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1 Introduction

1.1 Why Another Introduction to Corpus Linguistics?

In some sense at least, this book is an introduction to corpus linguistics. If you are a little 
familiar with the field, this probably immediately triggers the question “Why yet another 
introduction to corpus linguistics?” This is a valid question because, given the upsurge of 
studies using corpus data in linguistics, there are also already quite a few very good intro-
ductions available. Do we really need another one? Predictably, I think the answer is still 
“yes” and “yes, even a second edition,” and the reason is that this introduction is radi-
cally different from every other introduction to corpus linguistics out there. For example, 
there are a lot of things that are regularly dealt with at length in introductions to corpus 
linguistics that I will not talk about much:

 • the history of corpus linguistics: Kaeding, Fries, early 1m word corpora, up to the 
contemporary giga corpora and the still lively web-as-corpus discussion;

 • how to compile corpora: size, sampling, balancedness, representativity;
 • how to create corpus markup and annotation: lemmatization, tagging, parsing;
 • kinds and examples of corpora: synchronic vs. diachronic, annotated vs. unannotated;
 • what kinds of corpus-linguistic research have been done.

That is to say, rather than telling you about the discipline of corpus linguistics – its history, 
its place in linguistics, its contributions to different fields, etc. – with this book, I will ‘only’ 
teach you how to do corpus-linguistic data processing with the programming language 
R (see McEnery and Hardie 2011 for an excellent recent introduction). In other words, 
this book presupposes that you know what you would like to explore but gives you tools 
to do it that go beyond what most commonly used tools can offer and, thus, hopefully 
also open up your minds about how to approach your corpus-linguistic questions. This 
is important since, to me, corpus linguistics is a method of analysis, so talking about how 
to do things should enjoy a high priority (see Gries 2010 and the rest of that special issue, 
as well as Gries 2011 for my subjective takes on this matter). Therefore, I will mostly be 
concerned with:

 • aspects of how exactly data are retrieved from corpora to be used in linguistically 
informed analyses, specifically how to obtain from corpora frequency lists, dispersion 
information, collocation displays, concordances, etc. (see Chapter 2 for explanation 
and exemplification of these terms);

 • aspects of data manipulation and evaluation: how to process and convert corpus data; 
how to save various kinds of results; how to import them into a spreadsheet pro-
gram for further annotation; how to analyze results statistically; how to represent the 
results graphically; and how to report your results.
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A second important characteristic of this book is that it only uses freely available software:

 • R, the corpus linguist’s all-purpose tool (cf. R Core Team 2016): a software which is 
a calculator, a statistics program, a (statistical) graphics program, and a programming 
language at the same time. The versions used in this book are R (www.r-project.org) 
and the freely available Microsoft R Open 3.3.1 (https://mran.revolutionanalytics.com/
open, the versions for Ubuntu 16.04 LTS (or Mint 18) and Microsoft Windows 10);

 • RStudio 0.99.1294 (www.rstudio.com);
 • LibreOffice 5.2.0.4 (www.libreoffice.org).

The choice of these software tools, especially the decision to use R, has a number of 
important implications, which should be mentioned early on. As I just mentioned, R 
is a full-fledged multi-purpose programming language and, thus, a very powerful tool. 
However, this degree of power does come at a cost: In the beginning, it is undoubtedly 
more difficult to do things with R than with ready-made (free or commercial) concord-
ancing software that has been written specifically for corpus-linguistic applications. For 
example, if you want to generate a frequency list of a corpus or a concordance of a word 
in a corpus with R, you must write a small script or a little bit of code in a programming 
language, which is the technical way of saying you write lines of text that are instructions 
to R. If you do not need pretty output, this script may consist of just a few lines, but it will 
often also be longer than that. On the other hand, if you have a ready-made concordancer, 
you click a few buttons (and enter a search term) to get the job done. One may therefore 
ask why go through the trouble of learning R? There is a variety of very good reasons for 
this, some of them related to corpus linguistics, some more general.

First, let me address this very argument, which is often made against using R (or other 
programming languages): why use a lot of time and effort to learn a programming lan-
guage if you can get results from ready-made software within minutes? With regard to 
the time that goes into learning R, yes, there is a learning curve. However, that time may 
not be as long as you think: Many participants in my bootcamps and other workshops 
develop a first good understanding of R that allows them to begin to proceed on their 
own within just a few days. Plus, being able to program is an extremely useful skill for 
academic purposes, but also for jobs outside of academia; I would go so far as to say that 
learning to program is extremely useful in how it develops, or hones, a particular way of 
analytical and rigorous thinking that is useful in general. With regard to the time that goes 
into writing a script, much of that usually needs to be undertaken only once. As you will 
see below, once you have written your first few scripts while going through this book, you 
can usually reuse (parts of) them for many different tasks and corpora, and the amount 
of time that is required to perform a particular task becomes very similar to that of using 
a ready-made program. In fact, nearly all corpus-linguistic tasks in my own research are 
done with (somewhat adjusted) scripts or small snippets of code from this book. In addi-
tion, once you explore how to write your own functions (see Section 3.10), you can easily 
write your own versatile or specialized functions yourself; I will make several of those 
available in subsequent chapters. This way, the actual effort of generating a frequency list, 
a collocate display, a dispersion plot, etc. often reduces to about the time you need with 
a concordance program. In fact, R may even be faster than competing applications: For 
example, some concordance programs read in the corpus files once before they are pro-
cessed and then again for performing the actual task – R requires only one pass and may, 
therefore, outperform some competitors in terms of processing time.

Another point related to the notion that programming knowledge is useful: The knowl-
edge you will acquire by working through this book is quite general, and I mean that in a 
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good way. This is because you will not be restricted to just one particular software appli-
cation (or even one version of one particular software application) and its restricted set 
of features. Rather, you will acquire knowledge of a programming language and regular 
expressions which will allow you to use many different utilities and to understand scripts 
in other programming languages, such as Perl or Python. (At the same time, I think R is 
simpler than Perl or Python, but can also interface with them via RSPerl and RSPython, 
respectively; see www.omegahat.org.) For example, if you ever come across scripts by 
other people or decide to turn to these languages yourself, you will benefit from know-
ing R in a way that no ready-made concordancing software would allow for. If you are 
already a bit familiar with corpus-linguistic work, you may now think “but why turn to 
R and not use Perl or Python (especially since you say Perl and Python are similar anyway 
and many people already use one of these languages)?” This is a good question, and I 
myself used Perl for corpus processing before I turned to R. However, I think I also have 
a good answer to why to use R instead. First, the issue of speed is much less of a problem 
than one may think. R is fast enough and stable enough for most applications (especially if 
you heed some of the advice given in Sections 3.6.3 and 3.10). Thus, if a script takes a bit 
of time, you can simply run it over lunch, while you are in class, or even overnight and col-
lect the results afterwards. Second, R has other advantages. The main one is probably that, 
in addition text-processing capabilities, R offers a large number of ready-made functions 
for the statistical evaluation and graphical representation of data, which allows you to 
perform just about all corpus-linguistic tasks within only one programming environment. 
You can do your data processing, data retrieval, annotation, statistical evaluation, graphi-
cal representation  . . .  everything within just one environment, whereas if you wanted to 
do all these things in Perl or Python, you would require a huge amount of separate pro-
gramming. Consider a very simple example: R has a function called table that generates 
a frequency table. To perform the same in Perl you would either have to have a small loop 
counting elements in an array and in a stepwise fashion increment their frequencies in a 
hash or, later and more cleverly, program a subroutine which you would then always call 
upon. While this is no problem with a one-dimensional frequency list, this is much harder 
with multidimensional frequency tables: Perl’s arrays of arrays or hashes of arrays etc. are 
not for the faint-hearted, whereas R’s table is easy to handle, and additional functions 
(table, xtabs, ftable, etc.) allow you to handle such tables very easily. I believe learning 
one environment can be sufficiently hard for beginners, and therefore recommend using 
the more comprehensive environment with the greater number of simpler functions, which 
to me clearly is R. And, once you have mastered the fundamentals of R and face situations 
in which you need maximal computational power, switching to Perl or Python in a limited 
number of cases will be easier for you anyway, especially since much of the programming 
languages’ syntaxes is similar and the regular expressions used in this book are all Perl 
compatible. (Let me tell you, though, that in all my years using R, there were a mere two 
instances where I had to switch to Perl and that was only because I didn’t yet know how 
to solve a particular problem in R.)

Second, by learning to do your analyses with a programming language, you usually 
have more control over what you are actually doing: Different concordance programs 
have different settings or different ways of handling searches that are not always obvious 
to the (inexperienced) user. For instance, ready-made concordance tools often have slightly 
different settings that specify what ‘a word’ is, which means you can get different results 
if you have different programs perform the same search on the same corpus. Yes, those 
settings can usually be tweaked, but that means that, actually, such a ready-made applica-
tion requires the same attention to detail as R, and with a programming language all of 
your methodological choices are right there in the code for everyone to see and replicate.
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Third, if you use a particular concordancing software, you are at the mercy of its 
developer. If the developers change its behavior, its results output, or its default settings, 
you can only hope that this is documented well and/or does not affect your results. There 
have been cases where even silent over-the-internet updates have changed the output of 
such software from one day to the next. Worse, developers might even discontinue the 
development of a tool altogether – and let us not even consider how sorry the state of the 
discipline of corpus linguistics would be if a majority of its practitioners was dependent 
on not even a handful of ready-made corpus tools and websites that allow you to search 
a corpus online. Somewhat polemically speaking, being able to enter a URL and type in a 
search word shouldn’t make you a corpus linguist.

The fourth and maybe most important reason for learning a programming language 
such as R is that a programming language is a much more versatile tool than any ready-
made software application. For instance, many ready-made corpus tools can only offer the 
functionality they aim to provide for corpora with particular formats, and then can only 
provide a small number of kinds of output. R, as a programming language, can handle 
pretty much any input and can generate pretty much any output you want – in fact, in my 
bootcamps, I tell participants on day 1 that I don’t want to hear any questions that begin 
with “Can R  . . . ?” because the answer is “Yes”. For instance, with R you can readily use 
the CELEX database, CHAT files from language acquisition corpora, the very hierarchi-
cally layered annotation of XML corpora, previously generated frequency lists for corpora 
you no longer have access to, literature files from Project Gutenberg or similar sites, tabu-
lar corpus files such as those from the Corpus of Contemporary American English (http://
corpus.byu.edu/coca) or the Corpus of Historical American English (http://corpus.byu.
edu/coha), and so on and so forth. You can use files of whatever encoding, meaning 
that data from any language/writing system can be straightforwardly processed, and R’s 
general data-processing capabilities are mostly only limited by your working memory 
and abilities (rather than, for instance, the number of rows your spreadsheet software 
can handle). With very few exceptions, R works identically on all three major operating 
systems: Linux/Unix, Windows, and Mac OS X. In a way, once you have mastered the 
basic mechanisms, there is basically no limit to what you can do with it, both in terms of 
linguistic processing and statistical evaluation.

But there are also additional important advantages in the fact that R is an open-source 
tool/programming language. For instance, there is a large number of functions and pack-
ages that are contributed by users all over the world. These often allow effective shortcuts 
that are not, or hardly, possible with ready-made applications, which you cannot tweak 
as you wish. Also, contrary to commercial concordance software, bug-fixes are usu-
ally available very quickly. And a final, obvious, and very down-to-earth advantage of 
using open-source software is of course that it comes free of charge. Any student or any 
department’s computer lab can afford it without expensive licenses, temporally limited or 
functionally restricted licenses, or irritating ads and nag screens. All this makes a strong 
case for the choice of software made here.

1.2 Outline of the Book

This book has changed quite a bit from the first edition; it is now structured as follows. 
Chapter 2 defines the notion of a corpus and provides a brief overview of what I con-
sider to be the most central corpus-linguistic methods, namely frequency lists, dispersion, 
collocations, and concordances; in addition, I briefly mention different kinds of annota-
tion. The main change here is the addition of some discussion of the important notion of  
dispersion.
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Chapter 3 introduces the fundamentals of R, covering a variety of functions from dif-
ferent domains, but the area which receives most consideration is that of text processing. 
There are many small changes in the code and the examples (for instance, I now introduce 
free-spacing), but the main differences to the first edition consist of: (1) a revision of the 
section on Unicode, which is now more comprehensive; (2) the addition of a new section 
specifically discussing how to get the most out of XML data using dedicated packages that 
can parse the hierarchical structure of XML documents; (3) an improved version of my 
exact.matches function; and (4) a new section on how to write your own functions for 
text processing and other things – this is taken up a lot in Chapter 5.

Chapter 4 is what used to be Chapter 5 in the first edition. It introduces you to  
some fundamental aspects of statistical thinking and testing. The questions to be covered 
in this chapter include: What are hypotheses? How do I check whether my results are 
noteworthy? How might I visualize results? Given considerations of space and focus, this 
chapter is informative, I hope, but still short.

The main chapter of this edition, Chapter 5, is brand new and, in a sense, brings it all 
together: More than 30 case studies in 27 sections illustrate various aspects of how the 
methods introduced in Chapters 3 and 4 can be applied to corpus data. Using a variety 
of different kinds of corpora, corpus-derived data, and other data, you will learn in detail 
how to write your own programs in R for corpus-linguistic analyses, text processing, and 
some statistical analysis and visualization in detailed step-by-step instructions. Every sin-
gle analysis is discussed on multiple levels of abstraction and altogether more than 6,000 
lines of code, nearly every one of them commented, help you delve deeply into how power-
ful a tool R can be for your work.

Finally, Chapter 6 is a very brief conclusion that points you to a handful of useful R 
packages that you might consider exploring next.

Before we begin, a few short comments on the nature of this book are necessary. This 
book is kind of a sister publication to my introduction to statistics for linguists (Gries 
2013), and shares with it multiple characteristics. For instance, and as already mentioned, 
this introduction to corpus linguistics is different from every other introduction to corpus 
linguistics I know in how it doesn’t even attempt to survey the discipline, but focuses on R 
programming for corpus linguists. This has two consequences. On the one hand, this book 
is not a book that requires much previous knowledge: It presupposes only basic (corpus-)
linguistic knowledge and no mathematical or any programming knowledge.

On the other hand, this book is an attempt to teach you a lot about how to be a good 
corpus linguist. As a good corpus linguist, you have to combine many different methodo-
logical skills (and many equally important analytical skills that I will not be concerned 
with here). Many of these methodological skills are addressed here, such as some very 
basic knowledge of computers (operating systems, file types, etc.), data management, reg-
ular expressions, some elementary programming skills, some elementary knowledge of 
statistics, etc. What you must know, therefore, is that (1) nobody has ever learned all of 
this just by reading – you must do things – and (2) this is not an easy book that you can 
read for ten minutes at a time in bed before you fall asleep. What these two things mean 
is that you really must read this book while you are sitting at your computer so you can 
run the code, see what it does, and work on the examples. This is particularly important 
because the code file from the companion website contains more than 6,500 lines of code 
and a huge amount of extra commentary to help you understand the code much better 
than you can understand it from just reading the book; this is particularly relevant for 
Chapter 5! You will need practice to master all the concepts introduced here, but will be 
rewarded by acquiring skills that give you access to a variety of data and approaches you 
may not have considered accessible to you – at least that’s what happened to me when I at 
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one point decided to leave behind the ready-made tools I had become used to. Undergrads 
in my corpus classes without prior programming experience have quickly learned to write 
small programs that do things better than many concordance software, and you can do 
the same.

In order to facilitate your learning process, there are four different ways in which I try 
to help you get more out of this book. First, there are small Think Breaks. These are small 
assignments which you should try to complete before you read on; answers to them follow 
immediately in the text. Second, there are exercise boxes with small assignments. Ideally, 
you should complete these and check your answers in the answer key before you read any 
further, but it is not always necessary to complete them right away to understand what fol-
lows, so you can also return to them later at your own leisure. Third, there are many boxes 
with recommendations for further study/exploration, which typically mention functions 
that you do not need for the section in which they are mentioned the first time, but many 
are used at a later stage (often this will be Chapter 5), which means I really encourage you 
to follow-up on those soon after you have encountered them. Fourth, and in addition to 
the above, I would like to encourage you to go to the companion website for this book at 
http://tinyurl.com/QuantCorpLingWithR, as well as the Google group “CorpLing with R”  
which I created and maintain. You need to go to the companion website to get all the files 
that belong with this book, but if you also become a member of the Google group:

 • you can send questions about corpus linguistics with R to the list and, hopefully, get 
useful responses from some kind soul(s);

 • post suggestions for revisions of this book there;
 • inform me and the other readers of errors you find and, of course, be informed when 

other people or I find errata.

Thus, while this is not an easy book, I hope these aids help you to become a good  
corpus linguist. If you work through the whole book, you will be able to do a large num-
ber of things you could not even do with commercial concordancing software; many of the 
scripts you find here are taken from actual research, and are in fact simplified versions of 
scripts I have used myself for published papers. In addition, if you also take up the many 
recommendations for further exploration that are scattered throughout the book, you will 
probably find ever new and more efficient ways of application.
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2 The Four Central Corpus-Linguistic  
Methods

This last point leads me, with some slight trepidation, to make a comment on our field in 
general, an informal observation based largely on a number of papers I have read as submis-
sions in recent months. In particular, we seem to be witnessing as well a shift in the way 
some linguists find and utilize data – many papers now use corpora as their primary data, 
and many use internet data.

(Joseph 2004: 382)

In this chapter you will learn what a corpus is (plural: corpora) and what the four methods 
are to which nearly all aspects of corpus-linguistic work can be reduced in some way.

2.1 Corpora

Before we start to actually look at corpus linguistics, we have to clarify our terminology a 
little. While the actual programming tasks do not differ between them, in this book I will 
distinguish between a corpus, a text archive, and an example collection.

2.1.1 What Is a Corpus?

In this book, the notion of a corpus refers to a machine-readable collection of (spoken 
or written) texts that were produced in a natural communicative setting, and in which  
the collection of texts is compiled with the intention (1) to be representative and bal-
anced with respect to a particular linguistic language, variety, register, or genre and  
(2) to be analyzed linguistically. The parts of this definition need some further clarifica-
tion themselves:

 • “Machine-readable” refers to the fact that nowadays virtually all corpora are stored 
in the form of plain ASCII or Unicode text files that can be loaded, manipulated, and 
processed platform-independently. This does not mean, however, that corpus linguists 
only deal with raw text files – quite the contrary: some corpora are shipped with 
sophisticated retrieval software that makes it possible to look for precisely defined 
lexical, syntactic, or other patterns. It does mean, however, that you would have a 
hard time finding corpora on paper, in the form of punch cards or digitally in HTML 
or Microsoft Word document formats; the probably most widely used format consists 
of text files with a Unicode UTF-8 encoding and XML annotation.

 • “Produced in a natural communicative setting” means that the texts were spoken 
or written for some authentic communicative purpose, but not for the purpose of 
putting them into a corpus. For example, many corpora consist to a large degree of 
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newspaper articles. These meet the criterion of having been produced in a natural 
setting because journalists write the article to be published in newspapers and to  
communicate something to their readers, not because they want to fill a linguist’s 
corpus. Similarly, if I obtained permission to record all of a particular person’s con-
versations in one week, then hopefully, while the person and his interlocutors usually 
are aware of their conversations being recorded, I will obtain authentic conversations 
rather than conversations produced only for the sake of my corpus.

