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1 Introduction

In Brian Joseph’s final editorial as the editor of what many see as the

flagship journal of the discipline, Language, he commented on recent develop-

ments in the field. One of the recent developments he has seen happening is the

following:

Linguistics has always had a numerical and mathematical side . . . but the

use of quantitative methods, and, relatedly, formalizations and modeling,

seems to be ever on the increase; rare is the paper that does not report on

some statistical analysis of relevant data or offer some model of the

problem at hand. (Joseph 2008: 687)

For several reasons, this appears to be a development for the better. First, it

situates the field of linguistics more firmly in the domains of social sciences and

cognitive science to which, I think, it belongs. Other fields in the social sciences

and in cognitive science – psychology, sociology, computer science, to name

but a few – have long recognized the power of quantitative methods for their

respective fields of study, and since linguists deal with phenomena just as

multifactorial and interrelated as scholars in these disciplines, it was time we

also began to use the tools that have been so useful in neighboring disciplines.

Second, the quantitative study of phenomena affords us with a higher degree

of comparability, objectivity, and replicability. Consider the following slightly

edited statement:

there is at best a very slight increase in the first four decades, then a small

but clear increase in the next three decades, followed by a very large

increase in the last two decades (this chapter, cf. below Section 2.4).

Such statements are uninformative as long as:

� notions such as ‘very slight increase’, ‘small but clear increase’, and

‘very large increase’ are not quantified: one researcher considers an

increase in frequency from 20 observations to 40 ‘large’ (because

the frequency increases by 100%), another considers it small

(because the frequency increases by only 20), and yet another

considers it intermediate, but considers a change from 160 to 320
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large (because, while this also involves an addition of 100% to the

first number, it involves an addition of 160, not just 20) . . .;

� the division of the nine decades into (three) stages is simply assumed

but not justified on the basis of operationalizable data;

� the lengths of the nine stages (first four decades, then three decades,

then two decades) is simply stated but not justified on the basis of data.

Third, there is increasing evidence that much of the cognitive and/or linguistic

system is statistical or probabilistic in nature, as opposed to based on clear-cut

categorical rules. Many scholars in first language acquisition, cognitive linguis-

tics, sociolinguistics, psycholinguistics etc. embrace, for instance, exemplar-based

models of language acquisition, representation, processing, and change. It is

certainly no coincidence that this theoretical development coincides with the

methodological development pointed out by Joseph, and if one adopts a probabil-

istic theoretical perspective, then the choice of probabilistic – i.e. statistical –

tools is only natural; cf. Bod, Hay, and Jannedy (2003) for an excellent overview

of probabilistic linguistics.

For obvious limitations of space, this chapter cannot provide a full-fledged

introduction to quantitative methods (cf. the references below). However, the

main body of this chapter explains how to set up different kinds of quantitative

data for statistical analysis and exemplifies three tests for the three most

common statistical scenarios: the study of frequencies, of averages, and of

correlations. Joseph himself is a historical linguist and it is therefore only fitting

that this chapter illustrates these guidelines and statistical methods using

examples from language variation and change.

2 Elementary statistical tests

In this section, I will first illustrate in what format data need to be

stored for virtually all spreadsheet software applications and statistical tools and

how to load them into R, the software that I will use throughout this chapter

(cf. Section 2.1). Then, Section 2.2 will discuss how to perform simple statis-

tical tests on frequency data, Section 2.3 will outline how the central tendencies

of variables (i.e. averages) can be tested, and Section 2.4 will be concerned with

tests for correlations. Each section will also exemplify briefly how to create

useful graphs within R.

Limitations of space require two comments before we begin. First, I cannot

discuss the very foundations of statistical thinking, the notions of (independent

and dependent) variables, (null and alternative) hypotheses, Occam’s razor, etc.,

but must assume the reader is already familiar with these (or reads up on them

in, say, Gries 2009: chapter 5, 2013: chapters 1, 5). Second, I can only discuss a

few very elementary statistical tests here, although many more and more

interesting things are of course possible. I hope, however, that this chapter will
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trigger the reader’s interest in additional references and the exploration of the

methods presented here.

2.1 Tabular data and how to load them into R

Trivially, before any statistical analysis of data can be undertaken,

three steps are necessary. First, the data have to be gathered and organized in a

suitable format. Second, they must be saved in a way that allows them to be

imported into statistical software. Third, the data have to be loaded into some

statistical software. The first subsection of this section deals with these three steps.

