (or AICc or BIC or …)

– model amalgamation

How are the effects of (multiple) 
predictors explored?

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Occam's razor
Model selection
What to report awhen you have a (final) model
Additional considerations

Ling 105
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• Formulating the first model
– what is the nature of the response?

• numeric?     → linear regression (often)
• binary?      → binary logistic regression
• ordinal?     → ordinal logistic regression
• categorical? → multinomial regression
• frequencies  → Poisson regression
and of course others …

– which scales for the predictors are most useful?
• raw values? logged? roots? centered? standardized? other?

– what type of regression line is predicted?
• straight line? curve? polynomial? w/ breakpoints? other?

– which predictors and interactions to include/explore?

How are the effects of (multiple) 
predictors explored?

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Occam's razor
Model selection
What to report awhen you have a (final) model
Additional considerations
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How are the effects of (multiple) 
predictors explored?

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Occam's razor
Model selection
What to report awhen you have a (final) model
Additional considerations
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How are the effects of (multiple) 
predictors explored?

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Occam's razor
Model selection
What to report awhen you have a (final) model
Additional considerations
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• Is there a significant correlation between the 
predictor(s) and the response?
– typical answers: yes or no

• what is the nature of the significant correlation?
– how high/strong is the overall correlation? how well 
does the model explain the data?
(NB: explain = 'predict' or 'account for variability')
• typical answer: some kind of R2-value(s) or an accuracy 
score or a similar value

– what are the effects of the individual predictors?
• typical answer: coefficients from the regression equation

– intercepts
– (differences between) means
– (differences between) slopes

– often easier: what values does the model predict?
• typical 'answer': plots of predicted values (usually better 
than plots of observed values, but sometimes you want both)

When the model selection process
has been completed …

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics

Ling 105
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• Validation
– validity: does variable x measure what it's supposed to 
measure?

– validation: does a model based on data set x also work 
well (enough) on data set y? the issue of overfitting …

– frequent approaches
• cross-validation (often k-fold with k=10, i.e. with 10% 
samples)

• leave-one-out method
• sampling/permutation methods

• model assumptions/diagnostics
– randomness and normality of residuals
– no collinearity
– special data points are considered

• outliers and/or points with high influence (dffits/dfbetas)
– missing data are considered

• exploration or imputation of missing data
• non-independence of data points → multilevel models

Additional considerations

Stefan Th. Gries
UC Santa Barbara & JLU Giessen

Monofactorial -> multifactorial: Muslim
Interactions: S/DO lengths

Some more examples
Model selection,  interpretation, & diagnostics
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