 • I use “representative [ . . . ] with respect to a particular language, variety . . . ” here to 
refer to the fact that the different parts of the linguistic variety I am interested in should 
all be manifested in the corpus (at least if you want to generalize much beyond your 
sample, e.g., to the language in general). For example, if I was interested in phonologi-
cal reduction patterns of speech of adolescent Californians and recorded only parts of 
their conversations with several people from their peer group, my corpus would not be 
representative in the above sense because it would not reflect the fact that some sizable 
proportion of the speech of adolescent Californians may also consist of dialogs with a 
parent, a teacher, etc., which would therefore also have to be included.

 • I use “balanced with respect to a particular linguistic language, variety . . . ” to mean 
that not only should all parts of which a variety consists be sampled into the corpus, 
but also that the proportion with which a particular part is represented in a corpus 
should reflect the proportion the part makes up in this variety and/or the importance 
of the part in this variety (at least if you want to generalize much beyond your sam-
ple, e.g., to the language in general). For example, if I know that dialogs make up 65 
percent of the speech of adolescent Californians, approximately 65 percent of my 
corpus should consist of dialog recordings. This example already shows that this cri-
terion is more of a theoretical ideal: How would one even measure the proportion that 
dialogs make-up of the speech of adolescent Californians? We can only record a tiny 
sample of all adolescent Californians, and how would we measure the proportion of 
dialogs? In terms of time? In terms of sentences? In terms of words? And how would 
we measure the importance of a particular linguistic variety? The implicit assumption 
that conversational speech is somehow the primary object of interest in linguistics also 
prevails in corpus linguistics, which is why corpora often aim at including as much 
spoken language as possible, but on the other hand a single newspaper headline read 
by millions of people may have a much larger influence on every reader’s linguistic 
system than 20 hours of dialog. In sum, balanced corpora are a theoretical ideal cor-
pus compilers constantly bear in mind, but the ultimate and exact way of compiling a 
balanced corpus has remained mysterious so far. 

It is useful to point out, however, that the above definition of a corpus is perhaps the 
prototype, which implies that there are many other corpora that differ from the proto-
type and other kinds of corpora along a variety of dimensions. For instance, the TIMIT 
Acoustic-Phonetic Continuous Speech Corpus is made up of audio recordings of 630 
speakers of eight major dialects of American English, where each speaker read phoneti-
cally rich sentences, a setting which is not exactly a natural communicative setting. Or 
consider the DCIEM Map Task Corpus, which consists of unscripted dialogs in which 
one interlocutor describes a route on a map to the other after both interlocutors were 
subjected to 60 hours of sleep deprivation and one of three drug treatments – again, 
hardly a normal situation. Even a genre as widely used as newspaper text – journalese –  
is not necessarily close to being a prototypical corpus, given how newspaper writing 
is created much more deliberately and consciously than many other texts – plus they 
often come with linguistically arbitrary restrictions regarding their length, are often not  
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written by a single person, and are heavily edited, etc. Thus, the notion of corpus is really 
a rather diverse one.

Many people would prefer to consider newspaper data not corpora, but text archives. 
Those would be databases of texts which

 • may not have been produced in a natural setting;
 • have often not been compiled for the purposes of linguistic analysis; and
 • have often not been intended to be representative and/or balanced with respect to a 

particular linguistic variety or speech community. 

As the above discussion already indicated, however, the distinction between corpora and 
text archives is often blurred. It is theoretically easy to make, but in practice often not 
adhered to very strictly and, again, has very few implications for the kinds of (R) program-
ming they require. For example, if a publisher of a popular computing periodical makes all 
the issues of the previous year available on their website, then the first criterion is met, but 
not the last three. However, because of their availability and size, many corpus linguists 
use them as resources, and as long as one bears their limitations in mind in terms of rep-
resentativity etc., there is little reason not to.

Finally, an example collection is just what the name says it is – a collection of examples 
that, typically, the person who compiled the examples came across and noted down. For 
example, much psycholinguistic research in the 1970s was based on collections of speech 
errors compiled by the researchers themselves and/or their helpers. Occasionally, people 
refer to such collections as error corpora, but we will not use the term corpus for these. It is 
easy to see how such collections compare to corpora. On the one hand, for example, some 
errors – while occurring frequently in authentic speech – are more difficult to perceive than 
others and thus hardly ever make it into a collection. This would be an analog to the balanc-
edness problem outlined above. On the other hand, the perception of errors is contingent 
on the acuity of the researcher while, with corpus research, the corpus compilation would 
not be contingent on a particular person’s perceptual skills. Finally, because of the scarcity 
of speech errors, usually all speech errors perceived (in a particular amount of time) are 
included into the corpus, whereas, at least usually and ideally, corpus compilers are more 
picky and select the material to be included with an eye to the criteria of representativity and 
balancedness outlined above.1 Be that as it may, if only for the sake of terminological clar-
ity, it is useful to distinguish the notions of corpora, text archives, and example collections.

2.1.2 What Kinds of Corpora Are There?

Corpora differ in a variety of ways. There are a few distinctions you should be familiar with 
if only to be able to find the right corpus for what you want to investigate. The most basic 
distinction is that between general corpora and specific corpora. The former intend to be 
representative and balanced for a language as a whole – within the above-mentioned limits, 
that is – while the latter are by design restricted to a particular variety, register, genre, etc.

Another important distinction is that between raw corpora and annotated corpora. Raw 
corpora consist of files only containing the corpus material (see (1) in the example below), 
while annotated corpora in addition also contain additional information. Annotated cor-
pora are very often annotated according to the standards of the Text Encoding Initiative 
(TEI, www.tei-c.org/index.xml) or the Corpus Encoding Standard (CES, www.cs.vassar.
edu/CES), and have two parts. The first part is called the header, which provides infor-
mation that is typically characterized as markup. This is information about (1) the text 
itself, e.g., where the corpus data come from, which language is represented in the file, 
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which (part of a) newspaper or book has been included, who recorded whom, where, and 
when, who has the copyright, what annotation comes with the file; and information about  
(2) its formatting, printing, processing, etc. Markup refers to objectively codable infor-
mation – the fact that there is a paragraph in a text or that a particular speaker is female 
can typically be made without doubt; this is different from annotation, which is usually  
specifically linguistic information – e.g., part-of-speech (POS) tagging, semantic infor-
mation, pragmatic information, etc. – and which is less objective (for instance, because 
linguists may disagree about POS tags for specific words). This information helps users 
to quickly determine, e.g., whether a particular file is part of the register one wishes to 
investigate or not.

The second part is called the body and contains the corpus data proper – i.e., what people 
actually said or wrote – as well as linguistic information that is usually based on some lin-
guistic theory: Parts of speech or syntactic patterns, for example, can be matters of debate. 
In what follows I will briefly (and non-exhaustively!) discuss and exemplify a few common 
annotation schemes (see Wynne 2005; McEnery, Xiao, & Tono 2006: A.3 and A.4; Beal, 
Corrigan, & Hermann 2007a, 2007b; Gries & Newman 2013 for more discussion).

First, a corpus may be lemmatized such that each word in the corpus is followed (or 
preceded) by its lemma, i.e., the form under which you would look it up in a dictionary 
(see (2)). A corpus may have so-called part-of speech tags so that each word in the corpus 
is followed by an abbreviation giving the word’s POS and sometimes also some morpho-
logical information (see (3)). A corpus may also be phonologically annotated (see (4)). 
Then, a corpus may be syntactically parsed, i.e., contain information about the syntactic 
structures of the text/utterances (see (5)). Finally, and as a last example, a corpus may 
contain several different annotations on different lines (or tiers) at the same time, a format 
especially common in language acquisition corpora (see (6)).

(1) I did get a postcard from him.
(2) I_I did_do get_get a_a postcard_postcard from_from him_he._punct
(3)  I<PersPron> did<VerbPast> get<VerbInf> a<Det> postcard<NounSing> 

from<Prep> him<PersPron>.<punct>
(4) [@:]·I·^did·get·a·!p\ostcard·fr/om·him#·-·-
(5) <Subject,·NP>
  I<PersPron>
 <Predicate,·VP>
  did<Verb>
  get<Verb>
  <DirObject,·NP>
   a<Det>
   postcard<NounSing>
  <Adverbial,·PP>
   from<Prep>
   him<PersPron>.
(6) *CHI: I did get a postcard from him
 %mor:  pro|I·v|do&PAST·v|get·det|a·n|postcard·prep|from· 

pro|him·.
 %lex: get
 %syn: trans

Other annotation includes that with regard to semantic characteristics, stylistic aspects, 
anaphoric relations (co-reference annotation), etc. Nowadays, most corpora come in the 
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form of XML files, and we will explore many examples involving XML annotation in the 
chapters to come. As is probably obvious from the above, annotation can sometimes be 
done completely automatically (possibly with human error-checking), semi-automatically, 
or must be done completely manually. POS tagging, the probably most frequent kind of 
annotation, is usually done automatically, and for English taggers are claimed to achieve 
accuracy rates of 97 percent – a number that I sometimes find hard to believe when I look 
at corpora, but that is a different story.

Then, there is a difference between diachronic corpora and synchronic corpora. The 
former aim at representing how a language/variety changes over time, while the latter 
provide, so to speak, a snapshot of a language/variety at one particular point in time. Yet 
another distinction is that between monolingual corpora and parallel corpora. As you 
might already guess from the names, the former have been compiled to provide informa-
tion about one particular language/variety, whereas the latter ideally provide the same 
text in several different languages. Examples include translations from EU Parliament 
debates into the 23 languages of the European Union, or the Canadian Hansard corpus, 
containing Canadian Parliament debates in English and French. Again, ideally, a parallel 
corpus does not just have the translations in different languages, but has the transla-
tions sentence-aligned, such that for every sentence in language L1, you can automatically 
retrieve its translation in the languages L2 to Ln.

The next distinction to be mentioned here is that of static corpora vs. dynamic/moni-
tor corpora. Static corpora have a fixed size (e.g., the Brown corpus, the LOB corpus, the 
British National Corpus), whereas dynamic corpora do not since they may be constantly 
extended with new material (e.g., the Bank of English).

The final distinction I would like to mention at least briefly involves the encoding of 
the corpus files. Given especially the predominance of work on English in corpus linguis-
tics, until rather recently many corpora came in the so-called ASCII (American Standard 
Code for Information Interchange) character encoding, an encoding scheme that encodes 
27 = 128 characters as numbers and that is largely based on the Western alphabet. With 
these characters, special characters that were not part of the ASCII character inventory 
were often paraphrased, e.g., “é” was paraphrased as “&eacute;”. However, the number 
of corpora for many more languages has been increasing steadily, and given the large 
number of characters that writing systems such as Chinese have, this is not a practi-
cal approach. As such, language-specific character encodings were developed (e.g., ISO 
8859-1 for Western European Languages vs. ISO 2022 for Chinese/Japanese/Korean lan-
guages). However, in the interest of overcoming compatibility problems that arose due to 
how different languages used different character encodings, the field of corpus linguistics 
has been moving towards using only one unified (i.e., not language-specific) multilingual 
character encoding in the form of Unicode (most notably UTF-8). This development is 
in tandem with the move toward XML corpus annotation and, more generally, UTF-8 
becoming the most widely used character encoding on the internet.

Now that you know a bit about the kinds of corpora that exist, there is one other really 
important point to be made. While we will see below that corpus linguistics has a lot to 
offer to the analyst, it is worth pointing out that, strictly speaking at least, the only thing 
corpora can provide is information on frequencies. Put differently, there is no meaning in 
corpora, and no functions, only:

 • frequencies of occurrence of items – i.e., how often do morphemes, words, grammatical  
patterns, etc. occur in (parts of) a corpus?; and

 • frequencies of co-occurrence of items – i.e., how often do morphemes occur with particular 
words? How often do particular words occur in a certain grammatical construction? etc. 
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It is up to the researcher to interpret these frequencies of occurrence and co-occurrence 
in meaningful or functional terms. The assumption underlying basically all corpus-based 
analyses, however, is that formal differences reflect functional differences: Different 
frequencies of (co-)occurrences of formal elements are supposed to reflect functional  
regularities, where functional is understood here in a very broad sense as anything – be 
it semantic, discourse-pragmatic, etc. – that is intended to perform a particular com-
municative function. On a very general level, the frequency information a corpus offers  
is exploited in four different ways, which will be the subject of this chapter: frequency 
lists (Section 2.2), dispersion (Section 2.3), lexical co-occurrence lists/collocations  
(Section 2.4), and concordances (Section 2.5).

2.2 Frequency Lists

The most basic corpus-linguistic tool is the frequency list. You generate a frequency list 
when you want to know how often something – usually words – occur in a corpus. Thus, 
a frequency list of a corpus is usually a two-column table with all words occurring in the 
corpus in one column and the frequency with which they occur in the corpus in the other 
column. Since the notion of word is a little ambiguous here, it is useful to introduce a 
common distinction between (word) type and (word) token. The string “the word and 
the phrase” contains five (word) tokens (“the”, “word”, “and”, “the”, and “phrase”), 
but only four (word) types (“the”, “word”, “and”, and “phrase”), of which one (“the”) 
occurs twice. In this parlance, a frequency list lists the types in one column and their token 
frequencies in the other; often you will find the expression type frequency referring to the 
number of different types attested in a corpus (or in a ‘slot’ such as a syntactically defined 
slot in a grammatical construction).

Typically, one out of three different sorting styles is used: frequency order (ascending 
or, more typically, descending; see the left panel of Table 2.1), alphabetical (ascending or 
descending), and occurrence (each word occurs in a position reflecting its first occurrence 
in the corpus).

Apart from this simple form in the leftmost panel, there are other varieties of frequency 
lists that are sometimes found. First, a frequency list may provide the frequencies of all 
words together with the words with their letters reversed. This may not seem particu-
larly useful at first, but even a brief look at the second panel of Table 2.1 clarifies that 
this kind of display can sometimes be very helpful because it groups together words that 
share a particular suffix – here the adverb marker -ly. Second, a frequency list may not list 
each individual word token and their frequencies, but so-called n-grams, i.e., sequences of  

Table 2.1 Examples of differently ordered frequency lists

Words Freq. Words Freq. Bigrams Freq. Words Tags Freq.

the 62,580 yllufdaerd 80 of the 4,892 the AT0 6,069
of 35,958 yllufecaep 1 in the 3,006 of PRF 4,106
and 27,789 yllufecarg 5 to the 1,751 a AT0 2,823
to 25,600 yllufecruoser 8 on the 1,228 and CJC 2,602
a 21,843 yllufeelg 1 and the 1,114 in PRP 2,449
in 19,446 yllufeow 1 for the 906 to TO0 1,678
that 10,296 ylluf 2 at the 832 is VBZ 1,589
is  9,938 yllufepoh 8 to be 799 to PRP 1,135
was  9,740 ylluferac 87 with the 783 for PRP 916
for  8,799 yllufesoprup 1 from the 720 be VBI 874
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n words such as bigrams (where n = 2, i.e., word pairs) or trigrams (where n = 3, i.e., word 
triples) and their frequencies; see the third panel of Table 2.1 for an example involving 
bigrams. Finally, frequency lists may not just be of words or n-grams, but also of combina-
tions of units such as words and their POS tags: In the rightmost panel of Table 2.1 you 
can see that two differently tagged versions of “to” are distinguished – one tagged as the 
infinitive marker (TO0), the other as a preposition (PRP). With the right kind of annota-
tion, similar lists could be generated of words with particular senses or other interesting 
combinations of things; in the chapters that follow, you will learn to create all of the lists 
exemplified in Table 2.1.

Frequency lists are sometimes more problematic than they seem because they presup-
pose that the linguist (and/or his computer program) has a definition of what a word is 
and that this definition is shared by other linguists (and their computer programs). This 
need not be the case, however, as the following exercise will demonstrate.

Exercise 2.1 What Is a Word, or What Do You Think Your  
Computer Thinks a Word Is?

1 Write up a plain English definition of how you would ‘tell a computer program’ 
what a word is. When you are finished, do the next exercise.

2 How does your definition handle the expressions better-suited and ill-defined? 
How does it handle armchair-linguist and armchair linguist and armchair- 
linguist’s? Or because of and in spite of? How does it handle www.linguistics.
ucsb.edu? How does it handle This and this? Or O.M.F.G? How does it handle 
1960 and 25-year-old? And favor and favour? And Peter’s car, Peter’s come 
home, and Peter’s sick? And what about позволено (Cyrillic) or 宜蘭童玩節停辦  
(Mandarin Chinese) in an English text?

Bear in mind, therefore, that you need to exercise at least some caution in comparing 
frequency lists from different sources.2 Another noteworthy aspect is that frequency lists 
are often compiled so as not to include types from a so-called stop list. For example, one 
can often exclude a variety of frequent function words such as the, of, and, etc., because 
these are often not particularly revealing given that they occur nearly equally frequently 
everywhere.3

For what follows below, it is useful to introduce the distinction between a lemma and 
a word-form: go, goes, going, went, and gone are all different word-forms but belong to 
the same lemma, namely go; in the remainder of this chapter I will only use word where 
the difference between lemma and word-form/token is not relevant. Computer programs 
normally define word-tokens as a sequence of alphabetic (or alphanumeric) characters 
uninterrupted by whitespace (i.e., spaces, tabs, and newlines) and allow the user to specify 
what to do with hyphens, apostrophes, and other special characters.

Frequency lists are useful for a variety of purposes. For example, much contemporary 
work in usage-based linguistics assumes that the type and token frequencies of linguistic 
expressions are correlated with the degrees of productivity and cognitive entrenchment of 
these expressions, and studies such as, e.g., Bybee and Scheibman (1999) and Jurafsky, 
Bell, Gregory, and Raymond (2000) related frequencies of expressions to their readiness 
to undergo processes of phonological reduction and grammaticalization. For example, 
Bybee and Scheibman (1999) show that the vowel in don’t is more likely to be reduced 
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to schwa in frequent expressions such as I don’t know (as opposed to, say, They don’t  
integrate easily). In psycholinguistics, models of language production have long incor-
porated frequency effects, but there is now a growing body of work suggesting that 
information on percentages, conditional probabilities, surprisal, etc. of all kinds is repre-
sented in the linguistic systems of speakers and, thus, plays a primary role on all levels of 
linguistic analysis. On the more practical side of things, word frequency lists are useful for 
choosing experimental stimuli correctly – for example, the logs of frequencies of words are 
correlated with reaction times to these words (in priming or naming studies), which often 
makes it necessary to control for such effects in order not to bias one’s results. Also, you 
may want to do a study on tip-of-the-tongue states and, thus, make sure the words you 
use are sufficiently infrequent.

A much more applied example, which we will also be concerned with below, involves 
the identification of words that are (significantly) overrepresented in one (target) corpus 
as compared to another (typically larger and more balanced reference) corpus. This can 
be used to identify the words that are most characteristic of a particular domain: A word 
that is about equally frequent in a particular target corpus and a reference corpus is prob-
ably not very revealing in terms of what the smaller corpus is about. However, if a target 
corpus contains the words economic, financial, shares, stocks much more often than a 
balanced reference corpus, guessing the topics covered in the smaller corpus is straightfor-
ward. This kind of approach can be used to generate lists of important, or key, vocabulary 
for language learners.

In the domain of natural language processing or computational linguistics, the fre-
quency of items is relevant to, among other things, speech recognition. For example, 
imagine a computer gets ambiguous acoustic input in a noisy environment and tries to 
recognize which word is manifested in the input. If the computer cannot identify the 
input straightforwardly, one (simplistic) strategy would be for it to assume that the word 
it hears is the most frequent one of all those that are compatible with the acoustic input. 
Another area of interest is, for example, spelling error correction, where frequency lists 
can be useful in two ways: First, for the computer to recognize that a string is perhaps a 
typo because it neither occurs in a gold-standard frequency list of words of the input lan-
guage nor in, say, a list of named entities; second, for the computer to rank suggestions 
for correction such that the computer first determines a set of words that are sufficiently 
similar to the user’s input and then ranks them according to their similarity to the input 
and their frequency. From a methodological perspective, frequency lists are useful for 
computing many co-occurrence statistics. Finally, frequency lists may reflect sociocul-
tural differences.