As for the first step, it is absolutely essential to store your data in a spread-

sheet software application so that they can be easily evaluated both with that

software and with statistical software. There are three main rules that need to be

considered in the construction of a table of raw data:

(1) each data point, i.e. count or measurement of the dependent variable(s), is

listed in a row on its own;

(2) every variable with respect to which each data point is described is recorded

in a column on its own;

(3) the first row contains the names of all variables.

For example, Hundt and Smith (2009) discuss the frequencies of present

perfects and simple pasts in British and American English in the 1960s and

the 1990s. One of their overview tables, Table 2 (Appendix 2), is represented

here as Table 19.1.

This is an excellent overview and may look like a good starting point, but this

is in fact nearly always already the result of an evaluation rather than the

starting point of the raw data table. Notably, Table 19.1 does not:

� have one row for each of the 159,876 data points, but it has only two

rows;

� have one column for each of the three variables involved (tense:
present perfect vs. simple past; variety: BrE vs. AmE; time: 1960s
vs. 1990s), but it has one column for each combination of variety
and time.

Table 19.1. Table 2 (Appendix 2) from Hundt and Smith (2009), cross-tabulating tenses
and corpora

LOB

(BrE 1961)

FLOB

(BrE 1991)

BROWN

(AmE 1961)

FROWN

(AmE 1992) Totals

present perfect 4196 4073 3538 3499 15306

simple past 35821 35276 37223 36250 144570

Totals 40017 39349 40761 39749 159876
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The way that raw data tables normally have to be arranged for statistical

processing requires a reorganization of Table 19.1 into Table 19.2, which then

fulfills the three above-mentioned criteria for raw data tables.

Once the data have been organized in this way, the second step before the

statistical analysis is to save them so that they can be easily loaded into a

statistics application. To that end, you should save the data into a format that

makes them maximally readable by a wide variety of programs. The simplest

way to do this is to save the data into a tab-separated file, i.e. a raw text file in

which different columns are separated from each other with tabs. In Libre-

Office Calc, one first chooses File: Save As . . ., then chooses ‘Text CSV (.csv)’

as the file type, and chooses {Tab} as the Field delimiter.1

To perform the third step, i.e. to load the data into statistical software, you

must first decide on which software to use. From my point of view, the best

statistical package currently available is the open source software environ-

ment R (cf. R Development Core Team 2006–2013). The basic software as

Table 19.2. Reorganization of Table 2 (Appendix 2) from Hundt and Smith
(2009)

TENSE VARIETY TIME

present_perfect BrE 1960s

4195 more rows like the one immediately above

present_perfect BrE 1990s

4072 more rows like the one immediately above

present_perfect AmE 1960s

3537 more rows like the one immediately above

present_perfect AmE 1990s

3498 more rows like the one immediately above

simple_past BrE 1960s

35820 more rows like the one immediately above

simple_past BrE 1990s

35275 more rows like the one immediately above

simple_past AmE 1960s

37223 more rows like the one immediately above

simple_past AmE 1990s

36249 more rows like the one immediately above

1 I recommend using only word characters (letters, numbers, and underscores) within such tables.
While this is strictly speaking not necessary to guarantee proper data exchange between different
programs – since most programs nowadays provide sophisticated import functions or wizards –
it is my experience that ‘simple works best.’
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well as supplementary packages can be downloaded from www.r-project.org.

While R does not feature a clickable graphical user interface (GUI) by

default, such a GUI can be installed (cf. the appendix) and R is extremely

powerful both in terms of the sizes of data sets it can handle and the

number of procedures it allows the user to perform – indeed, since R is a

programming language, it can do whatever a user is able to program. In

addition, R’s graphical facilities are unrivaled and since it is an open

source project, it is freely available and has extremely fast bugfix-release

times. For these and many other reasons, R is used increasingly widely in the

scientific community, but also in linguistics in particular, and I will use it

here, too.

When R is started, by default it only shows a fairly empty console and expects

user input from the keyboard. Nearly all of the time, the input to R consists of

what are called functions and arguments. The former are commands that tell

R what to do; the latter are specifics for the commands, namely what to apply a

function to (e.g. a value, the first row of a table, a complete table, etc.) or how to

apply the function to it (e.g. what kind of logarithm to compute, a binary log, a

natural log, etc.).2 The simplest way to read a table with raw data from a tab-

separated file created as above involves the function read.table, which, if the

raw data table has been created as outlined above and in note 1, requires only

three arguments:

� the argument file, which specifies the path to the file containing the

data;

� the argument header, which can be set to T (or TRUE) or F (or FALSE),

where T/TRUE means ‘the first row contains the variable names’, and

F/FALSE means the opposite;

� the argument sep, which specifies the character that separates

columns from each other and which should therefore be set to a

tabstop, “ \ t”.

Thus, to import a raw data table from an input file <C:/Temp/example1.txt>

and store that table in a so-called data frame (called data.table) in R, you

enter the following line of code (where the “<–” tells R to store something in

the data structure to the left of the ‘arrow’ and where “}” means ‘press

ENTER’):

data.table<�read.table(“file¼C:/Temp/example1.txt”,
header¼TRUE, sep¼“\t”)}

2 The general logic of functions and arguments and different kinds of data structures – while
essential to working with spreadsheet software such as LibreOffice Calc as well as programming
languages such as R – will not be discussed here in detail; cf. the recommended further readings
for more information.
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To check whether the data have been read in correctly, it is always useful to

look at the structure of the imported data first, using the function str, which

provides all the column names together with some information on what the

columns contain, namely their kind of data (integer numbers, character strings

as factors, etc.) as well as the first few values. If you had read in a file of the

kind shown in Table 19.2, then this is what the output would look like:

str(data.table)}
‘data.frame’: 159876 obs. of 3 variables:
$ TENSE : Factor w/ 2 levels “present_perfect”,..: 1 1 1 1 1 1 1 1 1 1 . . .

$ VARIETY: Factor w/ 2 levels “AmE”,“BrE”: 2 2 2 2 2 2 2 2 2 2 . . .

$ TIME : Factor w/ 2 levels “1960s”,“1990s”: 1 1 1 1 1 1 1 1 1 1 . . .

The simplest way to be able to access all values of a column at the same time by

just using the column name involves the function attach, which requires the

data frame’s name as its only argument and typically does not return any output:

attach(data.table)}

While the above is the typical way to input data into R, when the data set in

question is small, another way is sometimes simpler, namely entering the data

oneself. For example, if you have collected the lengths of five indirect objects

and of five direct objects in terms of number of phonemes and want to quickly

compare their mean lengths, it is maybe not necessary to create a tab-delimited

input file – you can just enter the data into R and assign them to a data structure,

a so-called vector, using the function c, which concatenates the elements

provided as arguments (numbers or character strings) into a vector.

indir.objects<�c(1, 2, 3, 4, 5)
dir.objects<�c(3, 5, 4, 4, 3)

Then, computing the means is easy and returns 3 and 3.8 for indirect and direct

objects respectively:

mean(indir.objects)}
[1] 3
mean(dir.objects)}
[1] 3.8

Once the data are available in either the tabular data frame or the unidimen-

sional vector format, it often takes only a very small amount of R code – usually

only one line – to run statistical analyses or produce quite revealing graphs,

some of which will be exemplified in the three following sections.
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2.2 Two-dimensional frequency data

The first application to be discussed here involves two-dimensional

frequency tables, i.e. tables such as Table 19.2, and their evaluation. As an

example, I will discuss fictitious data that bear on the question to what degree, if

any, the syntactic form of a response to a question is determined by the syntactic

form of the question. Let us assume researchers asked subjects altogether 200

instances of two types of questions in Dutch, whose English glosses are listed in

(4) and (5).

(4) Of whom is this cap? [prepositional question type]

(5) Whose cap is this? [non-prepositional question type]

The researchers then recorded subjects’ answers to these questions and

counted how many times the answer was a prepositional or non-prepositional

one. One main point of such a study could be to find whether prepositional and

non-prepositional questions trigger prepositional and non-prepositional

responses respectively.3 Let us assume the frequencies listed in Table 19.3

were obtained.

First, the data need to be entered into R. With small two-dimensional tables

like these, it is easy to enter them directly rather than prepare the above type of

raw data table to read in. In the following line, the function matrix creates a

two-dimensional matrix of the four values, which are listed column-wise and

arranged into ncol¼2 columns.

data.matrix<�matrix(c(98, 2, 64, 36), ncol¼2)}

Typically, it is useful to also provide the matrix with row and column names

because this facilitates the subsequent interpretation of statistics and graphs.