2.3 Dispersion Information

A characteristic of words that is often, but not necessarily, correlated with their frequen-
cies is their dispersion: words that are very similar in terms of their overall frequency in 
a corpus may be very differently distributed in a corpus. For instance, Leech, Rayson, 
and Wilson (2001) showed that the words HIV, keeper, and lively are about equally fre-
quent in the 100 million-word British National Corpus (about 16 occurrences per million 
words), but are quite differently distributed in the corpus: keeper and lively occur in 97 
out of 100 equally sized corpus parts, whereas HIV only occurs in 62 of the same 100 
parts. This indicates that it is used more clumpily: usage is less wide, but where it is used 
it is frequent. Crucially, while very frequent words will usually be dispersed quite evenly 
in a corpus and while very rare words will usually be dispersed quite unevenly in a corpus, 
words in the middle range of frequencies can behave like HIV and lively: being equally 
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frequent but very differently distributed. Thus, it is very important to not rely only on the 
frequency of words, but also to consider how (un)evenly words are dispersed (see Gries 
2008, 2010; Liffijt & Gries 2012).

Dispersion is often explored visually, but can also be quantified. The left panel of 
Figure 2.1 shows a dispersion plot, in which the x-axis represents a corpus from beginning 
to end – here the ‘corpus’ is just an older Wikipedia entry on the programming language 
Perl – and every occurrence of the string “perl” is represented by a vertical line. It is easy 
to see that there are very many occurrences of that string at the end (i.e., in the reference 
section), but that there are also longer stretches where it does not occur at all. The right 
panel represents the same data with a more coarse-grained resolution, namely when the 
‘corpus’ has been binned, i.e., split into equally sized parts (here, ten): We can see that 
“perl” occurs less often in the part 30–50 percent of the file, and particularly frequently 
in the last 10 percent of the corpus. Also, the subtext under the x-axis label quantifies the 
dispersion using an index I proposed in Gries (2008) and validated in Gries (2010), as well 
as Biber and Reppen (forthcoming): The closer the value of DP is to 0, the more evenly the 
expression is distributed; the closer it is to 1, the more unevenly the expression is distrib-
uted. You will later learn how to create Figure 2.1 and compute DP yourself.

2.4 Lexical Co-occurrence: Collocations

One of the most central methodological concepts in corpus linguistics is that of  
co-occurrence. Corpus linguists have basically been concerned with three different kinds 
of co-occurrence phenomena:

1 Collocation: the probabilistic co-occurrence of word-forms such as different from vs. 
different to vs. different than, or the absolute frozenness of expressions such as kith 
and kin or by and large.

2 Colligation: the co-occurrence of words with grammatical phenomena such as parts 
of speech, grammatical relations, or ‘definiteness’, such as the preference of conse-
quence to occur as a complement (but not an adverbial) and with indefinite articles.

Figure 2.1 Representational format of corpus files and data frames.

The distribution of >perl< in the corpus The distribution of >perl< in the corpus
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3 (Grammar) patterns or collostructions: the co-occurrence of words/lemmas with mor-
phosyntactic patterns or constructions (in the construction grammar sense) such as the 
ditransitive construction or the cleft construction such as the preference of to hem to 
occur in the passive; or the association of the ditransitive to forms of the verb to give.

In this section we will restrict ourselves to collocations because they are a natural 
extension of frequency lists; later in the book, we will of course deal with other 
kinds of co-occurrence, too. Collocations are co-occurrences of words, which are 
then referred to as collocates. Often, one uses the letters L and R (for ‘left’ and 
‘right’) together with a number indicating the position of one collocate with respect 
to the main/node word to talk about collocations. For example, if you call up a 
concordance of the word difference, then you will most certainly find that the most 
frequent L1 collocate is the while the most frequent R1 collocate is between. Thus, a 
collocate display for a word tells you which other words occur at different positions 
around the target word and how frequently. In other words, a collocate display is 
a list of frequency lists for particular positions around a word. To look at a simple 
example with two adjectives, consider the two adjectives alphabetic and alphabetical:  
Table 2.2 is a collocate display of alphabetic; the strings in angular brackets are word 
class tags (see www.natcorp.ox.ac.uk/docs/URG/posguide.html). Table 2.3 is a collocate 
display of alphabetical.

Note that all this means that a collocate display is read vertically: Row 1 of Table 2.2 
does not tell you anything about a string of alphabetic literacy – it tells you that of is the 
most frequent word at L1 (occurring there eight times) and that literacy is the most fre-
quent word at R1 (with seven occurrences).

Table 2.2 A collocate display of alphabetic based on the BNC

Word at L1 Freq. L1 Node word Freq. node Word at R1 Freq. R1

<w prf>of 8 <w aj0>alphabetic 42 <w nn1>literacy 7
<w at0>the 6 <w nn1>writing 5
<w at0>an 5 <w nn1>order 3
<w prp>in 2 <w nn1>character 3
<w prp>such as 2 <w cjc>and 2
<w dps>our 2 <w nn1>system 2
<w cjs>when 2 <w nn2>characters 2
<w aj0> widespread 1 <w nn1>culture 2
<w nn2>systems 1 <w prp>in 1
<w aj0>varying 1 <c pun>. 1

Now, if we compare the R1 collocates of alphabetic and alphabetical, can you already 
discern a tendency of the specific semantic foci of the two adjectives?

The difference between the two adjectives can probably be paraphrased easiest by stat-
ing what the opposites of the two adjectives are. My suggestion would be that the opposite 

THINK

BREAK
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of alphabetic is numeric, whereas the opposite of alphabetical is unordered, but a more 
refined look at the data may reveal a more precise picture.

Collocate displays are an important tool within semantics and lexicography  
(cf. Sinclair 1987; Stubbs 1995) as well as language teaching (cf. Lewis 2000); the 
phenomenon of near synonymy is a particularly fruitful area of application. Consider, 
for example, the English adjectives fast, quick, rapid, and swift (as you will later in 
Section 5.3.5). While we would be hard-pressed to immediately explain the differences 
between these semantically extremely similar expressions, inspecting the position R1 
in collocate displays for these adjectives might give us a very good clue as to the nouns 
these adjectives usually modify attributively and invite semantic or other distributional 
regularities.

Another area of application is what has been referred to as semantic prosody, i.e., the 
fact that collocates of some word w may imbue w with a particular semantic aura even 
though this aura is not part of the semantics of w proper. One of the standard textbook 
examples is the English verb to cause. As you probably sense intuitively, to cause pri-
marily, though not exclusively, collocates with negative things (problem, damage, harm, 
havoc, distress, inconvenience, etc.), although causing as such need not be negative at all. 
This is not only a theoretically interesting datum, it also has implications for, say, research 
on irony and foreign language teaching since, for example, if a foreign language learner 
uses a word w without being aware of w’s semantic prosody, this may result in comical 
situations or, more seriously, communicating unwanted implications.

2.5 (Lexico-)Grammatical Co-occurrence: Concordances

However useful collocate displays are, for many kinds of analysis they are still not opti-
mal. On the one hand, it is obvious that collocate displays usually provide information 
on lexical co-occurrence, but the number of grammatical features that is amenable to 
an investigation by means of collocates alone is limited. On the other hand, even the 
investigation of lexical co-occurrence by means of collocate displays can be problem-
atic. If you investigate near-synonymous adjectives such as big, great, and large (or 
deadly, fatal, and lethal) by looking at R1, you reduce both the precision and the recall 
of your results:

 • Precision is defined as the quotient of the number of accurate matches returned by 
your search divided by the number of all matches returned by your search. The col-
locate approach may reduce precision because the R1 collocate of big in big shiny 

Table 2.3 A collocate display of alphabetical based on the BNC

Word at L1 Freq. L1 Node word Freq. node Word at R1 Freq. R1

<w prp>in 77 <w aj0>alphabetical 234 <w nn1>order 89
<w at0>an 36 <w nn1>index 15
<w at0>the 23 <w nn1>list 13
<w prf>of  6 <w nn1>indexing 12
<w cjc>and  6 <w nn1>subject 12
<c pun>.  6 <w nn1>sequence 11
<c pun>,  6 <w nn1>listing  9
<w aj0>ascending  5 <w nn1>guest  6
<w cjc>or  5 <w cjc>and  5
<w aj0>strict  4 <w nn1>description  2
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tricorder is shiny rather than tricorder, and the inclusion of shiny, while of course 
accurate, may not tell you as much about the semantics of big as tricorder.4

 • Recall is defined as the number of accurate matches returned by your search divided 
by the number of all possible accurate matches in the data. The R1 collocate approach 
may reduce recall because, as we have seen above, you miss tricorder in big shiny 
tricorder. 

The final method to be introduced here addresses this problem, though at a cost. This 
method, probably the most widespread corpus-linguistic tool, is the concordance. You 
generate a concordance if you want to know in which (larger and more precise) contexts 
a particular word is used. Thus, a concordance of a word w is a display of every occur-
rence of w together with a user-specified context; it is often referred to as KWIC (Key 
Word In Context) display.5 This user-specified context is often either the whole sentence 
in which the word in question occurs (usually with some highlighting or bracketing; 
see the use of “[[” and “]]” in Table 2.4) or the word in question in a central column 
together with a user-specified number of words or characters to its left and its right 
(see Table 2.5 for an example). Especially the display in Table 2.5 is useful because it 
can be imported into spreadsheet software and then be sorted in various ways, such as 
according to the words at R1. Obviously, unlike collocate displays, concordances are 
read horizontally just like normal (parts of) sentences, which is what they in fact show.

While the concordance displays in Table 2.4 and Table 2.5 are not always easily 
exploitable, they are maximally comprehensive: you can look at your search word and 
every possible linguistic element and how (frequently) it co-occurs with it (not just words 
as in the collocate display), but the price you have to pay is that you can usually not 
extract this information semi-automatically as in the collocate display. In other words, 

Table 2.4 An example display of a concordance of before and after (sentence display)

# Match

1 at that time and erm, we had a lot of German shutters and cameras in museum [[before]] 
September the third on September the fourth when I got to work they were all out.

2 It will be easy enough to bleach them with some Milk of Magnesia the night [[before]] he 
comes home.

3 And as, as we said [[before]], erm, many of the, erm people who lived in the poorer parts 
of erm the country, whether in urban or rural En erm England didn’t really know about 
basic nutrition and and health I mean you just 

4 They should be kept in an airtight jar, and rinsed in methylated spirits [[before]] wearing.
5 Yes if you looked [[after]] a child.
6 And erm some immediately post-war recipe books and I’m sure you know if you’d like to 

look at them [[after]] I’ve finished talking you might even remember some of the er the 
er My wife still uses the.

7 This was covered by a biscuit tin lid on top of which was a kettle filled with water for an 
[[after]] dinner cup of tea and the washing up.

8 [[After]] the blitz on London in September nineteen forty, the government introduced a 
scheme whereby payments for damage to the furniture of persons earning less than four 
hundred pounds a year would be made, up to one hundred percent of th

9 There was a campaign [[after]] the war to bring back Tottenham puddings they had 
somebody in Harlow who was Well what was, what, what was Tottenham pudding 
then.

10 [[After]] Japan’s entry into the war all imports of rubber from the far east were suspended.
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concordances usually need manual analysis and annotation: In the example of big shiny 
tricorder from above, for example, if your corpus is not syntactically annotated, you 
must read the concordance line(s) yourself to determine that big modifies tricorder. Given 
the maximal explicitness, the utility of concordances is only limited by this latter fact: 
Inspecting a three-million-line concordance of some word is simply not feasible, and in 
those cases one normally resorts to statistical techniques to filter out the relevant patterns 
and/or only investigates a sample of the concordance, hoping it will reflect the overall 
tendency well enough.

Notes
1 It is only fair to mention, however, that (1) error collections have proven extremely useful in spite 

of what, from a strict corpus linguistic perspective, may be considered shortcomings, and that (2) 
compilers of corpora of lesser-spoken languages such as typologists investigating languages with 
few written records suffer from just the same data scarcity problems.

2 One important characteristic of language is reflected in nearly all frequency lists. When you 
count how often each type occurs in a particular corpus, you usually get a skewed distribution 
such that

1 a few types – usually short function words – account for the lion’s share of all tokens  
(for example, in the Brown corpus, the ten most frequent types out of approximately all 
41,000 different types (i.e., only 0.02 percent of all word types) already account for nearly 
24 percent of all tokens); and

2 most tokens occur rather infrequently (for example, 16,000 of the tokens in the Brown  
corpus occur only once).

These observations are a subset of Zipf’s laws, the most famous of which states that the frequency 
of any type is approximately proportional to its rank in a frequency list, and such a distribution 
is often referred to as a Zipfian distribution.

3 Even if the term stop list is new to you, you are probably already familiar with the concept: Search 
engines often omit function words that are entered into their search fields.

4 Note, however, that this may turn into an interesting finding once you find that some adjectives 
exhibit a tendency for such kinds of additional premodification, while others don’t. Also, note in 
passing that in the context of regular expressions, precision and recall are sometimes referred to 
as specificity and sensitivity, respectively.

5 Strictly speaking, a concordance does not have to list every occurrence of a word in a corpus. 
Some programs output only a user-specified number of occurrences, usually either the first n 
occurrences in the corpus or n randomly chosen occurrences from the corpus.

Table 2.5 An example display of a concordance of before and after (tabular)

L1 Node R1 R2

museum before September the
night before he comes
said before erm many
spirits before wearing
looked after a child
them after I ’ve
an after dinner cup

After the blitz
campaign after the war

After Japan ’s
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3 An Introduction to R

But writing new scripts requires programming skills that are probably beyond the capabilities  
of the average corpus linguist.

(Meyer 2002: 114f.)

In this chapter you will learn the foundations of R that will enable you to load, process, 
and store data, as well as perform simple and more complex operations on text. Thus, this 
chapter prepares you for the statistical applications in Chapter 4, but especially the linguistic 
applications in Chapter 5. Let’s begin with the installation of the relevant software: R and 
RStudio. In this book I am primarily using Microsoft R Open (MRO), which is full compat-
ible with default R, but enhanced in a variety of ways (and all code presented here has been 
tested on Windows 10 and Kubuntu 16.04/Mint 18). These are the relevant steps:

1 Download MRO for your operating system from the MRAN site at https://mran.
revolutionanalytics.com/download/#download; if you are not using Mac OS X, also 
download the MKL Math Library. Click on Next Steps and follow the instructions 
for your operating system to install both MRO and the Math Library; alternatively, 
download ‘default R’ from https://cran.r-project.org.

2 Download the RStudio Desktop version for your operating system from www.rstudio. 
com/products/rstudio/download.

That’s it. You can now start and use R either by starting MRO or, better, by starting 
RStudio, which will start an R instance, but within a powerful integrated development 
environment. In this book, with one exception (on page 23), we will always use RStudio. 
The normal situation of working with RStudio involves that you have either created a 
new R script (by clicking on “File: New File: R script” or opened an existing R script by 
double-clicking on one (the recommended default) or opening it from within RStudio with 
“File: Open File”. If you do that, your RStudio instance will have four panes:

1 A pane called Untitled1 (if you just created a new empty R script) or that has the name 
of the R script file you double-clicked on. In this pane, which is essentially a powerful 
programming editor with syntax-highlighting and many other features, you can write R 
code that you want R to execute later. I recommend you do all your script writing there, 
not in the console, so that you can more easily write, edit, debug, and save your code.

2 A pane called Console (followed by your current working directory). This is where R 
runs the code you typed in the first pane and where R provides statistical/text results; 
note that when you have written code in the first pane, you do not have to copy it 
there and paste it into the console pane – any code that is highlighted in the first pane, 
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or even just the line that the cursor is currently in, can be executed simply by pressing 
CTRL + ENTER, which will take the code, “put it” into the console and run it there.

3 A pane with tabs called Environment, History, and maybe others, which lists all data 
structures and user-defined functions currently in R’s working memory (Environment) 
and all code run in the current session (History). Another tab that may be shown here 
is the Help tab, where you can find documentation on R and RStudio.

4 Α pane with tabs called Files, Plots, Packages, and maybe others. The File tab provides 
a file manager, the Plots tab will display all plots generated in the current session, and 
the Packages tab allows you to manage (install, load, etc.) R packages.

The layout of these panes can be customized by going to Tools: Global Options . . . : Pane 
Layout. In addition, I would like to recommend that you also (1) go to “Tools: Global 
Options . . . : Code” and tick the box “Soft-wrap R source files” and (2) go to “Tools: 
Global Options . . . : General” and untick all boxes. These are just my initial recommen-
dations – once you are more familiar with R and RStudio, you can always change these 
later (as I have for my own set-up).

As a second step, I recommend that you generate a folder <_qclwr2/> somewhere in 
your home directory on your hard drive (for Quantitative Corpus Linguistics With R, 2nd 
edition). Then, go to the companion website at http://tinyurl.com/QuantCorpLingWithR, 
download all the relevant files for the second edition from there, and unzip them in the 
qclwr2 folder:

 • <_qclwr2/_scripts>; this directory contains all relevant R code from this book: 
more than 6,000 lines of code with explanations, examples, exercises, and answer 
keys. The password you need to unzip these files is (without the double quotes)  
“_HinteRschinken”.

 • <_qclwr2/_outputfiles>; this directory contains most output files resulting from R 
code in this book. The password you need to unzip these files is (without the double 
quotes) “_KassleR”.

 • <_qclwr2/_inputfiles>; this directory contains most input files you require; the pass-
word you need to unzip these files is (without the double quotes) “_WuRst”; other 
input files you will need are the British National Corpus (BNC, now freely available 
from http://ota.ox.ac.uk/desc/2554; files from the CHILDES archive, namely http://
childes.psy.cmu.edu/data/Eng-NA-MOR/Brown.zip). Other corpora that I use for 
just one assignment later each are

– the Brown corpus (the original version from the ICAME CD-ROM, version 2, see 
http://clu.uni.no/icame/cd);

– the Chinese Hong Kong files from the ICLE corpus version 2 (see www.uclouvain. 
be/en-277586.html); and

– the fiction part of the Corpus of Contemporary American English and the  
nineteenth-century part of the Corpus of Historical American English (see http://
corpus.byu.edu/full-text).

 (Even if you do not have access to those last four corpora, you will still be able to learn 
from the code used in the relevant case studies, plus I will actually give you practice assign-
ments that change freely available corpora into the formats of the corpora you might not 
have – once you’ve solved those, you can still make full use of these assignments.)

Note that I am using regular slashes here in the paths to the directories because you can 
use those for paths in R, too, and more easily so than backslashes. Also, check out the file 
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for errata on the website so that you can make necessary or recommended corrections. 
Finally, I recommend that you set the settings of your operating system’s file manager such 
that it displays file names and their extensions, not just file names.

Note also that R has much more to offer than this base installation: R is open-source 
software and there is a very lively community of people who have written so-called pack-
ages for R. These packages are additions to R that you can download and install (from 
within R) and then load into R to obtain commands (or functions, as we will later call 
them) that are not part of the default configuration. I would therefore suggest you do the 
following:

 • start R – not RStudio this one time – with administrator rights: On Linux you would 
do this by entering sudo R¶ at a terminal/console and provide your password; on 
Windows you can right-click on the R icon in your Start Menu and choose “Run as 
administrator”;

 • at the console you see, paste the first line from the code file <_qclwr2/_scripts/03-04_
allcode.r> there, which will install all packages we will be using in this book.