The following line provides row names (ANSWER¼. . .) and column names

(QUESTION¼. . .) to the matrix and outputs it so one can check it.

Table 19.3. Fictitious frequencies obtained in a question-answer experiment

Question: with prep. Question: without prep. Totals

Answer: with prep. 98 64 162

Answer: without prep. 2 36 38

Totals 100 100 200

3 This example is modeled after Levelt and Kelter (1982).
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attr(data.matrix, “dimnames”)<�list(ANSWER¼c(“þ prep”, “� prep”),
QUESTION¼c(“þ prep”, “� prep”))}

data.matrix}
QUESTION

ANSWER þ prep � prep
þ prep 98 64
� prep 2 36

If you want to see the row and column totals, too, this is how they can be

obtained:

addmargins(data.matrix)}
QUESTION

ANSWER þ prep � prep Sum
þ prep 98 64 162
� prep 2 36 38
Sum 100 100 200

Obviously, when the question involves a preposition, the answer nearly always

does, too, whereas if the question does not involve a preposition, then the

answer still contains a preposition more often than not, but the effect is much

less extreme. The question arises whether this difference – 98:2 vs. 64:36 – is

large enough to be significant, a question which is addressed by the chi-square

test for independence. This test requires that all observations are independent of

each other and that 80þ% of the expected frequencies are larger than 5.

We assume for now that the 200 responses are completely independent of

each other (and will check the expected frequencies shortly). You can then use

the function chisq.test, which in the standard form to be discussed here

requires the matrix to be tested (data.matrix) and an argument correct, which

can be set to TRUE or FALSE depending on whether you want to use a correction

for continuity, which we do not want here (because the sample size is greater

than 60). For reasons that will become clear shortly, it is best to not just compute

the test but also assign the result of the test to another data structure:

data.matrix.test<�chisq.test(data.matrix, correct¼FALSE)}
data.matrix.test}

Pearson’s Chi-squared test
data: data.matrix
X-squared ¼ 37.5569, df ¼ 1, p-value ¼ 8.879e-10

The test shows that there is a highly significant effect:4 there is definitely a

correlation between the questions and the answers. The question is what this

4 The choice of words ‘highly significant’ is based on the following, frequently-used classification:
p<0.001: ‘highly significant’; 0.001�p<0.01: ‘very significant’; 0.01�p<0.05: ‘significant’.
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correlation looks like and whether the expected frequencies are large enough to

allow the chi-square test in the first place. As for the latter, the chi-square test in

R does not just compute the above output but also some additional information

such as the expected frequencies, i.e. the frequencies one would expect to find if

questions and answers were not related. These can be obtained by requesting

them from the data structure data.matrix.test:

data.matrix.test$exp}
QUESTION

ANSWER þ prep � prep
þ prep 81 81
� prep 19 19

This table not only shows that the expected frequencies are large enough to

allow the chi-square test. They also show what the effect looks like: we

observed:

� more prepositional answers after prepositional questions than

expected (98>81);

� fewer prepositional answers after preposition-less questions than

expected (64<81);

� fewer preposition-less answers after prepositional questions than

expected (2>19);

� more preposition-less answers after preposition-less questions than

expected (36>19).

Since this piecemeal comparison of observed and expected frequencies is

somewhat tedious, it is usually easier to inspect the so-called Pearson residuals.

Pearson residuals can be computed for each cell in a table; they are positive and

negative when a cell’s frequency is larger or smaller than expected respectively,

and the more they deviate from 0, the stronger the effect. From a purely

exploratory perspective, Pearson residuals smaller than -3.841 or greater than

3.841 are particularly noteworthy.

data.matrix.test$res}
QUESTION

ANSWER þ prep � prep
þ prep 1.888889 �1.888889
� prep �3.900067 3.900067

The findings are the same as above, but they are easier to identify than from the

comparisons of observed and expected frequencies, and we also now see that the

effects for the prepositionless answers are somewhat more pronounced.
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A graphical representation that makes this even more obvious is the so-called

association plot, which is shown in Figure 19.1: black boxes on top of the

dashed lines and grey boxes below the dashed lines represent cell frequencies

that are larger and smaller than expected respectively; the heights of the boxes

are proportional to the above residuals and the widths are proportional to the

square roots of the expected frequencies.

assocplot(t(data.matrix))}

The only thing that remains to be done is to quantify the size of the effect. Since

chi-square values are correlated with sample sizes, one cannot readily use chi-

square to identify effect sizes or compare them across different studies. Instead,

one can use a correlation coefficient called Cramer’s V, which falls between 0

and 1, and the larger the value, the stronger the correlation. Cramer’s V is

computed as shown in (6).

(6) Cramer’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2

n�
�
minðnrows, ncolumnsÞ � 1
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+
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p

– 
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Figure 19.1. Association plot for the relation between question and answer syntax
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If we compute Cramer’s V for the present data set, we obtain the result in (7).

(7) Cramer’s V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

37:5569

200�
�
minð2, 2Þ � 1

�
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37:5569

200

r
¼ 0:433

In R:

sqrt(data.matrix.test$stat/(sum(data.matrix)*min(dim(data.
matrix)-1)))}

X-squared
0.4333408

Thus, the data show an effect such that the type of question determines the type

of answer: prepositional and prepositionless questions yield higher frequencies

of occurrence of prepositional and prepositionless answers respectively; the

effect is highly significant (p<0.0001) and intermediately strong (Cramer’s

V¼0.433).5

2.3 Differences between central tendencies of variables

Often, the statistic of interest is not just the observed frequency of

some phenomenon, but the central tendency of some phenomenon, i.e. what is

commonly referred to as the average. At the risk of simplifying somewhat, we

can say that there are two main averages for numeric data, the arithmetic mean

and the median. Consider the following vector of numbers:

x<�c(0,0,0,1,1,1,2,2,5)}

The arithmetic mean of the numbers in x is the quotient of the sum of the values

in x (12) divided by the number of elements of x (9), i.e. 11/3. The median, by

contrast, is the value you get when you sort the numbers according to their size

and pick the one in the middle, i.e. 1:6

mean(x)}
[1] 1.333333
median(x)}
[1] 1

5 The choice of words ‘intermediately strong’ is based on the following, frequently-used classifi-
cation: 0.1�effect size<0.3: ‘small effect’; 0.3�effect size<0.5: ‘medium effect’; effect
size�0.5: ‘large effect’.

6 If the vector has an equal number of elements, the median is the arithmetic mean of the two
middle values.
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A frequent scenario is, then, that one wants to compare the central tendencies of

two vectors to see whether they are significantly different from each other.

Consider the case where you have collected the lengths of subordinate clauses in

words in 10 samples of spoken and 10 samples of written data and obtained the

following results:

(8) spoken: 11, 10, 9, 6, 8, 9 11, 7, 8, 6

(9) written: 13, 14, 12, 13, 11, 14, 7, 10, 12, 12

These data were stored in a tab-separated text file <C:/Temp/subcl_lengths.

txt> as shown in Table 19.4, which you can load as discussed above in

Section 2.1.

data.table<�read.table(“C:/Temp/subcl_lengths.txt”,
header¼TRUE, sep¼“\t”)}

str(data.table)}
‘data.frame’: 20 obs. of 3 variables:
$ CASE : int 1 2 3 4 5 6 7 8 9 10 . . .

$ MODE : Factor w/ 2 levels “spoken”,“written”: 1 1 1 1 1 1 1 1 1 1 . . .

$ LENGTH: num 11 10 9 6 8 9 11 7 8 6 . . .

attach(data.table)}

Once the data have been loaded, the best approach is often to explore them

graphically. One immensely informative plot for summarizing numeric vari-

ables is the so-called boxplot. The corresponding R function, boxplot, takes

two arguments: a formula in which a dependent variable (here, the length of the

subordinate clause) precedes the tilde and the independent variable (here, the

mode) follows it, and the argument notch¼TRUE, which creates notches whose

function will be explained shortly. The result is shown (in slightly modified

form) in Figure 19.2.

boxplot(LENGTH~MODE, notch¼TRUE)}

Table 19.4. Lengths of subordinate clauses in two samples (of
spoken and written data)

CASE MODE LENGTH

1 spoken 11

2 spoken 10

. . . . . . . . .
19 written 12

20 written 12
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This plot provides a great deal of information:

� the thick horizontal lines correspond to the medians;

� the upper and lower horizontal lines indicate the central 50% of the

data around the median (approximately the 2nd and 3rd quartiles);

� the upper and lower end of the whiskers extend to the most extreme

data point which is no more than 1.5 times the height of the box away

from the box;

� values outside of the range of the whiskers are marked individually

as small circles;

� the notches on the sides of the boxes provide an approximate 95%

confidence interval for the difference of the medians: if they overlap,

then the medians are most likely not significantly different.