As mentioned above, I very strongly recommend that you read this book while sitting 
at your computer with the relevant code file open in RStudio – in fact, you should go 
to <_qclwr2/_scripts> and double-click on <03-04_allcode.r> right now, which will also 
make <_qclwr2/_scripts> your current working directory in RStudio, which nearly all of 
the code below presupposes – so that you can follow along more easily. Ideally, you would 
read the book and run the code I am discussing (by pressing CTRL + ENTER whenever I 
discuss a line of code so you see how it is executed in RStudio and what it returns); also, 
you can of course add your own notes to the R code files directly (ideally always preceded 
by the pound/hash sign # – see below for why).

As was already mentioned in the introduction, R is an extremely versatile piece of 
software. It can be used as a calculator, a spreadsheet program, a database, a statistics 
program, a (statistical) graphics program, and a scripting programming language with 
sophisticated mathematical and character-processing capabilities. In fact, the range of 
functions R can perform is so vast that I will have to restrict my discussion to a radically 
reduced subset of its functions. The functions that will be covered in this book are mainly 
concerned with

 • how to load, process, and save various kinds of data structures, with a special emphasis  
on handling text data from corpora for corpus-linguistic analyses; and

 • how to load, process, and evaluate tabular data (for statistical/graphical analysis).

Thus, I will unfortunately have to leave aside many intriguing aspects of R. Also, for 
didactic and expository reasons I will sometimes not present the shortest or most elegant 
way of handling a particular problem, but rather present a procedure which is more ade-
quate for one or more reasons. These reasons include the desires to

 • keep the number of functions, arguments, and regular expressions manageable;
 • highlight similarities between different functions; and
 • allow you to recycle parts of the code.

Thus, this book is not a general introduction to R, and while I aim at enabling you to 
perform a multitude of tasks with R, I advise you to also consult the additional references 
mentioned below and the comprehensive documentation that comes with R and RStudio; 
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there are also many instructional videos out there, but as far as I can tell they are very 
heavily biased in the direction of statistical analysis rather than text processing.

Next, some notational conventions, some of which you have already seen by  
now. Paths/files and folders will be mentioned like this: <_qclwr2/_inputfiles/
some_name.txt>. Input to R is usually given in blocks of code as below, where “·” 
means a space character and “¶” denotes a line break (i.e., an instruction for you to  
press ENTER).

>·mean(c(1,·2,·3))¶
[1]·2

This means: do not enter the two characters “>·” – i.e., greater-than and space. These are 
only provided for you so that (1) you know that this is code you are supposed to enter 
(i.e., don’t enter gray-shaded code that does not begin with “>·”) and (2) you can distin-
guish your input from R’s output more easily.

(R code may also be shown inline using the same font and other conventions, like this: 
mean(c(1,·2,·3))¶.) You will also occasionally see lines that begin with “+” or “+·”; 
these plus signs (and spaces), which you are not supposed to enter either, begin lines 
where R is still expecting further input from you before it begins to execute the function. 
For example, when you enter “2-” and press ENTER, this is how your R interface will 
look:

>·2-¶
+

R is waiting for you to complete the subtraction. When you enter the number you wish to 
subtract and press ENTER, then the function will be executed properly.

+·3¶
[1]·-1

Another example: If, for instance, you wish to load a package into R to be able to use the 
functionality it offers, you can use the function library for that. For instance, you could 
type this to load the package dplyr: library(dplyr)¶. (Note: this only works when 
you have installed the package as explained above.) However, if you forget the closing 
parenthesis, R will wait for you to provide it, and once you provide the missing closing 
parenthesis, R will execute the line:

>·library(dplyr¶
+·)¶
>
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If you need to interrupt an R process, you can press ESC.
Corpus files or tables/data frames will be represented as in Figure 3.1, where “→” and 

“¶” denote tabstops and line breaks respectively.
Menus, submenus, and commands in submenus in applications are given in italics in 

double quotes, and hierarchical levels within application menus are indicated with colons. 
So, if you open a document in, say, LibreOffice.org Calc, you do that with what is given 
here as “File: Open . . . ”.

Before we delve into R, let me finally mention several ways of using R’s own documen-
tation. The simplest way is to just use RStudio: Go the pane that has a “Help” tab, where 
you have access to a lot of documentation; most helpful at the beginning might be “An 
introduction to R” as well as “Learning R Online”; later also “R Data Import/Export”. 
Obviously, you can also just Google the name of a function, package, or anything else 
since there are tons of extremely useful websites, videos, blogs, etc. out there that provide 
help for every level of expertise. Second, if you know the name of a function or construct 
and just need some information about it, type a question mark directly followed by the 
name of the function at the R prompt to access the help file for this function (e.g., ?help¶, 
?sqrt¶, ?"["¶). Third, if you know what you would like to do but don’t know the func-
tion, you can use the search field at the top right of the “Help” tab to search for anything.

3.1 Data Structures, Functions, Arguments

The simplest way of using R is using it like you would use a pocket calculator. At the R 
prompt, you just enter any arithmetic operation and hit ENTER (we’ll talk about the [1] 
in a moment):

>·2+2¶
[1]·4
>·3^2¶
[1]·9
>·(2+3)^2¶
[1]·25

As you may recollect from your math classes in school, however, you often had to  
work with variables rather than the numbers themselves. R can also operate with vari-
able names, where the names represent the content of so-called data structures. Data  
structures in R can take on a variety of forms. The simplest one, a vector, can contain just a  
number; a more complex one, a list, can contain many large tables, texts, numbers, and 
other data structures. Data structures can be entered into R at the prompt, but the more 
complex a data structure becomes, the more likely it becomes that you read it from a file, 

Figure 3.1 Representational format of corpus files and data frames.
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and this is in fact what you will do most often in this book: reading in text files or tables, 
processing text files, performing computations on tables, and saving texts or tabular  
outputs into text files.

One of the most central things to understand about R is how you tell it to do something 
other than the simple calculations from above. A command in R virtually always consists 
of two elements: a function and, in parentheses, arguments, where arguments can be null, 
in which case there could be just opening and closing parentheses. A function is an instruc-
tion to do something, and the arguments to a function represent (1) what the instruction is 
to be applied to, and (2) how the instruction is to be applied to it. Let us look at two simple 
arithmetic functions you know from school. If you want to compute the square root of 
5 with R – without simply entering 5^0.5¶, that is – you need to know the name of the 
function and how many and which arguments it takes. Well, the name of the function is 
sqrt, and it takes just one argument – the number for which you want the square root:

>·sqrt(5)¶
[1]·2.236068

As another example, let us compute the base-10 logarithm of 150. One possibility would be 
to use log10, which, just like sqrt, only takes one argument – the number for which you 
want the logarithm. However, since one may also want logarithms to other bases, there is a 
more flexible function in R, log, which takes two arguments: The first is the number of which 
you want the logarithm, the second is the base to the logarithm. Thus, you can enter this:

>·log(150,·10)¶
[1]·2.176091

One important aspect here is that this way of computing the log is only a short version of 
the more verbose version:

>·log(x=150,·base=10)¶
[1]·2.176091

In this longer version, the arguments provided are labeled with the names that R expects 
the arguments of log to have: x for the number for which you want the logarithm and 
base for the base. However, if you provide the arguments in exactly the order in which R 
expects them, you can leave the labels out – but if you change the order or want to leave 
out one of several arguments, then you must label the arguments so that R knows what in 
your list of arguments means what.

Three other things are worth mentioning: First, outside of quotes, R does not care 
whether you put a space before the comma or not. Second, R’s understanding of its input 
is case-sensitive: It doesn’t know the function Log. Third, as you could see when you  
executed the lines of the code file in RStudio and as you now see again, R ignores every-
thing after a #, so you can use this to comment your lines when you write small scripts and 
want to tell/remind yourself what a particular line is doing.
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>·Log(150,·10)·#·R·does·not·know·this·function·-·it·only· 
knows·"log"¶

Error:·could·not·find·function·"Log"

Note that, in all these cases, R does not store any result – it just outputs it.  
When you want to assign some content to some data structure for later use, you 
must use the assignment operator <- (a less-than sign and a minus, which together  
look like an arrow). You can basically choose any name as long as it contains only  
letters, numbers, underscores, or periods and starts with a letter or a period. However, 
to avoid confusion, you should not use names for data structures that are R func-
tions (such as c, log, or sqrt or the many other functions you’ll get to know below).  
As a result of assignment, the content resulting from the function is available in  
the data structure just defined. For example, this is how you store the square root 
of 5 into the kind of data structure you will get to know as a vector, which is  
here named aa.

>·aa<-sqrt(5)¶

You can now check whether R actually knows about this vector by instructing R to list all 
the data structures it knows about (in the current R session):

>·ls()¶
[1]·"aa"

And you can instruct R to output the contents of the vector (by default to the screen):

>·aa¶
[1]·2.236068

A nice short way to instruct R to assign a value to a data structure and output that data 
structure at the same time is by putting the assignment into parentheses:

>·(aa<-sqrt(5))¶
[1]·2.236068

Note that the assignment operator can also be used to change the value of an  
existing data structure using the name of the data structure again. The following  
can be read as “create a new version of aa by taking the old one and adding  
2 to it”:
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>·(aa<-aa+2)¶
[1]·4.23606

Note that you can enter more than one command per line by separating commands with 
a semicolon.

>·sqrt(9);·sqrt(16)¶
[1]·3
[1]·4

If you ever want to get rid of data structures again, you can also remove them. Either 
you remove an individual data structure by using rm (for remove) and provide the data 
structure(s) to be deleted as an argument (or as arguments):

>·rm(aa)¶

or you can just delete all data structures:

>·rm(list=ls(all=TRUE))¶

Finally, before we look at several data structures in more detail shortly, note that not 
only may functions not require their arguments to be labeled, many functions even have 
default settings for arguments which they use when the argument is not defined by the 
user. A function to exemplify this characteristic that is actually also very useful in a 
variety of respects is sample. This function outputs random or pseudo-random samples, 
which is useful when, for example, you have a large number of matches or a large table 
and want to access only a small, randomly chosen sample or when you have a vector of 
words and want it re-sorted in a random order. 

sample(x,·size,·replace=FALSE,·prob=NULL)·#·no·">·"·at·the· 
beginning:·don't·enter·this!

The function sample can take up to four arguments:

 • x: a data structure, most likely a vector, providing the elements from which you want 
a sample. If that data structure x is a vector of one number only, then R outputs a 
random ordering of the numbers from 1 to x; if x is a vector of two or more elements, 
then R outputs a random ordering of the elements of that vector.

 • size: an integer number determining the size of the sample; by default, that is the 
number of elements of x, which we will later determine with length(x);

 • a logical expression: replace=FALSE (if each element of the vector can only be sam-
pled once, the default setting) or replace=TRUE (if the elements of the vector can be 
sampled multiple times, sampling with replacement);
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 • prob: a vector of probabilities with which elements of x may be sampled; the default 
setting is NULL, representing equiprobable sampling, i.e., sampling where each  
element of x has the same chance of being sampled.

Let us look at a few examples which make successively more use of label omission and default 
settings. First we generate a vector qwe with the numbers 1 to 10 by using: as a range operator:

>·(qwe<-c(1:10))¶
[1]··1··2··3··4··5··6··7··8··9·10

If you now want to draw five elements randomly and equiprobably from qwe with replace-
ment, you enter this:

>·sample(qwe,·size=5,·replace=TRUE,·prob=NULL)¶
[1]·2·9·4·4·7

However, since you provide the arguments in the default order, you can do away with the 
labels (although you now of course get different random numbers):

>·sample(qwe,·5,·TRUE,·NULL)¶
[1]·7·2·3·6·7

But since prob=NULL is the default setting, you might as well omit that, too:

>·sample(qwe,·5,·TRUE)¶
[1]··6·6·6·6·9

And this is how we draw five elements equiprobably and randomly without replacement:

>·sample(qwe,·5,·FALSE)¶
[1]·9··2··6··7·10

But again, since replace=FALSE is the default, why not omit it?

>·sample(qwe,·5)¶
[1]·3·1·2·9·8

You have now seen that the arguments prob and replace can be omitted because of 
their default settings. But actually, it is also possible to omit the size argument. If the 
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size argument is omitted, its default kicks in and R assumes we want all elements of  
the vector qwe back again and, thus, effectively only provides us with a random order of the  
elements of qwe:

>·qwe¶
[1]··1··2··3··4··5··6··7··8··9·10
>·sample(qwe)¶
[1]··8··6·10··4··5··2··9··1··3··7

In fact, if the idea is just to get a random ordering of the numbers of 1 to n, then you do 
not even need to provide R with a vector giving all the numbers from 1 to 10 as you did 
when we defined qwe above. You can just give R the number:

>·sample(10)¶
[1]··4··9··2··5··8··6·10··1··7··3

In fact, default settings sometimes lead to the extreme case of function calls without any 
argument (like help.start() above). The function q shuts R down and internally pro-
cesses three arguments:

 • A one-element character vector called save – i.e., a sequence of characters such as let-
ters, numbers, or other symbols – specifying whether the current workspace, i.e., the 
data structures you worked with since you last started R, should be saved or whether 
the user should be prompted regarding whether the workspace should be saved. The 
latter is the default.

 • A one-element numeric vector called status specifying what R should ‘tell’ the operat-
ing system when R is shut down. The default is 0, which means “successful shut down”.

 • A one-element logical vector called runLast (TRUE or FALSE) specifying whether some 
other user-specified function should be executed before R shuts down. The default is TRUE.

Thus, if you want to shut down R, you just enter:

>·q()¶

Since you have not provided any arguments at all, R assumes the default settings. The first 
requires R to ask you whether the workspace should be saved. Once you answer this ques-
tion, R will shut down and send 0 (i.e., “successful shut down”) to your operating system.

As you can see, label omission and default settings can be very useful ways of minimiz-
ing typing effort. However, especially at the beginning, it is probably wise to try to strike 
a balance between minimizing typing on the one hand and maximizing transparency of 
the code on the other. While this may ultimately boil down to a matter of personal prefer-
ences, I recommend using more explicit code at the beginning in order to be maximally 
aware of the options your R code uses. The next sections will introduce data structures 
that are most relevant to linguistic and statistical analysis.
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Recommendation(s) for further study/exploration

 • The functions ? or help, which provide the help file for a function (try  
?sample¶ or help(sample)¶), and the functions args and formals, which 
provide the arguments a function needs, their default settings, and their default 
order (try args(sample)¶ or formals(sample)¶).

 • The function set.seed, which I use in the code file to make sure we obtain the 
same random but replicable numbers: ?set.seed¶.

 • RStudio offers very useful things to help you write code: code-completion (if you 
type samp, it will already suggest sample to you) and argument-insertion (if you 
type sample( and press Tab, you get suggestions for arguments). Finally, press-
ing CTRL-L in RStudio on Windows and Linux clears the console.

3.2 Vectors

3.2.1 Basics

The most basic data structure in R is a vector. Vectors are one-dimensional, sequentially 
ordered sequences of elements (such as numbers or character strings (e.g., words) or logi-
cal values). While it may not be obvious why vectors are important here, we must deal 
with them in some detail since nearly all other data structures in R can ultimately be 
understood in terms of vectors. As a matter of fact, you have already used vectors when 
we computed the square root of 5:

>·sqrt(5)¶
[1]·2.236068

The “[1]” in front of the result indicates that R internally represents the result as a vector  
and that the number that is printed is the first (and here also only) number of that  
vector.1 You can even test this with R itself. If you assign the data structure resulting from 
sqrt(5)¶ to aa and then ask R whether aa is a vector, we get R’s version of “yes” – TRUE, 
a logical vector of length 1:

>·aa<-sqrt(5)¶
>·is.vector(aa)¶
[1]·TRUE

You can also find out what kind of vector aa is by using the function class, and you can 
also determine that the length of aa is 1:

>·class(aa)¶
[1]·"numeric"
>·length(aa)¶
[1]·1
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And, you can define vectors without contents but with a particular length, which may 
seem senseless right now, but is still something you must remember well because it is 
more memory-efficient than just letting a vector grow dynamically; this will become much 
clearer and in fact is necessary below.

>·(empty<-logical(length=3))·#·logical·vector·of·length·3¶
[1]·FALSE·FALSE·FALSE
>·(empty<-numeric(length=3))·#·numeric·vector·of·length·3¶
[1]·0·0·0

For corpus linguists, it is of course important to know that vectors can also contain char-
acter strings – the only difference to numbers is that the character strings have to be put 
either between double or single quotes. You can freely choose which kind of quotes you 
use, but the opening and the closing quote must be identical. (For the sake of consistency, 
I will only use double quotes in this book.)

>·(a.name<-"James")¶
[1]·"James"
>·class(a.name)¶
[1]·"character"
>·(empty<-character(length=3))¶
[1]·""·""·""

Note what happens when you apply length to a.name. Contrary to what you might have 
expected, you do not get the number of characters of “James” (i.e., 5) – you get the length 
of the data structure, and since the vector contains one element – “James” – R returns 1:

>·length(a.name)¶
[1]·1

There are other types of vectors, but we will not distinguish any others than those  
mentioned above. However, vectors usually only become interesting when they contain 
more than one item. The function that concatenates (i.e., combines) several elements into 
a vector is called c, and its arguments are the elements to be concatenated into a vector.

>·(numbers<-c(1,·2,·3))¶
[1]·1·2·3
>·(names<-c("James",·"Jonathan",·"Jean-Luc"))¶
[1]·"James"····"Jonathan"·"Jean-Luc"

Since an individual number such as the square root of 5 is already a vector, it is not sur-
prising that c also connects vectors consisting of more than one element (as does append):
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>·(numbers1<-c(1,·2,·3);·numbers2<-c(4,·5,·6))¶
[1]·1·2·3
[1]·4·5·6
>·(numbers1.and.numbers2<-c(numbers1,·numbers2))¶
[1]·1·2·3·4·5·6

A characteristic that will be useful further below is that R can handle and apply vectors 
recursively. For example, adding two equally long numerical vectors yields a vector with 
all pairwise sums:

>·numbers1+numbers2¶
[1]·5·7·9

What happens if vectors are not equally long? Two things can happen. First, if the 
length of the longer vector is divisible without a remainder by the length of the shorter  
vector – i.e., if the modulus of the two lengths is 0 (try 11%%3¶ in R) – then the shorter vector  
is recycled as often as necessary to complete the function. The most frequent such case 
in practice is that the shorter vector has the length 1. In the following line, R multiplies 
the first element1 of numbers1, the 1, with the first element of bb, 10. Then, it ‘wants’ to 
multiply the second element of numbers1, the 2, with a second element of bb, but there 
is none, so R re-uses the first and only element of bb for that, and the same again for the 
3 of numbers1:

>·bb<-10¶
>·numbers1*bb¶
[1]·10·20·30

Second, if the length of the longer vector is not divisible without a remainder by the 
length of the shorter vector, the operation proceeds as far as possible, but also returns 
a warning:

>·bb<-c(10,·20)¶
>·numbers1*bb¶

[1]·10·40·30
Warning·message:
In·numbers1·*·bb·:
··longer·object·length·is·not·a·multiple·of·shorter·object· 

length

Another characteristic you will use a lot later is that elements of vectors can be named. 
Here, each element of numbers1 is named according to its position:
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>·names(numbers1)<-c("first",·"second",·"third");·numbers1¶
·first·second··third
·····1······2······3

It is important to note that – unlike arrays in Perl – vectors can only store elements of one 
data type. For example, a vector can contain numbers or character strings, but not really 
both: If you try to force character strings into a vector previously containing only num-
bers, R will change the data type, and since you can interpret numbers as characters but 
not vice versa, R changes the numbers into character strings and then concatenates them 
into a vector of character strings:

>·(mixture<-c(1,·2,·"Benjamin"))¶
[1]·"1"········"2"········"Benjamin"

The double quotes around the 1 and 2 indicate that these are now understood as charac-
ter strings, which also means you cannot use them for calculations anymore (unless you 
change their data type back using as.numeric). Apart from class, you can identify the 
type of a vector (or the data types of other data structures) with str (for “structure”), 
which takes as an argument the name of a data structure:

>·str(numbers1)¶
num·[1:3]·1·2·3
>·str(mixture)¶
chr·[1:3]·"1"·"2"·"Benjamin"

Unsurprisingly, the first vector consists of numbers, the second one of character strings. 
In most cases to be discussed here, vectors will not be entered into R at the console but 
will be read in from files. In the following section, we will be concerned with how to load 
files containing text.