Of course, we also want to know the exact medians. These can be computed

with the following line of code, which basically means ‘apply the function

median to the data you get when you split the values of LENGTH into the groups

resulting from MODE’:

tapply(LENGTH, MODE, median)}
spoken written
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Figure 19.2. Boxplot for the relation between subordinate clause length and mode
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And since one should always provide a measure of dispersion for measures

of central tendency, we apply the same type of code to retrieve a simple

measure of dispersion for the lengths in the spoken and the written data,

the interquartile ranges, which indicate the spread of the central 50% around

the medians:

tapply(LENGTH, MODE, IQR)}
spoken written

2.50 1.75

From Figure 19.2, it already seems as if the differences between the two modes

will be significant since the medians are fairly far apart and the notches do not

overlap. In spite of this, the data must, of course, be tested, and the test that

would normally be used for such data is the t-test for independent samples (esp.

since, unlike in most cases, the data do not differ significantly from a normal

distribution).7 On the other hand, since the sample sizes are very small and

linguistic data will often be non-normal, I will instead discuss a test that is

slightly less powerful, but that can be used regardless of whether the data are

normally distributed or not, the U-test (sometimes also called the two-sample

Wilcoxon test). This test only requires that the observations are all independent

of each other and its function in R is wilcox.test. It is best used with four

arguments:

� a formula of the same kind as used for boxplot: dependent variable

~ independent variable;

� the argument paired, which can be set to TRUE or FALSE, where

TRUE means the values of the two groups form meaningful pairs, and

FALSE means the opposite. Since in this case the length of any one

subordinate clause in speaking is not related to that of any one

subordinate clause from a written file, we set paired¼FALSE;
� the argument correct, which can be set to TRUE or FALSE depending

on whether you want to apply a correction for continuity or not as is

sometimes recommended for small sample sizes. In the interest of

comparability of the test with most other statistical software, we set

this to FALSE for now;

� the argument exact, which can be set to TRUE or FALSE depending

on whether you want R to compute an exact test (for small sample

sizes) or not. Again, in the interest of comparability, we set this to

FALSE.

7 At the risk of considerable simplification, a distribution of values is normal if, on the whole,
most of its values do not differ much from the overall mean and if the differences of values from
the overall mean are equally much positive and negative. In graphical terms, normal distribu-
tions can usually be identified by a bell-shaped curve/histogram.
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With these settings, a U-test yields the following results:

wilcox.test(LENGTH~MODE, paired¼FALSE, correct¼FALSE,
exact¼FALSE)}
Wilcoxon rank sum test

data: LENGTH by MODE
W ¼ 11, p-value ¼ 0.003028
alternative hypothesis: true location shift is not equal to 0

The last line can be ignored since it only summarizes which statistical hypoth-

esis was tested, namely that the two distributions are not identical (such that

their difference would be 0). All the findings show that the lengths of subordin-

ate clauses are longer but less diverse in writing (cf. the interquartile ranges),

and that the difference between the clause lengths in the two modes of 3.5 words

is very significant (p�0.003).

2.4 Correlations between numeric variables

The final method to be discussed here involves the correlation

between two variables that are numeric in nature, such as lengths (of XPs),

reaction times (in milliseconds), time (in years), numbers of nodes in a phrase

structure tree, etc. By computing a correlation coefficient, which usually falls

between �1 and þ1, one tries to answer the following questions:

� is there a relationship between a variable x and a variable y such

that, on the whole, one can say ‘the more x, the more y’ and/or

‘the less x, the less y’ or, on the other hand, ‘the more x, the less

y’ and/or ‘the less x, the more y’? If the relationship is of the former

type, then the correlation coefficient will be >0; if the relationship is

of the latter type, then the correlation coefficient will be <0; if there

is no relationship between x and y, the correlation coefficient will

be �0;
� how strong is this relationship? The more the correlation coefficient

differs from 0, the stronger the correlation;

� is the correlation statistically significant?

For example, consider the case where one wants to determine whether the

frequencies of two lexical items undergo a temporal trend such that, on the

whole, they increase or decrease over time. The two lexical items to be

considered are in and just because, and the corpus to be investigated is Mark

Davies’s TIME corpus (http://corpus.byu.edu/time), a corpus containing 100

million words of text of American English from 1923 to the present, as found in

TIME magazine.
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As a first step, the data have to be entered into R, and this is a case where they

can be easily entered into R in the vector format with c. We create one vector

for the time periods (using the decades as reference points),

times<�c(1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990,2000)}

and we create one vector for each lexical item that contains their relative

frequencies per 10,000 words in the same order as the vector times contains

the decades. That is, the relative frequency of in in the 1920s is 188.7/10,000, the

relative frequency of in in the 1930s is 174.8/10,000, etc.:

lex.in<�c(188.7, 174.8, 196.2, 211.1, 221.2, 200.5, 194.3,
185.8, 192.5)}

lex.jb<�c(0.005, 0.004, 0.005, 0.004, 0.010, 0.009, 0.013,
0.029, 0.039)}

Again, it is usually best to first explore the data graphically. If one has

two numeric vectors like here, one can use the function plot with a formula

where again the dependent variable (the frequency of the lexical item) precedes

the tilde and the independent variable (time) follows it. In addition, we

can provide the argument type, which specifies the type of plot we want:

“p” for points only, “l” for lines only, “b” for both, “h” for histograms/bar

charts, etc.

plot(lex.in~times, type¼“b”)}

Especially with data sets larger than the present one, it is often also useful to

immediately add a smoother, which is a line that tries to summarize the way the

points pattern within the coordinate system. Unlike a linear regression line,

which is (too) often used on such occasions, such smoothing lines do not have to

be straight but can be curved and are thus often better at identifying curvature

and nonlinear trends in the data.

lines(lowess(lex.in~times))}

We can then do the same for just because, and Figure 19.3 shows slightly

prettified versions of the graphs we obtain.
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plot(lex.jb~times, type¼“b”)}
lines(lowess(lex.jb~times))}

As with the boxplot, this is another instance where a good graph helps us to

analyse our data correctly and already very strongly suggests the outcome of the

study. The frequencies of in fluctuate across time without a clear pattern such

that, for instance, the relative frequency of in in the last two decades is

approximately the same as that in the first. On the other hand, the frequencies

of just because exhibit a clear trend such that they clearly increase over time. It

is important to note, however, that the growth trend is not linear in the sense that

there is at best a very slight increase in the first four decades, then a small but

clear increase in the next three decades (from 0.0045 to 0.011 per 10,000

words), followed by a very large increase in the last two decades (from 0.011

to 0.034 per 10,000 words).

To determine whether the observed patterns are significantly correlated

with time or not, one can compute a correlation coefficient. The probably

most frequently used one is Pearson’s product-moment correlation r (which

is related to linear regressions). However, just as a linear regression is often

not the best way to inspect data for trends, Pearson’s r is often not ideal

either. This is because Pearson’s r requires that the vectors/variables that are

correlated are interval-scaled, do not contain influential outliers, and are

bivariately normally distributed, and linguistic data often violate one or more

of these assumptions. It is therefore often better to use a measure that, while

a little less powerful, is also less sensitive to potentially problematic distri-

butions. One such measure is Kendall’s tau τ, which can be computed in

R very easily. The necessary function is cor.test, which takes three argu-

ments: the two vectors to be correlated and the argument method, which is

set to “kendall”. For the entire time span from 1920 to 2000, this is the result

for in:
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Figure 19.3. Line plots and smoothers for the normalized frequencies of in and just because

over time
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cor.test(times, lex.in, method¼“kendall”)}
Kendall’s rank correlation tau

data: times and lex.in
T ¼ 18, p-value ¼ 1
alternative hypothesis: true tau is not equal to 0
sample estimates:
tau

0

There is no correlation whatsoever (τ¼0) and the result is completely insignifi-

cant (p¼1). (Note that a restriction of the analysis to the period up to 1960

would yield a high positive correlation, and restriction to the period from 1960 a

high negative correlation. Thus, as Figure 19.3 indicates, the result of such

analyses always depends on the choice of the period investigated, and it is

indispensable to first inspect diachronic data visually before subjecting them to

statistical analysis. Hilpert and Gries (2009) discuss techniques such as

Variability-based Neighbor Clustering or regression with breakpoints, which

can help analysts to discover structure in temporal data.)