Even though we will usually load vectors from files, it is still often necessary to create 
quite long vectors in which (sequences of) elements are repeated. Instead of typing those 
into R element-by-element, you can use two very useful functions, rep and seq. In its 
simplest form, the function rep (for repetition) takes two arguments: the element(s) to be 
repeated and their number(s) of repetitions:

>·rep(3,·5)¶
[1]·3·3·3·3·3
>·rep(c(1,·3,·5),·2)¶
[1]·1·3·5·1·3·5

But rep is more powerful than that. You can also use an argument called each; here’s an 
example with a manually entered vector and one with a range:
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>·rep(c(1,·3,·5),·each=2)¶
[1]·1·1·3·3·5·5
>·rep(1:3,·each=2)¶
[1]·1·1·2·2·3·3

The function seq (for sequence) is also very useful. In one form, seq takes three argu-
ments: from (the starting point of the sequence), to (the end point of the sequence), and 
by (the increment of the sequence). Thus, the following is the same as numbers<-c(1:3)¶ 
or numbers<-1:3¶:

>·(numbers<-seq(1,·3,·1))¶
[1]·1·2·3

But since 1 is the default increment, the following would suffice:

>·(numbers<-seq(1,·3))¶
[1]·1·2·3

In fact, you can even just write this:

>·(numbers<-seq(3))¶
[1]·1·2·3

This works for character vectors (or other data structures such as lists), too, such that 
seq will check their length and then return a sequence of integers from 1 to the length 
of the vector, something we will use a lot below in so-called for-loops:

>·seq(c("a",·"bb",·"ccc"))¶
[1]·1·2·3

If the numbers in the vector to be created do not increment by 1, you can set the increment 
to whatever value you need. The following lines generate a vector qwe in which the even 
numbers between 1 and 10 are repeated three times in sequence. Try it out:

>·(qwe<-rep(seq(2,·10,·2),·3))¶
[1]··2··4··6··8·10··2··4··6··8·10··2··4··6··8·10

Finally, instead of providing the increment, you can also let R figure it out for you, such 
as when you know how long your sequence needs to be and just want equal increments 
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everywhere. You can then use the argument length.out as the third argument to sep, 
i.e., instead of the by argument. The following generates a seven-element sequence from 1 
to 10 with equal increments and assigns it to numbers:

>·(numbers<-seq(1,·10,·length.out=7))¶
[1]·1.0··2.5··4.0··5.5··7.0··8.5·10.0

With c, rep, and seq, even long and complex vectors can often be created quite easily.

Recommendations for further study/exploration

 • The general vector-creation function vector, which we later use to create lists: 
?vector¶.

 • On how to change the types of vector to numeric and character strings: 
?as.numeric¶ and ?as.character¶.

3.2.2 Loading Vectors

R has a very powerful function to load the contents of text files into vectors: scan. Since 
this function is central to very many corpus loading operations to be discussed below, we 
will discuss it and a variety of its arguments in some detail. Several useful arguments of 
scan, together with their default settings, are as follows:

scan(file="",·what=double(0),·sep="",·quote=if(identical(sep,· 
"\n"))·""·else·"'\"",·dec=".",·skip=0,·quiet=FALSE,· 
comment.char="",·blank.lines.skip=TRUE)¶

 • The file argument is obligatory (for loading vectors from files at least, see below) 
and specifies the path to the file to be loaded; usually this will look like this "home/
stgries/Corpora/BNCwe/D8Y.txt". Instead of providing a path by entering it there 
directly, you can also use file.choose() as the first argument, in which case R will 
prompt you with an Explorer/File Manager window so you can click your way to the 
desired file; once you choose a file, R will return the path to that file as a character 
string and, thus, to scan.

 • The what argument specifies the kind of input scan is supposed to read. The most 
important setting is what=character(), which you use if your file contains text – if 
your file contains numbers, leave out the what argument because then R’s default set-
ting will load numbers unproblematically.

 • The sep argument specifies the character that separates individual entries in the 
file and that, therefore, determines what the elements of your vector will be. The 
default setting, sep="", means that any whitespace character will separate entries, 
i.e., spaces, tabs (represented as “\t”), and newlines (represented as “\r” or “\n”  
or both). Thus, if you want to read a text file into a vector such that each line is  
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one element of the vector, you write sep="\n", which is what we will do nearly all 
of the time.

 • The quote argument specifies which characters surround text quotes; most of the 
time sep will be set as sep="\n", which entails that quote is then automatically set 
to quote="".

 • The dec argument specifies the decimal point character; if you want to use a comma 
instead of a period, just enter that here as dec=",".

 • The skip argument specifies the number of lines you wish to skip when reading in 
a file, which may be useful when, for example, corpus files have a fixed number of 
header rows at the beginning of the file.

 • The quiet argument specifies whether R returns the number of entries it has read in 
(quiet=FALSE, which is the default) or not (quiet=TRUE).

 • The comment.char argument specifies which character is used for comments in the 
file you are loading; the default is an empty character, which means nothing is ever 
specially treated as comments during loading.

 • The blank.lines.skip argument is set to TRUE, which means that empty lines 
will not be represented in the vector; this default setting is nearly always useful, 
but we will encounter a case in Section 5.4.6 where we will need to set this to 
FALSE.

Let us look at a few examples. First, we load into a vector x the contents of the text file 
<_qclwr2/_inputfiles/dat_vector-a.txt>, which looks like Figure 3.2.

You just enter the following line, making use of the fact that R supplies the  
default settings unless you specify them explicitly; the line loads the file and prints  
it to the screen immediately – remember, parenthesized assignments print what  
is assigned.

>·(x<-scan(file.choose(),·sep="\n"))¶
Read·3·items
[1]·1·2·3

A slightly more complex example. Imagine you have a file, <_qclwr2/_inputfiles/dat_ 
vector-b.txt>, that looks like Figure 3.3.

Here are two ways to load this file into a vector x. The first line reads in the file with 
the default setting of sep, so everything separated by whitespace in the original file 
becomes an element in the vector x.1; this already looks nicely like a vector of words, 
but think about what would happen with punctuation marks. . . . The second line reads 
in the file such that everything separated by line breaks becomes an element in the  
vector x.2:

Figure 3.2 The contents of <_qclwr2/_inputfiles/dat_vector-a.txt>.



38 An Introduction to R

>·(x.1<-scan(file.choose(),·what=character()))¶
Read·10·items
·[1]·"This"···"is"·····"the"····"first"··"line"···"This"···"is"····· 

"the"····"second"·"line"··
>·(x.2<-scan(file.choose(),·what=character(),·sep="\n"))¶
Read·2·items
[1]·"This·is·the·first·line"··"This·is·the·second·line"

Now, how do we load text files that involve Unicode code points? This is an important 
issue since corpus files these days will typically be in Unicode encoding, specifically UTF-
8. Unfortunately, the way to load them and the way they are displayed in RStudio or the 
default R console depends on your operating system, your system locale, and the specific 
file. Here’s an example of the kind of problems you can run into on, say, a Windows 10 
system (American English locale), when you try to load <_qclwr2/_inputfiles/corp_utf8_
cyrillic.txt> (I only show a small part of the output here):

>·(cyr<-scan(file.choose(),·what=character(),·sep="\n"))· 
#·on·Windows¶

Read·23·items
[1]·"Ð¢Ð¾Ñ€Ð³Ð¾Ð²Ñ‹Ð¹·Ð´Ð¾Ð¼·Ð-Ð´ÐµÑ€Ð°·Ñ Ð²Ð»Ñ ÐµÑ‚Ñ Ñ"

Not exactly successful. On Linux Mint 18 (same locale) to be precise, however, no problem:

>·(cyr<-scan(file.choose(),·what=character(),·sep="\n"))· 
#·on·Kubuntu¶

Read·23·items
[1]·"Торговый·дом·Эдера·является·оптово-розничной"

How do we fix this? As many queries on various lists and websites indicate, it’s unfor-
tunately not always that straightforward. The function scan has two encoding-related 
arguments – encoding and fileEncoding – that sometimes do the trick, so for instance 
on both Windows and Linux, the following works (see iconvlist()¶ for supported 
internationalization conversions):

>·(cyr<-scan(file.choose(),·what=character(),·sep="\n",· 
encoding="UTF-8"))¶

Figure 3.3 The contents of <_qclwr2/_inputfiles/dat_vector-b.txt>.
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Read·23·items
[1]·"Торговый·дом·Эдера·является·оптово-розничной"

but the following also works on Linux, but not on Windows:

>·(cyr<-scan(file.choose(),·what=character(),·sep="\n",· 
fileEncoding="UTF-8")¶

And with yet other files, even some that come with this book, the pattern might be the 
opposite, and sometimes it’s not even clear what encoding a file comes with because that 
information is not always provided or obvious. The approach that I now usually end 
up using and that I find works best – across Windows and Linux, with UTF-8 files but 
also other encodings – is one based on file connections. There is a function file, which 
establishes a connection to a file and allows you to specify an encoding argument, and 
that connection will then be read with a function called readLines, which does exactly 
what its name suggests. This is how we will work most of the time when encodings are 
an issue:

>·(cyr<-readLines(con<-file(file.choose(),·encoding="UTF-8"),· 
warn=FALSE));·close(con)¶

[1]·"Торговый·дом·Эдера·является·оптово-розничной"

This means the user chooses a file, to which file establishes a connection that it 
calls con and that assumes the input comes in the provided encoding, i.e., UTF-8. R 
then reads from that connection, i.e., from the file, the content of the file line by line  
and puts this into cyr (it also suppresses warnings about embedded nuls etc.). When 
the process is done, the connection to the file is closed again and, as you can see, 
the data import was successful. As mentioned above, this is the strategy that I found 
works most reliably, and we will use it for the various encodings we will deal with in 
this book.

Finally, while loading files will be the most frequent way in which you will use scan, 
let me mention the simplest way in which you can use scan, namely to enter vectors. If 
you just write scan()¶ or scan(what=character())¶, you can enter numbers or strings 
separated by ENTER until you press ENTER twice to end your input:

>·x<-scan()¶
1:·1¶
2:·2¶
3:·3¶
4:¶¶
Read·3·items
>·x¶
[1]·1·2·3



40 An Introduction to R

Recommendations for further study/exploration

 • Spector (2008: section 2.7).
 • On how to customize input even more with scan: ?scan¶.

3.2.3 Accessing and Processing (Parts of) Vectors

Now that we have covered some aspects of how to load vectors, let us turn to how to 
access parts of vectors and do something with these parts. The simplest ways to get a 
glimpse of what any data structure looks like are the functions head and tail. These take 
the name of a data structure as one argument and return the six first (for head) or last (for 
tail) elements of a data structure; if you want a number of elements other than six, you 
can provide that as a second argument to head and tail.

>·x<-c("a",·"b",·"c",·"d",·"e",·"f",·"g",·"h")¶
>·head(x)¶
[1]·"a"·"b"·"c"·"d"·"e"·"f"
>·tail(x,·2)¶
[1]·"g"·"h"

However, one of the most powerful ways to access parts of data structures is by means of 
subsetting, i.e., indexing with square brackets. In its simplest form, you can access (and of 
course change) a single element:

>·x[3]¶
[1]·"c"

Since we have already seen how flexibly R handles variables, the following extensions of 
this simple principle should not come as a surprise:

>·y<-3¶
>·x[y]¶
[1]·"c"
>·z<-c(1,·3)¶
>·x[z]¶
[1]·"a"·"c"
>·z<-c(1:3)¶
>·x[z]¶
[1]·"a"·"b"·"c"
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With negative numbers, you choose the data structure without the designated elements:

>·x[-2]¶
[1]·"a"·"c"·"d"·"e"·"f"·"g"·"h"

Note also (for much later) that the square bracket can actually be used as a function (just 
like other function names such as head or tail), namely when you make it a character 
string; then its first argument becomes what data structure to extract something from and 
its second argument becomes what to extract:

>·"["(x,·3:4)¶
[1]·"c"·"d"

You can use the names of vector elements for subsetting, too:

>·qwe<-1:3;·names(qwe)<-c("a",·"b",·"c");·qwe¶
a·b·c
1·2·3
>·qwe["b"]¶
b
2

This can be very useful if, for instance, something like qwe is a potentially very long frequency 
list of words and you can just subset it using the word whose frequency you’re interested in.

R also offers more useful functions, though. One of the most interesting ones is to let R 
decide which elements of a vector satisfy a particular condition. The simplest, though not 
always most elegant, solution is to present R with a logical expression.

>·x=="d"¶
[1]·FALSE·FALSE·FALSE··TRUE·FALSE·FALSE·FALSE·FALSE

R checks all elements of the argument preceding the logical operator == and outputs for 
each whether it meets the condition given in the logical expression or not. The one thing 
you need to bear in mind is that this logical expression – the test for identity – uses == 
rather than the = we already know from the assignment of values to arguments. Other 
logical operators we will use are the following:

& and   | or
> greater than  >= greater than or equal to
< less than  <= less than or equal to
! not   != not equal
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The following examples illustrate these logical expressions:

>·(x<-c(10:1))¶
[1]·10··9··8··7··6··5··4··3··2··1
>·x==4¶
[1]·FALSE·FALSE·FALSE·FALSE·FALSE·FALSE··TRUE·FALSE·FALSE·FALSE
>·x<=7¶
[1]·FALSE·FALSE·FALSE··TRUE··TRUE··TRUE··TRUE··TRUE··TRUE··TRUE
>·x!=8¶
[1]··TRUE··TRUE·FALSE··TRUE··TRUE··TRUE··TRUE··TRUE··TRUE··TRUE
>·(x>8·|·x<3)¶
[1]··TRUE··TRUE·FALSE·FALSE·FALSE·FALSE·FALSE·FALSE··TRUE··TRUE

In fact, you can use such logical vectors of TRUEs and FALSEs for subsetting just like you used 
numbers or names. You have seen that when you subset a vector with a numeric vector in 
square brackets (as in x[3]¶ or x[y]¶ above), you get the elements in the positions indexed 
by the numbers. The following line shows that when you subset a vector with a logical vector 
of TRUEs and FALSEs in square brackets, you get the elements in the positions of the TRUEs:

>·x[x<=7]¶
[1]·7·6·5·4·3·2·1

And since TRUEs and FALSEs correspond to 1s and 0s, you can sum up a logical vector to 
find out how many TRUEs there are in it, i.e., how many vector elements satisfy a condition:

>·sum(x==4)¶
[1]·1
>·sum(x>8·|·x<3)¶
[1]·4

Or, for a more detailed breakdown, you can use the function table, which in its simplest 
use looks at one vector (but see below), counts how often each element that occurs in it at 
least once occurs, and provides an alphabetically ordered frequency list:

>·table(x>8·|·x<3)¶
FALSE··TRUE
····6·····4

Note (again, for later) that table does not automatically also return a count of missing 
data – to obtain those, too, you need to add the argument useNA="ifany"). I hope you 
can already foresee that we will use table a lot to generate frequency lists of corpora: once 
a corpus is stored in R such that every word is a vector element, using table is all it takes.

While this illustrates how logical expressions work, it probably also illustrates that 
this is not a particularly elegant way to proceed: Regardless of how many elements of x  
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fulfill the condition, you always get ten truth values and must then identify the cases 
of TRUE yourself. In other words, this approach does not scale, meaning it is not prac-
ticable once the data you are looking at are 10, 1,000, 100,000 times as large – what 
would you do, look at 100,000 TRUEs and FALSEs? Thankfully, there is a more elegant 
way of doing this using which, which takes as an argument a logical vector (e.g., some-
thing resulting from a logical expression of the kind above) and outputs the positions of 
TRUEs, i.e., of the element(s) satisfying a particular condition:

>·which(x==4)¶
[1]·7

Note how much this actually looks like English: you are asking “which x is 4?” and get 
the answer “the seventh”. The following examples correspond to the ones we just looked 
at but use which:

>·which(x<=7)¶
[1]··4··5··6··7··8··9·10
>·which(x!=8)¶
[1]··1··2··4··5··6··7··8··9·10
>·which(x>8·|·x<3)¶
[1]··1··2··9·10

A central point here is not to mix up the position of an element in a vector and the element 
in a vector. If we come back to which(x==4)¶, remember that it does not output 4 – the 
element in x – but 7 – the position that 4 occupies in x. If, however, you have been follow-
ing along so far, you may already be able to guess how you get the element itself, so try 
to write some code that retrieves the elements of x that are larger than 8 or smaller than 
3 and stores them in a vector y.

THINK

BREAK

Since you can access elements of a vector with square brackets and since the output of 
which is itself a vector, you can simply write:

>·(pointer<-which(x>8·|·x<3))¶
[1]··1··2··9·10
>·(y<-x[pointer])¶
[1]·10··9··2··1

Or, because you guess that you can combine it all into one expression using the position 
numbers returned by which or even just the logical values returned by the logical expression:
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>·x[which(x>8·|·x<3)]¶
[1]·10··9··2··1
>·x[x>8·|·x<3]¶
[1]·10··9··2··1

To find out how many elements of a vector fulfill the condition, you can apply length 
or, since you remember that TRUE and FALSE are interpreted as 1 and 0 respectively, sum:

>·length(which(x>8·|·x<3))¶
[1]·4
>·sum(x>8·|·x<3)¶
[1]·4

Thus, the fact that R uses vectors for nearly everything is in fact a great strength and 
makes it a very versatile language. When you combine the above with subsetting, you 
can also change elements of vectors very quickly. For example, if you want to replace 
all elements of x which are greater than 8 by 12, this is one way of achieving this:

>·x¶
[1]·10··9··8··7··6··5··4··3··2··1
>·y<-which(x>8)¶
>·(x[y]<-12)¶
[1]·12·12··8··7··6··5··4··3··2··1

or even directly with the position indices returned by which:

>·x<-10:1¶
>·(x[which(x>8)]<-12)¶
[1]·12·12··8··7··6··5··4··3··2··1

or even just with the TRUEs from a logical vector:

>·x<-c(10:1)¶
>·(x[x>8]<-12)¶
[1]·12·12··8··7··6··5··4··3··2··1

Apart from which and subsetting, there are also some more powerful functions avail-
able for processing vectors. We will briefly look at %in% and match, but discuss only 
simple cases here. The first argument of %in% is a data structure (usually a vector) with 
the elements to be matched; the second is a data structure (also usually a vector) with the 
elements to be matched against. The output is a logical vector of the length of the first 
argument with TRUEs and FALSEs for the elements of the first data structure that are found 
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and that are not found in the second data structure respectively. Let me clarify this with 
two examples:

>·x<-c(10:1);·y<-c(2,·5,·9)¶
>·x·%in%·y¶
[1]·FALSE··TRUE·FALSE·FALSE·FALSE··TRUE·FALSE·FALSE··TRUE·FALSE
>·y·%in%·x¶
[1]·TRUE·TRUE·TRUE

The first example, x·%in%·y¶, shows that the first element of x – 10 – does not appear in 
y, while the second element – 9 – does, etc. You can combine the logical-vector output of 
%in% with subsetting to get at the matched elements quickly:

>·x[x·%in%·y]¶
[1]·9·5·2

The function match returns a vector of the positions of (first!) matches of its initial argu-
ment in its second (again, both arguments are typically vectors):

>·match(x,·y)¶
[1]·NA··3·NA·NA·NA··2·NA·NA··1·NA

This tells you, as above, that the first element of x does not appear in y, but that the sec-
ond element of x – 9 – is the third element in y. The third, fourth, and fifth element of x 
do not appear in y, but the sixth element – 5 – appears in y, namely at position 2 of y, etc. 
With this, it should now be clear what the following line does, in which the arguments 
are reversed:

>·match(y,·x)¶
[1]·9·6·2

Same thing: the first element of y – the 2 – is the ninth element of x. The second element of y – 
the 5 – is the sixth element of x, and so on. You may ask yourself what this is good for, but you 
will get to see very useful applications of these two functions, in particular of match, below.