The results for just because, on the other hand, are very different:8 there is a

high positive correlation (τ¼0.743), which is very significant (p�0.006). The
higher the value for time (i.e. the more recent the corpus data), the higher the

relative frequency of just because, and this correlation is very unlikely to arise

just by chance.

cor.test(times, lex.jb, method¼“kendall”)}
Kendall’s rank correlation tau

data: times and lex.jb
z ¼ 2.7406, p-value ¼ 0.006132
alternative hypothesis: true tau is not equal to 0
sample estimates:

tau
0.7431605

In sum, the overall relative frequency of in does not change over time, but the

frequency of just because does so quite markedly. While the above observations

do not exhaust the range of methods that can be applied to the present and

similar kinds of data, they already provide a good assessment of whether there is

a trend or not, whether it is significant or not, and to some degree at least what

its internal structure looks like.

8 I am omitting a warning about exact p-values and ties here, which informs the user that, because
the lex.jb values are not all different from each other, the estimated p-value might not be
perfectly accurate; for the present discussion, this is not relevant; cf. Hilpert and Gries (2009)
for the exact p-value.
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3 Concluding remarks

As mentioned at the outset of this chapter, rigorous quantitative

analyses are not yet as frequent in linguistics as they could be, but they are on

the rise. This chapter has only discussed a few simple tests, and, of course,

linguistic data are often much more complex: For example, this chapter has

only dealt with monofactorial tests, i.e. tests involving one independent and

one dependent variable. However, more advanced scenarios may involve more

independent and more dependent variables. This opens up a whole host of

interesting research possibilities, but also requires more sophisticated methods

to check one’s models. Also, the chapter has not discussed cases where

interactions – combinations of independent variables that have unexpected

effects on dependent variables – arise and how to deal with these. Finally,

the section on correlations has only mentioned correlation coefficients that are

typically used for linear trends, but has not dealt with other kinds of regression

models.

As the methodological landscape in linguistics is changing, it is important

for the progress within our field(s) that we learn how to handle the kinds of

complex and multifaceted scenarios linguistic data pose. I hope that this

chapter has provided a first overview of what is possible and has whetted

the reader’s appetite to apply more methods from this exciting domain to

linguistic data.
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Journal of Statistical Software 14(9): 1–42.

Gries, Stefan Th. 2009. Quantitative corpus linguistics with R: a practical introduction.

London and New York: Routledge, Taylor & Francis Group.
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Pros and potentials Cons and caveats

� statistics package R is freely available

� methods allow testing for statistical significance
and graphic visualization of distributions

� statistical techniques enable users to see
contingencies and patterns that remain implicit
without them

� quantitative methods and studies must be
complemented by qualitative interpretation and
validation

� statistical comparisons must make linguistic sense

� user needs some expertise to determine which
tests and graphical displays are appropriate
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Useful online resources

The website of R: www.r-project.org

The CRAN task views: http://cran.r-project.org/web/views

The ling-r-lang-L mailing list: https://mailman.ucsd.edu/mailman/listinfo/ling-r-lang-l

The Statistics for Linguists with R newsgroup: http://groups.google.com/group/

statforling-with-r

An electronic textbook for statistics: www.statsoft.com/textbook/stathome.html

Appendix

The R commander

While R does not by default feature a clickable GUI, some applica-

tions provide such a GUI. The best-known of these is probably the R commander

(cf. Fox 2005). The two figures below illustrate how, once the data have been

read into R, the U-test from Section 2.3 is computed with the R commander.

Figure 19.4. Choosing a U-test / two-sample Wilcoxon test in the R commander
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Figure 19.5. Performing a U-test / two-sample Wilcoxon test in the R commander

The reader may wonder why not all statistical tests in the present chapter

were introduced using the R commander. The main reason is that, while the

R commander is without doubt a great tool, it is nevertheless incomplete and

limited to what the package’s maintainer included in it. Since old functions are

improved and new functions/packages are developed all the time, the

R commander provides access to ‘only’ the (admittedly considerable number

of) functions included by the maintainer. Furthermore, the R commander is a

useful tool in that it always outputs the code that resulted from the user’s

choices. In my opinion, it is too easy to become overly dependent on it and

never get to see the real power that R provides as a programming language.

I therefore strongly encourage the reader to nearly always use the command

line; in the long run, this policy will pay off.
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