Recommendations for further study/exploration

 • On how to identify elements in a vector that are duplicates of earlier elements 
in that vector as in duplicated(c(1,·2,·3,·4,·3,·2,·1))¶, which can be 
useful for type-token counts: The number of types is the number of all non-
duplicated tokens: see ?duplicated¶.

 • On how to compute cumulative sums as in cumsum(1:4)¶: see ?cumsum¶.
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Another related way of processing two vectors uses basic set-theoretic concepts. Let me 
introduce three such functions – setdiff, intersect, and union, which all take two 
vectors as arguments – on the basis of the two vectors x and y we just used. The function 
setdiff returns the elements of the vector given as the first argument that are not in the 
vector given as the second argument:

>·setdiff(x,y)¶
[1]·10··8··7··6··4··3··1
>·setdiff(y,x)¶
numeric(0)

The function intersect provides the elements of the vector of the first argument that do 
also occur in the vector given as the second argument; note that the order in which the 
elements are returned is determined by the order in which they occur in the vector given 
as the first argument:

>·intersect(x,y)¶
[1]·9·5·2
>·intersect(y,x)¶
[1]·2·5·9

The function union provides the elements that occur at least once in the combination 
of the two vectors given as arguments; again, the order depends on which vector is  
listed first:

>·union(x,y)¶
[1]·10··9··8··7··6··5··4··3··2··1
>·union(y,x)¶
[1]··2··5··9·10··8··7··6··4··3··1

Let me now briefly also mention the very useful functions unique, and then return to 
the function table. The function unique takes as its argument a vector or a factor 
and should be especially easy to explain to linguists since it outputs a vector contain-
ing all the types that occur at least once among the tokens (i.e., elements) of said 
vector/factor:

>·g<-c("a",·"b",·"c",·"b",·"c",·"d",·"c",·"d",·"e")¶
>·h<-c("b",·"c",·"a",·"e",·"b",·"f",·"c",·"a",·"b")¶
>·unique(h)¶
[1]·"b"·"c"·"a"·"e"·"f"

As you saw above, the function table takes as an argument one or more vectors or factors 
and provides the token frequency of each type or each combination of types.
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>·table(g)¶
g
a·b·c·d·e
1·2·3·2·1

That is, in g there is one “a” and there are two “b”s, etc. But now what happens with two 
vectors?

>·table(g,·h)¶
···h
g···a·b·c·e·f
··a·0·1·0·0·0
··b·0·0·1·1·0
··d·1·1·1·0·0
··d·1·0·0·0·1
··e·0·1·0·0·0

This is perhaps a little difficult to interpret at first sight, and you will have to remember 
that vectors are ordered sequences. This output tells you how often all possible com-
binations of elements in g and h occur. Beginning in the upper left corner and then 
moving to the right: There is no occasion at which there is an “a” in g and an “a” in h.  
There is one occasion at which there is an “a” in g and a “b” in h (element 1 of both 
vectors). There are no occasions where there is an “a” in g and a “c” or an “e” or an 
“f” in h. Analogously and in the next row, there are no positions where there’s a “b” in  
g and an “a” or a “b” in h, but there is one position where g is “b” and h is “c” (element 2),  
and so on.

As mentioned above, table will prove very useful later on. It is also worth mentioning here 
that there is a related function called prop.table, which provides a table of percentages. This 
function takes as its first argument a table generated by table and then as a second argument

 • nothing, if you want percentages to add up to 100 (or 1, for that matter) in the whole 
table;

 • a “1” if you want percentages that add up to 1 row-wise;
 • a “2” if you want percentages that add up to 1 column-wise.

Try it out by entering prop.table(table(g,·h))¶ or prop.table(table(g,·h),·1)¶ 
or prop.table(table(g,·h),·2)¶.

Let me finally mention two useful functions concerned with the order of elements in 
vectors. The first function is used to sort the elements of a vector into alphabetical or 
numerical order. It is appropriately called sort and the main two arguments we will 
discuss here are the vector to be sorted and an argument decreasing=FALSE (the default 
setting) or decreasing=TRUE:

>·h¶
[1]·"b"·"c"·"a"·"e"·"b"·"f"·"c"·"a"·"b"
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>·sort(h,·decreasing=TRUE)¶
[1]·"f"·"e"·"c"·"c"·"b"·"b"·"b"·"a"·"a"

The other function is called order. It takes as arguments one or more vectors and  
decreasing=... – but provides a very different output. Can you recognize what order does?

>·z<-c("a",·"c",·"e",·"d",·"b")¶
>·order(z,·decreasing=FALSE)¶
[1]·1·5·2·4·3

THINK

BREAK

The output of order when applied to a vector z is a vector which tells you in which 
order to put the elements of z to sort them as specified. Let us clarify this rather opaque  
characterization: If you want to sort the values of z in increasing order, you first have to 
take z’s first value (the “a”). Thus, the first value of order(z,·decreasing=FALSE)¶ is 1.  
The next/second value you have to take is the fifth value of z (the “b”), the next/third 
value you take is the second value of z (the “c”), etc. (If you provide order with more 
than one vector, additional vectors are used to break ties.) In other words, order produces 
a vector that, if you use it to subset the original element (here, z), orders that original ele-
ment as specified:

>·z[order(z,·decreasing=FALSE)]¶
[1]·1·2·3·4·5

As we will see below, this function will turn out to be useful when applied to data frames.

3.2.4 Saving Vectors

The function to output vectors we will use most is cat, which can also take a variety of 
arguments, some of which we will discuss here:

cat(...,·file="",·sep="·",·append=FALSE)¶

 • The first, obligatory, argument ... is the vector you want to output.
 • The second argument is the file argument. If you don’t provide it, the output is 

directed to the console. If you want to save the output into a file, you can either 
specify a path to a file directly or enter file.choose() as the argument. In general, 



An Introduction to R 49

make sure you provide an extension to the file name; in the context of this book,  
the files you create with cat or write.table below should either have the exten-
sion .txt or.csv (if what you are printing as a vector line by line amounts to a table/
data frame).

 • The sep argument works in just the same way as it does in scan. If you want 
each vector element to get its own line, which is probably the most useful strategy 
for nearly all our cases, enter sep="\n", but the default separator is just a space.

 • The append argument specifies whether (1) the output is appended to the end of an 
already existing file or whether (2) a new file is created for the output or an existing 
file is overwritten (the default).

You should now do “Exercise box 3.1: Handling vectors.”

Recommendations for further study/exploration

 • On how to test whether any one or all elements of a vector satisfy a logical 
expression: ?any¶ and ?all¶.

 • The fill-argument of cat.
 • Spector (2008: sections 6.1–6.4).

3.3 Factors

The second data structure we will look at are factors. Factors are superficially similar to 
vectors, and in this book they are of less importance since we mostly deal with character 
vectors; thus, we will deal with them here only cursorily. The most straightforward way 
to generate a factor is by first generating a vector as introduced above and then turning 
it into a factor using the command factor with the vector to be factorized as the first 
argument:

>·f<-c("open",·"open",·"open",·"closed",·"closed")¶
>·(f<-factor(f))¶
[1]·open···open···open···closed·closed
Levels:·closed·open

The function factor can also take a second argument, levels, which specifies the levels 
the factor has. If you print out a factor, all levels of the factor that occur at least once are 
outputted in the same way that unique outputs all values of a vector, but, crucially and 
unlike unique, a factor can have levels that are not attested in the factor.

If you want to change an element of a factor into something else, you will face 
one of two scenarios. First, the simple one: you want to change a factor element  
into something for which the factor already has a level (most likely because it is 
already attested in the factor or was in the past). In that case, you can treat factors 
like vectors:
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>·f[2]<-"closed";·f¶
[1]·open···closed·open···closed·closed
Levels:·closed·open

Second, the more complex one: You want to change a factor element into something that 
is not already attested in the factor and never has been. In that case, you must first redefine 
the factor by adding the level that you want to change something into, and then you can 
treat that new factor like a vector again, as above:

>·f<-factor(f,·level=c(levels(f),·"half-open"))¶
>·f[3]<-"half-open";·f¶
[1]·open······closed····half-open·closed····closed···
Levels:·closed·open·half-open

Note again that, unlike with unique, a factor can have levels that are not attested among 
its elements, as when you change the third element of f back into what it was:

>·f[3]<-"open";·f¶
[1]·open···closed·open···closed·closed
Levels:·closed·open·half-open

The simplest way to get rid of those is to redefine the factor using droplevels:

>·(f<-droplevels(f))¶
[1]·open···closed·open···closed·closed
Levels:·closed·open

Finally, note that there is a nice function called cut, which takes as its first argument a 
numeric vector and, in its simplest form, a number of levels as its second. It returns a fac-
tor that replaces each numeric value by the factor level that it has been categorized into. 
For example, the following creates a factor f from the number from 1 to 12 by creating 
four levels and replacing each number by the group of values it belongs in. The notation 
(0.989,3.75] means ‘numbers greater than 0.989 and less than or equal to 3.75’, which is 
R’s way saying ‘1 to 3’, etc.

>·(f<-cut(1:12,·4))¶
·[1]·(0.989,3.75]·(0.989,3.75]·(0.989,3.75]·(3.75,6.5]··
·[5]·(3.75,6.5]···(3.75,6.5]···(6.5,9.25]···(6.5,9.25]··
·[9]·(6.5,9.25]···(9.25,12]····(9.25,12]····(9.25,12]···
Levels:·(0.989,3.75]·(3.75,6.5]·(6.5,9.25]·(9.25,12]
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You can check that R formed the right four groups for the numbers from 1 to 12 –  
obviously 1:3, 4:6, 7:9, 10:12 – by cross-tabulating the original numeric vector and the 
new factor f:

>·table(1:12,·f)¶
····f
·····(0.989,3.75]·(3.75,6.5]·(6.5,9.25]·(9.25,12]
··1·············1··········0··········0·········0
··2·············1··········0··········0·········0
··3·············1··········0··········0·········0
··4·············0··········1··········0·········0
··5·············0··········1··········0·········0
··6·············0··········1··········0·········0
··7·············0··········0··········1·········0
··8·············0··········0··········1·········0
··9·············0··········0··········1·········0
··10············0··········0··········0·········1
··11············0··········0··········0·········1
··12············0··········0··········0·········1

Recommendations for further study/exploration

 • Spector (2008: chapter 5).

3.4 Data Frames

While vectors are the most relevant data structure for retrieving data from cor-
pora, data frames are most relevant, first, as a tabular output form of corpus data  
(recall the discussion of frequency lists, collocate displays, concordances, etc. 
above), and, second, as the main input data structure for statistical analysis (often 
created/modified in a spreadsheet software and then imported into R). This data  
structure, which basically corresponds to a two-dimensional matrix, will be illustrated 
in this section.

3.4.1 Generating Data Frames in R

While data frames are usually loaded from text files generated with other programs,  
you can also generate data frames within R by combining several equally long vectors 
and/or factors. Let us assume you have characterized five parts of speech, as captured  
in a variable PARTOFSPEECH, in terms of three other variables (or parameters or  
characteristics):

 • a variable “TOKENFREQUENCY” – i.e., the frequency of all individual words of 
this part of speech in a very small corpus C;

 • a variable “TYPEFREQUENCY” – i.e., the number of all different words of this part 
of speech in C;

 • a variable “CLASS” – i.e., whether the part of speech is an open class or a closed class.
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Let us further assume the variables and the data frame you wish to generate should look 
like Figure 3.4.

In a first step, you generate the four vectors, one for each column of the data frame:

>·rm(list=ls(all=TRUE))¶
>·PARTOFSPEECH<-c("adj",·"adv",·"n",·"conj",·"prep")¶
>·TOKENFREQUENCY<-c(421,·337,·1411,·458,·455)¶
>·TYPEFREQUENCY<-c(271,·103,·735,·18,·37)¶
>·CLASS<-c("open",·"open",·"open",·"closed",·"closed")¶

Note that the first row of the data frame you want to generate does not contain data 
points, but the names of the columns. You must now also decide whether you would like 
the first column to contain case numbers from 1 to n or names of rows. If you prefer the 
former, then you can simply generate the data frame using data.frame, which in this case 
takes as arguments only the vectors/factors you want to combine. Note that the order of 
the vectors is only important in that it determines the order of the columns in the data 
frame. Let us now look at the data frame and its properties using the functions str (for 
structure) and summary:

>·(x<-data.frame(PARTOFSPEECH,·TOKENFREQUENCY,·TYPEFREQUENCY,· 
CLASS)¶

··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open
4·········conj············458············18·closed
5·········prep············455············37·closed

>·str(x)¶
'data.frame': 5·obs.·of··4·variables:
·$·PARTOFSPEECH··:·Factor·w/·5·levels·"adj","adv","conj",..:· 

1·2·4·3·5
·$·TOKENFREQUENCY:·num··421·337·1411·458·455
·$·TYPEFREQUENCY·:·num··271·103·735·18·37
·$·CLASS·········:·Factor·w/·2·levels·"closed","open":·2·2·2·1·1

>·summary(x)¶
·PARTOFSPEECH·TOKENFREQUENCY···TYPEFREQUENCY······CLASS
·adj·:1·······Min.···:·337.0···Min.···:·18.0···closed:2

Figure 3.4 An example data frame.
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·adv·:1·······1st·Qu.:·421.0···1st·Qu.:·37.0···open··:3
·conj:1·······Median·:·455.0···Median·:103.0···········
·n···:1·······Mean···:·616.4···Mean···:232.8···········
·prep:1·······3rd·Qu.:·458.0···3rd·Qu.:271.0···········
··············Max.···:1411.0···Max.···:735.0···········

We can see several things from this output. First, R has generated the data frame as desired. 
Second, R has automatically converted those vectors which contained character strings into 
factors (namely, PARTOFSPEECH and CLASS), and we can see that factors are internally repre-
sented as numbers (e.g., for CLASS, “closed” is 1 and “open” is 2). Third, since we have not 
specified any row names, R automatically numbers the rows. Finally, the column names in the 
output of str are preceded by a $ sign. This means that when you have stored a data frame in 
R, you can access columns by using the name of the data frame, a $ sign, and a column name 
(if the column name includes spaces, you need to put the column name in double quotes):

>·x$PARTOFSPEECH¶
[1]·adj··adv··n····conj·prep
Levels:·adj·adv·conj·n·prep

The above way of generating data frames is the default that we will use in most cases.

3.4.2 Loading and Saving Data Frames in R

The more common way of getting R to recognize a data frame is to load a file that was 
generated with spreadsheet software. Let us assume you have generated a spreadsheet file 
<_qclwr2/_inputfiles/dat_dataframe-a.ods> or a tab- or comma-delimited file <_qclwr2/_
inputfiles/dat_dataframe-a.csv> containing the above data frame x (using a text editor or 
a spreadsheet software such as LibreOffice Calc). Ideally your spreadsheet would only 
contain alphanumeric characters and no whitespace characters (to facilitate later handling 
in R or other software). The first step is to save that file as a raw text file. In LibreOffice 
Calc, you choose the Menu “File: Save As . . . ” and choose “Text CSV (.csv)” from the 
“Save as type”/Formats menu. Then, you enter a file name, confirm “Automatic file name 
extension” and confirm you want to save the data into a text CSV format file, if prompted 
to do so. After that, ideally you choose “Unicode (UTF-8)” as the character set, “{Tab}” 
as the field delimiter and, usually, delete the text delimiter.

The second step is to load <_qclwr2/_inputfiles/dat_dataframe-a.csv> into R with 
read.table. These are the most frequently used arguments of read.table with their 
default settings:

read.table(file=...,·header=FALSE,·sep="",·quote="\"'",·dec=".",· 
row.names,·na.strings="NA",·comment.char="#")

 • The argument file is obligatory and specifies a data frame as saved above (as before 
with a one-element character vector, you can also just enter file.choose() to be 
prompted to choose a file interactively).
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 • The argument header specifies whether the first row contains the labels for the  
columns (header=TRUE) – as would normally be the case – or not (header=FALSE).

 • The argument sep, as mentioned above, specifies the character that separates data 
fields, and given the file we wish to import – and in fact most of the time – our setting 
should be sep="\t" for a tab.

 • We also know the dec argument, which is used as introduced above; in an English 
locale, the setting would not have to be changed.

 • The argument quote, which provides the characters used for quoted strings.  
On most, if not all, occasions you should set this to quote="" to avoid input  
problems.

 • The argument row.names can either be a vector containing names for the rows  
or, more typically, the number of the columns containing the row names (typi-
cally 1). If you do not specify a row.names argument, the rows will be numbered 
automatically.

 • The argument na.strings takes a character vector of strings which are to be consid-
ered as unavailable/missing data.2

 • Finally, the argument comment.char, which provides R with the character that sepa-
rates comments from the rest of the line. Just like with quote, you will most likely 
wish to set this to comment.char="".

Thus, in order to import the table we may just have saved from LibreOffice Calc into a.csv 
file into a data frame called x, we enter the following at the R console (the first line is just 
to clear memory again):

>·rm(list=ls(all=TRUE))¶
>·x<-read.table(file.choose(),·header=TRUE,·sep="\t",· 

comment.char="")¶

If, by contrast, you wish to save a data frame from R into a text file, you need write.
table. Here are the most important arguments and their default settings:

write.table(x,·file=...,·append=FALSE,·sep="·",·eol="\n",·na="NA",· 
dec=".",·row.names=TRUE,·col.names=TRUE)

 • The argument x is the data frame to be saved.
 • The arguments file, append, sep, and dec are used in the ways introduced above.
 • The argument quote specifies whether you want factor levels within double quotes, 

which is usually not particularly useful for editing data in a spreadsheet software.
 • The argument eol provides the character that marks the end of lines; this will nor-

mally be eol="\n", which is also the default.
 • The arguments row.names and col.names specify whether you would like to include 

the names (or numbers) of the rows and the names of the columns in the file.

Given the above default settings and under the assumption that your operating  
system uses an English locale, this would probably be the ‘normal’ way to save such 
data frames:
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write.table(x,·path=file.choose(),·quote=FALSE,·sep="\t",·row.
names=FALSE)¶

Recommendations for further study/exploration

 • On how to handle and detect missing or non-numeric data: ?NA¶ and ?is.na¶, 
as well as ?NaN¶ and ?is.nan¶, ?na.action¶, ?na.omit¶, and ?na.fail¶.

 • On how to test whether cases (e.g., rows in data frames) are complete (i.e., don’t 
have a single NA in them): ?complete.cases¶.

3.4.3 Accessing and Processing (Parts of) Data Frames in R

There are several R functions that are useful for accessing parts of data frames that are to 
be used for subsequent analysis. To look at these, let us clear memory and then load the 
data frame from <_qclwr2/_inputfiles/dat_dataframe-a.csv> above into x again:

>·rm(list=ls(all=TRUE))¶
>·x<-read.table(file.choose(),·header=TRUE,·sep="\t",·comment.

char="")¶

You have seen above that you can use the name of a data frame followed by a $ 
and a column name (potentially in quotes) to access columns in a data frame as in 
x$TYPEFREQUENCY. An alternative approach is the use of with, where you provide a 
data structure as the first argument and the part of that data structure that you want to 
access as the second:

>·with(x,·TYPEFREQUENCY)¶
[1]·271·103·735··18··37

But that’s even more typing than just x$TYPEFREQUENCY. The probably simplest way to 
achieve the same objective is to use attach to make all columns of the data frame avail-
able without having to type the name of the data frame. This way, while R does not know 
the column TYPEFREQUENCY when the data frame was only loaded (see first line and its 
output), once it has been attached you can use its column names to access its columns 
without prefixing the name of the data frame:

>·TYPEFREQUENCY¶
Error:·object·'TYPEFREQUENCY'·not·found
>·attach(x)¶
>·TYPEFREQUENCY¶
[1]·271·103·735··18··37
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To undo an attach(...)¶, use detach(...)¶. Also, note that if you attach a data frame 
that has the same column names as a previously attached data frame, R will do it, no 
problem, but will give you a warning that informs you that the columns of the previously 
attached data frame are no longer available by just typing the variable name. Also note 
that if you want to make changes to data that come from a data frame, it is safest to first 
detach the data frame, make your changes in the original data frame, and then attach it 
again: This way you make sure that you change the actual data, not the ‘copy’ that attach 
makes available.

The perhaps most general and versatile approach to accessing data from a data frame 
is again subsetting. We saw above that we can use square brackets to select parts of unidi-
mensional vectors – since data frames are two-dimensional data structures, we now need 
two (sets of) figures, one for the rows and one for the columns:

>·x[2,3]¶
[1]·103
>·x[2,]¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
2··········adv············337···········103···open
>·x[,3]¶
[1]·271·103·735··18··37
>·x[2:3,4]¶
[1]·open·open
Levels:·closed·open
>·x[c(1,3),·c(2,4)]¶
··TOKENFREQUENCY·CLASS
1············421··open
3···········1411··open

As you can see, row and column names are not counted. Also, recall the versatile ways of 
juxtaposing different functions:

>·which(x[,2]>450)¶
[1]·3·4·5
>·x[,3][which(x[,3]>100)]¶
[1]·271·103·735
>·x[,3][x[,3]>100]¶
[1]·271·103·735
>·TYPEFREQUENCY[TYPEFREQUENCY>100]¶
[1]·271·103·735

Sometimes, you want to investigate only one part of a data frame, namely a part where 
one variable has a particular value. One way to get at a subset of the data follows  
logically from what we have done already. Let us assume you want to define a data 
frame y that contains only those rows of x referring to open-class words. If you have 
already made the variables of a data frame available using attach, this would be one 
possibility to do that:
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>·(y<-x[which(CLASS=="open"),])¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open

If you have not made the variable names available, you can still do this:

>·(y<-x[which(x[,4]=="open"),])¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open

The maybe more readable way of achieving the same is provided by subset. This function 
takes as its first argument the data frame to subset and as additional arguments a logical 
expression specifying the selection conditions:

>·(y<-subset(x,·CLASS=="open"))¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open

>·(y<-subset(x,·CLASS=="open"·&·TOKENFREQUENCY<1000))¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open

>·(y<-subset(x,·PARTOFSPEECH·%in%·c("adj",·"adv")))¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open

This way, data frames can be conveniently customized for many different forms of analysis.  
If, for whatever reason, you wish to edit data frames in R rather than in a spreadsheet 
program – for example, because Microsoft Excel or LibreOffice Calc are limited to data 
sets with maximally about one million rows, you can also do this in R. (One million rows 
may seem larger than you would ever need to you, but even a frequency list of the BNC 
is already at that limit.)

Finally, let me mention a very practical way of reordering data frames by means  
of order, introduced above. Recall that order returns a vector of positions of ele-
ments and recall that subsetting can be used to access parts of vectors, factors, and data  
frames (and later lists). As a matter of fact, you may already guess how you can reorder 
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data frames. For example, imagine you want to sort the rows in the data frame x accord-
ing to CLASS (ascending in alphabetical order) and, within CLASS, according to values 
of the column TOKENFREQUENCY (in descending order). Of course we can use order to 
achieve this goal, but there is one tricky issue involved here: The default ordering style of 
order is decreasing=FALSE, i.e., in ascending order, but you actually want to apply two 
different styles: ascending for CLASS and descending for TOKENFREQUENCY, so changing 
the default alone will not help. What you can do, though, is this:

>·ordering.index<-order(CLASS,·-TOKENFREQUENCY);·ordering.index¶
[1]·4·5·3·1·2

That is, you apply order not to TOKENFREQUENCY, but to the negative values of 
TOKENFREQUENCY, effectively generating the desired descending sorting style. Then, you 
can use this vector to reorder the rows of the data frame by subsetting:

>·x[ordering.index,]¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
4·········conj············458············18·closed
5·········prep············455············37·closed
3············n···········1411···········735···open
1··········adj············421···········271···open
2··········adv············337···········103···open

Of course, this could have been done in one line:

>·x[order(CLASS,·-TOKENFREQUENCY),]¶

You can also apply a function we got to know above, sample, if you want to reorder a data 
frame randomly. This may be useful, for example, to randomize the order of stimulus pres-
entation in an experiment or to be able to randomly select only a part of the data in a data 
frame for analysis. One way of doing this is to first retrieve the number of rows that need 
to be reordered using dim, whose first result value will be the number of rows and whose 
second result value will be the number of columns (just as in subsetting or prop.table):

>·no.of.rows<-dim(x)[1]¶

Then, you reorder the row numbers randomly using sample and then you use subsetting 
to change the order; of course, you may have a different (random) order:

>·(ordering.index<-sample(no.of.rows))¶
[1]·1·4·2·3·5
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>·x[ordering.index,]¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
4·········conj············458············18·closed
2··········adv············337···········103···open
3············n···········1411···········735···open
5·········prep············455············37·closed

Alternatively, you do it all in one line:

>·x[sample(dim(x)[1]),]¶

Finally, on some occasions you may want to sort a data frame according to several col-
umns and several sorts (increasing and decreasing). However, you cannot apply a minus 
sign to factors to force a particular sorting style as we did above with TOKENFREQUENCY, 
which is why in such cases you need to use rank, which rank-orders a column with a fac-
tor first into numbers, to which then the minus sign can apply:

>·ordering.index<-order(-rank(CLASS),·-rank(PARTOFSPEECH))¶
>·x[ordering.index,]¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
3············n···········1411···········735···open
2··········adv············337···········103···open
1··········adj············421···········271···open
5·········prep············455············37·closed
4·········conj············458············18·closed

You should now do “Exercise box 3.2: Handling data frames.”

Recommendations for further study/exploration

 • On how to edit data frames in a spreadsheet interface within R: ?fix¶ (note also 
that you can also view them in RStudio by clicking on the Environment tab and 
then on the small spreadsheet symbol next to the name of the data frame you 
want to view).

 • On how to merge different data frames: ?merge¶.
 • On how to merge different columns and rows into matrices (which can in turn 

be changed into data frames easily): ?cbind¶ and ?rbind¶.
 • See the package dplyr for many useful data frame operations.
 • Spector (2008: chapter 2, section 6.8).
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3.5 Lists

While the data frame is probably the most central data structure for statistical evalu-
ation in R and has thus received much attention here, data frames are actually just a 
special kind of data structure, namely lists. More specifically, data frames are lists that 
contain vectors and factors which all have the same length. Lists are a much more ver-
satile data structure which can in turn contain various different data structures within 
them. For example, a list can contain different kinds of vectors, data frames, and other 
lists, as well as other data structures we will not discuss explicitly in this book (e.g., 
arrays or matrices):

>·rm(list=ls(all=TRUE))¶
>·a.vector<-c(1:10)¶
>·a.dataframe<-read.table(file.choose(),·header=TRUE,·sep="\t",· 

comment.char="")¶
>·another.vector<-c("This",·"may",·"be",·"a",·"sentence",· 

"from",·"a",·"corpus","file",".")¶
>·(a.list<-list(a.vector,·a.dataframe,·another.vector))¶
[[1]]
·[1]··1··2··3··4··5··6··7··8··9·10
[[2]]
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open
4·········conj············458············18·closed
5·········prep············455············37·closed
[[3]]
·[1]·"This"·····"may"······"be"·······"a"·······"sentence"·"from"
·[7]·"a"········"corpus"···"file"·····"."

As you can see, the three different elements – a vector of numbers, a data frame  
with different columns, and a vector of character strings – are now stored in a single  
data structure:

>·str(a.list)¶
List·of·3
·$·:·int·[1:10]·1·2·3·4·5·6·7·8·9·10
·$·:'data.frame':·······5·obs.·of··4·variables:
··..$·PARTOFSPEECH··:·Factor·w/·5·levels·"adj","adv","conj",..:· 

1·2·4·3·5
··..$·TOKENFREQUENCY:·int·[1:5]·421·337·1411·458·455
··..$·TYPEFREQUENCY·:·int·[1:5]·271·103·735·18·37
··..$·CLASS·········:·Factor·w/·2·levels·"closed","open":·2·2·2·1·1
·$·:·chr·[1:10]·"This"·"may"·"be"·"a"·...

An alternative way to generate such a list involves labeling the elements of the list, i.e., 
giving them names just like above when we gave names to elements of vectors. You can 
do that either when you generate the list by assignment:
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>·a.list<-list(Part1=a.vector,·Part2=a.dataframe,·Part3=another.
vector)¶

or you can do the labeling with names as you did with vectors above:

>·names(a.list)<-c("Part1",·"Part2",·"Part3")¶

But for now let’s stick to the unlabeled format (and thus redefine a.list as before):

>·a.list<-list(a.vector,·a.dataframe,·another.vector)¶

This kind of data structure is interesting because it can contain many different things and 
because you can access individual parts of it in ways similar to those you use for other 
data structures. As the above output indicates, the elements in lists are numbered and the 
numbers are put between double square brackets. Thus:

>·a.list[[1]]¶
[1]··1··2··3··4··5··6··7··8··9·10
>·a.list[[2]]¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open
4·········conj············458············18·closed
5·········prep············455············37·closed
>·a.list[[3]]¶
[1]·"This"·····"may"······"be"·······"a"········"sentence"·"from"···

··"a"········"corpus"···"file"·····"."

It is important to bear in mind that there are two ways of accessing a list’s elements with 
subsetting. The one with double square brackets is the one suggested by how a list is 
shown in the console. This way, you get each element as the kind of data structure you 
entered into the list, namely as a vector, a data frame, and a vector respectively. What, 
however, happens when you use the general subsetting approach, which you know uses 
single square brackets? Can you see the difference in the notation with double square 
brackets? What is happening here?

>·a.list[1]¶
[[1]]
·[1]··1··2··3··4··5··6··7··8··9·10

>·a.list[2]¶
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[[1]]
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open
4·········conj············458············18·closed
5·········prep············455············37·closed

>·a.list[3]¶
[[1]]
·[1]·"This"·····"may"······"be"·······"a"········"sentence"·"from" 

·····"a"········"corpus"···"file"·····"."

THINK

BREAK

The difference is this: If you access a component of a list with double square brackets, 
you get that component as an instance of the kind of data structure it was entered into 
the list as (see the first output). If you access a component of a list with single square 
brackets, you get that component as an instance of the data structure from which you 
access it, i.e., as a list. This may seem surprising or confusing, but it is actually only 
consistent with what you already know: If you use single square-bracket subsetting on a 
vector, you get a vector; if you use single square-bracket subsetting (with more than one 
row and column chosen) on a data frame, you get a data frame, etc. So, once you think 
about it, no big surprise.

Finally, if you named the elements of a list, you could also use those (but we did away 
with the names again, which is why you get NULL here):

>·a.list$Part1·#·or·a.list[["Part1"]]¶
NULL

Of course, you can also access several elements of a list at the same time. Since  
you will get a list as output, you use the by now familiar strategy of single square 
brackets:

>·a.list[c(1,3)]¶
[[1]]
[1]··1··2··3··4··5··6··7··8··9·10
[[2]]
[1]·"This"·····"may"······"be"·······"a"········"sentence"·"from" 

·····"a"·"corpus"···"file"·····"."

So far we have looked at how you access elements of lists, but how do you access elements 
of elements of lists? The answer of course uses the notation with double square brackets 
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(because you now do not want a list, but, say, a vector) and either of the two following 
options works – the latter is more intuitive to me:

>·a.list[[c(1,3)]]¶
[1]·3
>·a.list[[1]][3]¶
[1]·3

And this is how you access more than part of a list at the same time:

>·a.list[[1]][3:5]¶
[1]·3·4·5
>·a.list[[1]][c(3,·5)]¶
[1]·3·5

Thus, this is how to handle data frames in lists such as, for instance, accessing the second 
element of the list, and then the value of its third row and second column:

>·a.list[[2]][3,2]¶
[1]·1411
>·a.list[[2]][3,2:4]¶
··TOKENFREQUENCY·TYPEFREQUENCY·CLASS
3···········1411···········735··open

And this is how you take the second element of the list, and then the elements in the third 
row and the second and fourth column:

>·a.list[[2]][3,c(2,·4)]¶
··TOKENFREQUENCY·CLASS
3···········1411··open

And this is how you delete a list part:

>·a.list[3]<-NULL;·a.list¶
[[1]]
·[1]··1··2··3··4··5··6··7··8··9·10
[[2]]
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open
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4·········conj············458············18·closed
5·········prep············455············37·closed

As you can see, once one has figured out which bracketing to use, lists can be an extremely 
powerful data structure. They can be used for very many different things. One is that 
many statistical functions output their results in the form of a list, so if you want to be 
able to access your results in the most economical way, you need to know how lists work. 
A second one is that sometimes lists facilitate the handling of your data. For example,  
we have used the data frame a.dataframe in this section, and above we introduced subset 
to access parts of a data frame that share a set of variable values or levels. However, for larger 
or more complex analyses, it may also become useful to be able to split up the data frame into 
smaller parts, depending on the values some variable takes. As you saw in the previous exer-
cise box, you use split, which takes as its first argument the data frame to be split up and as 
its second argument the name of the variable (i.e., column name) according to which the data 
frame is to be split. Why do I mention this here (again)? Because the result of split is a list:

>·(y<-split(a.dataframe,·a.dataframe$CLASS))¶
$closed
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
4·········conj············458············18·closed
5·········prep············455············37·closed
$open
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open

This then even allows you to access the parts of the list using the above $ notation:

>·y$open¶
··PARTOFSPEECH·TOKENFREQUENCY·TYPEFREQUENCY··CLASS
1··········adj············421···········271···open
2··········adv············337···········103···open
3············n···········1411···········735···open

Note that you can also split up a data frame according to all combinations of two vari-
ables (i.e., more than one variable); the second argument of split must be a list of these 
variables, which of course is not the most useful thing ever with the present tiny example, 
given that many combinations of a.dataframe$CLASS and a.dataframe$PARTOFSPEECH 
are not even attested in a.dataframe:

>·split(a.dataframe,·list(a.dataframe$CLASS,·a.dataframe$ 
PARTOFSPEECH))¶
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3.6 Elementary Programming Issues

In order to really appreciate the advantages R has to offer over all available corpus- 
linguistic software, we will now introduce a few immensely important functions, control 
statements, and control-flow structures that will allow you to apply individual functions 
as well as sets of functions to data only in certain conditions and/or more often than just 
the single time we have so far been covering. To that end, this section will first introduce 
conditional expressions; then we will look at the notion of loops; finally, we will turn very 
briefly to a few functions which can sometimes replace loops and are often more useful 
because they are faster and consume less memory.

3.6.1 Conditional Expressions

You will often be in the situation that you want to execute a particular (set of) function(s) 
if and only if some condition C is met, and that you would like to execute some other (set 
of) function(s) if C is not met. The most fundamental way of handling conditions in R 
involves a control-flow structure that can be expressed as follows:

if·(some logical expression testing a condition)·{¶
   what to do if this 1st logical expression evaluates to TRUE
   (this can be more than one line)¶
}·else·if·(other condition){¶
   what to do if this 2nd logical expression evaluates to TRUE
   (this can be more than one line)¶
}·else·{¶
   what to do if all logical expressions above evaluate to FALSE
   (this can be more than one line)¶
}¶

(Note that the structures else·if·{·...·} and else·{·...·} are optional.) The 
logical expression testing a condition represents something we have already 
encountered above (e.g., in the context of which but also elsewhere), namely an expres-
sion with logical operators that is evaluated and returns either TRUE or FALSE. If it 
returns TRUE, R will execute the first (set of) function(s); if the expression condition 
returns FALSE, R will test whether the second condition is true. If it is, it will execute 
the next (set of) function(s), otherwise it will execute the last (set of) function(s). Two 
simple examples will clarify this; recall from above the fact that the plus sign at the 
beginning of lines is not something you enter but the version of the prompt that R 
displays when it expects further input before executing, here, a series of commands:

>·a<-2¶
>·if·(a>2)·{¶
+····b<-TRUE¶
}·else·{¶
+····b<-FALSE¶
+·}¶
b¶
[1]·FALSE
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and

>·b<-"car"¶
>·if·(b=="automobile")·{¶
+····a<-"b·is·'automobile'"¶
}·else·if·(b=="car")·{¶
+····a<-"b·is·'car'"¶
+·}·else·{¶
+····a<-"b·is·neither·'automobile'·nor·'car'"¶
+·}¶
a¶
[1]·"b·is·'car'"

You may wonder what the series of leading spaces in some lines are for, especially since 
I said above that R only cares about space within quotes. This is still correct: R does not 
care about these spaces, but you will. The only function of the spaces here is to enhance 
the legibility and interpretability of your small script. In the remainder of the book, every 
indentation by three spaces represents one further level of embedding within the script. 
The third line of the second example above is indented by three spaces, which shows you 
that it is a line within one conditional expression (or loop, as we will see shortly). When 
you write your own scripts, this convention will make it easier for you to recognize coher-
ent blocks of code which all belong to one conditional expression. Of course, you could 
also use just two spaces, a tabstop, etc.

When do you need conditional expressions? Well, while not all of the following exam-
ples are actually best treated with if, they clearly indicate a need for being able to perform 
a particular course of action only when particular conditions are met. You may want to

 • include a corpus file in your analysis only if the corpus header reveals it is a file con-
taining spoken language;

 • search a line of a corpus file only if it belongs to a particular utterance;
 • use a certain part of the code only if your R instance is running on Windows, use 

another part of the code if your R instance is running on Linux;
 • include a word in your frequency list only if its frequency exceeds a particular value; or
 • want to use one search expression if a file has SGML annotation and another if it has 

XML annotation, etc.

You should now do “Exercise box 3.3: Conditional expressions.”

Recommendations for further study/exploration

 • On how to test an expression and specify what to do when the expression is true 
or false in one line: ?ifelse¶.

 • On how to choose one of several alternatives and perform a corresponding 
action: ?switch¶.
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3.6.2 Loops

This section introduces loops, which are one useful way to execute one or more functions 
several times. While R offers several different ways to use loops, I will only introduce 
one of them here in a bit more detail, namely for-loops, and leave while and repeat-
loops for you to explore on your own (I do provide one example for each in the code file, 
though).

A for-loop has the following structure:

for·(name·in·seq)·{¶
   what to do as often often as seq has elements
   (this can be more than one line)¶
}¶

This requires some explanation. The expression name stands for any name you choose 
to assign, and seq stands for anything that can be interpreted as a sequence of values 
(where one value is actually enough to constitute a sequence); typically, such a sequence is 
a vector, and very often it is a vector with integers from 1 to n (either generated using the 
range operator : or seq). Let us look at the probably simplest conceivable example, that 
of printing out numbers (which one would of course not really do with a loop but with 
cat(1:3,·sep="\n")¶ – this is just a didactic example):

>·for·(i·in·1:3)·{¶
+····cat(i,·"\n")¶
+·}¶
1
2
3

This can be paraphrased as follows: Generate a variable called i as an index for loop-
ing. The value i should take on at the beginning is 1 (the first value in the sequence 
after the in), and then R executes the function(s) within the loop – i.e., those enclosed 
in curly brackets. Here, this just means printing i and a newline. When the closing curly 
bracket is reached, i should take on the next value in the user-defined sequence – i.e., 
2 – and again perform the functions within the loop, etc. until the functions within the 
loop have been executed, with i having assumed the last value of the sequence, i.e.,  
3. Then, the for-loop is completed/exited. Again, the above kind of sequence is cer-
tainly the most frequently used one – the index i starts with 1 and proceeds through a 
series of consecutive integers – but it is by no means the only one: In the next example, 
i takes on all values of letters[4:6] (letters is a built-in constant containing the 
letters from a to z):

>·for·(i·in·letters[4:6])·{¶
+····cat(i,·"\n")¶
+·}¶
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d
e
f

Of course, you can also use nested loops, that is, you can execute one loop within another 
one, but be aware of the fact that you must use different names for the looping indices  
(i and j in this example):

>·for·(i·in·1:2)·{¶
+····for·(j·in·6:7)·{¶
+·······cat(i,·"times",·j,·"is",·i*j,·"\n")¶
+····}¶
+·}¶
1·times·6·is·6
1·times·7·is·7
2·times·6·is·12
2·times·7·is·14

While these examples only illustrate the most basic kinds of loops conceivable (in the sense 
of what is done within each iteration), we will later use for-loops in much more useful ways.

Since you specify a sequence of iterations, for-loops are most useful when you must 
perform a particular operation a known number of times. However, sometimes you do 
not know the number of times an operation has to be repeated. For example, sometimes 
the number of times something has to be done may depend on a particular criterion, e.g., 
when your corpus has 200 files but you only want to search those files that contain writ-
ten data, but you want R to find that out for you from the loaded corpus file’s header, 
meaning you know what will be in the header of a file with written data, but you don’t 
even know which and how many files those are. R offers several easy ways of handling 
these situations. One possibility of, so to speak, making such for-loops more flexible is by 
means of the control expression next. If you use next within a loop, R skips the remain-
ing instructions in the loop and advances to the next element in the sequence/counter of 
the loop. The following is a (rather boring) example where you can see that, when the 
logical expression returns TRUE, R never reaches the line in which i is printed so the 2 does 
not get printed. In the above example of written corpus data, you would check whether 
the file contains written data or not – if yes, you do what you want to do with it; if not, 
you immediately go to the next file:

>·for·(i·in·1:3)·{¶
+····if·(i==2)·{¶
+·······next¶
+····}¶
+····cat(i,·"\n")¶
+·}¶
1
3
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Another way to make loops more flexible is break. If you use break within a loop, the 
whole loop is exited and R proceeds with the first statement outside of the inner-most 
loop in which break was processed. This is how it works: When the logical expression 
returns TRUE, R processes break and breaks out of the for-loop, and never gets to print 
3, 4, and 5:

>·for·(i·in·1:5)·{¶
+····if·(i==3)·{¶
+·······break¶
+····}¶
+····cat(i,·"\n")¶
+·}¶
1
2

Before we proceed, let me mention that loops slightly complicate your replicating scripts 
directly in the console. This is because once you enter a loop, R will not begin with the 
execution before the final “}” – hence the “+·” prompts – so you may not be able to easily 
recapitulate the inner working of the iterations. My recommendation to handle this is the 
following: When a loop begins like this for·(i·in·1:3)·{¶, but you want to proceed 
through the loop stepwise (for instance, in order to find and fix an error), then do not 
enter this line into R immediately. Rather, to see what is happening inside the loop, set the 
counter variable, i in this case, to its first value manually by writing i<-1¶. This way, i 
has been defined and whatever in the loop is depending on i having been defined as if the 
loop was actually happening can proceed. If you then want to go through the loop once 
more, but again do not yet want to do all iterations, just increment i by 1 manually (i<-
i+1¶) and ‘iterate’ again. Once you have understood and maybe fixed the instructions in 
the loop and want to execute it all in one go, then just type the real beginning of the loop 
(for·(i·in·1:3)·{¶) or copy and paste from the script file. This way you will be able to 
understand more complex scripts more easily.

You should now do “Exercise box 3.4: Loops.”

3.6.3 Rules of Programming

This book cannot serve as a fully fledged introduction to good programming style (in R 
or in general). In fact, I have not even always shown the shortest or most elegant way of 
achieving a particular goal because I wanted to avoid making matters more complicated 
or compact than absolutely necessary (and will continue to do so). However, given that 
there are usually many different ways to achieve a particular goal, there are two aspects 
of reasonable R programming that I would like to emphasize because they will help to

 • increase the speed with which some of the more comprehensive tasks can be completed;
 • reduce memory requirements during processing; and
 • reduce the risk of losing data when you perform more comprehensive tasks.
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The first of the two aspects is concerned with capitalizing on the fact that R’s most funda-
mental data structure is the vector, and that R can apply functions to all elements of a vector 
at once without having to explicitly loop over all elements of a vector individually. Thus, 
while conditional expressions and for-loops are extremely powerful control structures and 
you can of course make R do many things using these structures, there are sometimes more 
elegant ways to achieve the same objectives. Why may some ways be more elegant? First, 
they may be more elegant because they achieve the same objective with (many) fewer lines 
of code. Second, they may be more elegant because the code is easier to read. Third, they 
may be more elegant because they are more compatible with how R processes things and 
manages memory. Let us look at a few examples using the vectors from above again:

>·PARTOFSPEECH<-c("adj",·"adv",·"n",·"conj",·"prep")¶
>·TOKENFREQUENCY<-c(421,·337,·1411,·458,·455)¶
>·TYPEFREQUENCY<-c(271,·103,·735,·18,·37)¶
>·CLASS<-c("open",·"open",·"open",·"closed",·"closed")¶

Let us assume we would like to determine the overall token frequencies of open class items 
and closed class items in our data set. There are several ways of doing this. One is terribly 
clumsy and involves using a for-loop to determine for each element of CLASS whether it is 
“open” or “closed”. Note one important thing: We know we will collect results from/during 
each iteration of a loop – that means the loop will contain some line in which each itera-
tion’s result is assigned to a data structure, but that in turn means that that data structure 
has to have been defined before the loop presupposes it, which is why the first line of the 
code below creates two what I will call collector data structures, numeric vectors contain-
ing 0, that will, after all iterations of the for-loop have been completed, contain the results:

>·sum.clos<-0;·sum.open<-0¶
>·for·(i·in·1:5)·{¶
+····current.class<-CLASS[i]¶
+····if·(current.class=="closed")·{¶
+·······sum.clos<-sum.clos+TOKENFREQUENCY[i]¶
+····}·else·{¶
+·······sum.open<-sum.open+TOKENFREQUENCY[i]¶
+····}¶
+·}¶
>·sum.clos;·sum.open¶
[1]·913
[1]·2169

The following is already a much better way: It requires only two lines of code and avoids 
a loop to access all elements of CLASS:

>·sum(TOKENFREQUENCY[CLASS=="closed"])¶
[1]·913
>·sum(TOKENFREQUENCY[CLASS=="open"])¶
[1]·2169
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But the best way involves a function called tapply, which you have already encountered 
briefly in an exercise box on vectors. For now, we will discuss how this function behaves 
when given three arguments. The first is usually a vector to (parts of) which you would 
like to apply a particular function. The second is usually a vector or factor (or a list of 
vectors or factors) with as many elements as the first-argument vector to which you would 
like to apply a function. The third argument is the function you wish to apply, which can 
be one of many, many functions available in R (min, max, mean, sum, sd, var, etc.) as well 
as ones you define yourself:

>·tapply(TOKENFREQUENCY,·CLASS,·sum)¶
closed···open
···913···2169

This is the way to tell R “for every level of CLASS, determine the sum of the values in 
TOKENFREQUENCY”. Note again that the second argument can be a list of vectors/factors 
to look at more than one classifying factor at the same time.

You should now do “Exercise box 3.5: tapply.”

Another area where the apply-family of functions becomes particularly useful is the han-
dling of lists. We have seen above that lists are a very versatile data structure. We have also 
seen that subsetting by means of double square brackets allows us to access various parts 
of lists. However, there are other ways of getting information from lists that we have not 
dealt with so far. Let us first generate a list as an example:

>·(another.list<-list(1,·2:3,·4:6,·7:10))¶

One useful thing to be able to do is to determine how long all the parts of a list are. With 
the knowledge we have so far, we would probably proceed as follows:

>·lengths<-numeric()¶
>·for·(i·in·seq(another.list))·{¶
+····lengths[i]<-length(another.list[[i]])¶
+·}¶
>·lengths¶
[1]·1·2·3·4

However, with sapply this is much simpler. This function takes several arguments, some of 
which we will discuss here. The first argument is usually a list or a vector to whose elements 
you want to apply a function. The second argument is the function you wish to apply. The 
“s” in sapply stands for “simplify,” which means that, if possible, R coerces the output into 
a vector format (or matrix) format. From this you may already guess what you can write:
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>·sapply(another.list,·length)¶
[1]·1·2·3·4

This means “to every element of another.list, apply length”. Another great use of 
sapply allows you to access several parts of data structures (vectors, lists, etc.). For exam-
ple, you may want to retrieve the first element of each of the four vectors of the list 
another.list. This is how you would do it with a loop:

>·first.elements<-vector()¶
>·for·(i·in·1:length(another.list))·{¶
····first.elements[i]<-another.list[[i]][1]¶
+·}¶
>·first.elements¶
[1]·1·2·4·7

The more elegant way uses subsetting as a function. That is to say, in the previ-
ous example, the function we applied to another.list was length. Now, we want  
to access a subset of elements, and we have seen above that subsetting is done  
with single square brackets. We therefore only need to use a single opening  
square bracket in place of length (remember this from Section 3.2.3) and then  
provide as a third argument the positional index, 1 in this case because we want the 
first element:

>·sapply(another.list,·"[",·1)¶
[1]·1·2·4·7

Note that this works even when the elements of the list are not all of the same kind:

>·sapply(a.list,·"[",·1)·#·use·the·list·we·generated·in·Section·3.5¶
[[1]]
[1]·1
$PartOfSpeech
[1]·ADJ··ADV··N····CONJ·PREP
Levels:·ADJ·ADV·CONJ·N·PREP
[[3]]
[1]·"This"

These last two examples hint at something interesting. The function sapply (and  
its sister function lapply) apply to the data structure given in the first argument  
the function called in the second argument; okay, so far nothing new. Interestingly, 
the third argument is provided to sapply (or lapply) but those two just  
‘pass it on’ to the function mentioned as the second argument. Let me give a simple 
example:
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>·a<-c(1,·5,·3);·b<-c(2,·6,·4);·(ab<-list(a,·b))¶
[[1]]
[1]·1·5·3
[[2]]
[1]·2·6·4

>·lapply(ab,·sort,·decreasing=FALSE)¶
[[1]]
[1]·1·3·5
[[2]]
[1]·2·4·6

In a way, lapply takes the argument decreasing=FALSE and ‘hands it’ to sort, which 
then uses this specification to sort the elements of the list ab in the specified way. These 
functions provide very elegant and powerful ways of processing lists and other data struc-
tures. We will see many applications of such and similar uses of tapply, sapply, and 
lapply below.

The second useful programming guideline is that it is often useful to split up what 
you want to do into (many) smaller parts and, if you do so, consider regularly saving 
interim results into new data structures or even into files on your hard drive that you 
then combine later (see Chapter 5 for several examples). While this may occasionally 
counteract your desire to let programs operate as quickly and memory-economically 
as possible – generating new data structures costs memory, saving interim results into 
files costs output time (hard drive access), loading them again later costs corresponding 
input time – it is often worth the additional effort: First, if your program crashes, then 
having split up your program into many smaller parts will make it easier for you to 
determine where and why the error occurred simply because your script/code is easier 
to read. This is true even for yourself: If you submit a paper and wait the customary 
9–19 months that so many outlets need for reviewing, by that time you will have for-
gotten much of what you did and why, so you will need to decipher your code in a way 
that is frustratingly similar to how you would read someone else’s code that you have 
never seen before. Second, if your program crashes, then having saved interim results 
into other data structures or files regularly will also decrease the amount of work you 
have to do again.

It is vital to realize that the way R works often strongly encourages such a modular 
approach. For instance, the way R handles memory is not always ideal. For instance, R 
is really not good at handling memory of data structures that grow (say, on each itera-
tion of a loop). For instance, recall the last two loop examples, where we created one 
or two collector vectors before the loop. We did that in a way that is actually very bad 
practice: We made the collector vectors empty vectors and then filled, at iteration step i, 
their i-th slot. That means that before the first iteration the collector vector has length 
0, after the first iteration (when i was 1), that vector has a length of 1, after the second 
iteration (when i was 2), that vector has a length of 2, and so on. That is, the vector grew 
a bit on each iteration, and that is something that can slow R down very much once the 
vector grows much more than just the four items we dealt with here. Here’s an example: 
Save all your currently open files in all applications you may have open and then run the 
following three lines. You will see that even the simplest possible operation, just putting 
one number at a time into a vector, can really take a long time if you let the vector qwe 
grow dynamically:
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>·qwe<-c();·for·(i·in·1:500000)·{¶
+····qwe[i]<-i¶
+·}¶

Thus, whenever you know before a loop how long the output will be, you should define 
the collector structure – usually a vector or a list – such that you already reserve all 
required output slots in advance. So try this, where we immediately define the output vec-
tor qwe to have a length of 500,000 elements; you can see that the exact same operation 
takes much less time:

>·qwe<-numeric(500000);·for·(i·in·1:500000)·{¶
+····qwe[i]<-i¶
+·}¶

On my laptop the first script needed three minutes and three seconds, the second needed 
one second. But you might wonder now “When would I ever know the length of the result 
in advance?” That kind of situation is actually more frequent than you might assume:  
yes, when you do a concordance of a word in a corpus you probably do not already  
know the number of necessary results slots in advance, but here are some applications 
where you would:

 • You are interested in the frequencies of three words in a corpus: Thus, you create a 
collector vector with three slots – one for each word – and then loop over the corpus 
files, load each one, retrieve the frequency of each word in each file, and successively 
add the frequency of each word in the current corpus file to the summed frequency 
from all previous files; that is, even before you start, you know your output vector will 
have three elements (this is comparable to the loop of the first tapply example above; 
also see Section 5.3.1 for a somewhat similar application).

 • You are interested in the lengths of corpus files both in words and in sentences. Your 
corpus has 4,049 files, so you know you will have one results vector for all files’ 
lengths in words (with 4,049 slots), and another results vector for all files’ lengths in 
sentences (with 4,049 slots) (see Section 5.2.4 for a similar application).

 • You are interested in the dispersion of three words in a corpus of 4,049 files, which 
means you need to collect, for each of the three words, its frequency in all 4,049 files. 
Thus, you know that your output structure could be a list with three elements, where 
each of the elements is a numeric vector of length 4,049 (see Section 5.1.1).

So what do you do when you are not in a situation like this? For example, what if you 
wanted to generate a frequency list of a reasonably large corpus such as the 100 million- 
word BNC, where you do not know the exact number of word tokens and types in 
advance? Two possibilities: First and as briefly mentioned above, you can loop over each 
file, identify all word tokens in it, use table to generate a frequency table of it, and then 
save that frequency list into a separate file, which means you end up with 4,049 very small 
frequency list files, none of which will take up a lot of memory on its own. Then, in a 
second step, you do a second loop in which you load and amalgamate all 4,049 frequency 
list files. This strategy will cost much less time and memory than trying to do it all in one 
loop, and it is a strategy we will employ a number of times in Section 5.2.8.
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A second possibility is to define a collector for the output that is so large that it will 
definitely be able to accommodate all results, and then fill the slots of this vector ‘from left 
to right’. Let’s pretend your collector vector is called coll (and it has 30 slots) and the 
first file generated four output figures: These four output figures then go into coll[1:4], 
meaning coll[5:30] will still be empty or 0. If the second file generated three output 
figures, then those go into coll[(4+1):(4+3)], i.e., coll[5:7], and so on and so forth. 
Here is a small script that exemplifies this, and I again recommend that you look at this 
in the code file with RStudio because I have added much commentary there to explain 
the process in great detail, because this, too, is a strategy we will use a few times to avoid 
forcing R to grow vectors:

>·(coll<-numeric(30))¶
>·new.results.begin.here<-1¶
>·for·(i·in·1:3)·{¶
+····sample.size<-sample(10,·1)¶
+····sample.data<-sample(100,·sample.size)¶
+····coll[new.results.begin.here:(new.results.begin.here-1+ 

length(sample.data))]<-sample.data¶
+····new.results.begin.here<-new.results.begin.here+ 

length(sample.data)¶
+····cat("I·have·added:",·sample.size,·"elements,·namely",·sample.

data,·";\ncoll·is·now:",·coll,·"\n\n")¶
}¶
>·coll¶
>·(coll<-coll[coll>0])¶

In this context, if your program involves one or more loops, it is often useful to build in a 
line that outputs a ‘progress report’ to the screen so that you can always see whether your 
program is still working and, if it crashes, where the crash occurred; a first example of this 
you see in the above script in the line beginning with cat.

One final recommendation in this section is concerned with naming practices. In 
much of the code below – in particular in Chapter 5 – I will often use quite long names 
for data structures etc., which is really only in the interest of recoverability or ease 
of parsing and recognizing things: Sometimes, names such as qwe or asd will be used 
because they are superfast and virtually error-free to type on an American QWERTY 
keyboard, but in the long run, i.e., for your real research projects, names such as  
sentences.without.tags or cleaned.corpus.file are infinitely more revealing than 
the kind of names (e.g., qwe or aa) I have mostly used so far.

Recommendations for further study/exploration

 • On how to apply a function to user-specified margins of data structures: 
?apply¶.

 • On how to apply a function to multiple list or vector elements: ?mapply¶.
 • On how to perform operations similar to tapply, but with a different output 

format and/or more flexibly: ?aggregate¶, ?by¶, and ?rowsum¶.
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3.7 Character/String Processing

So far, we have only been concerned with generating and accessing (parts of) different 
data structures in R. However, for corpus linguists it is more important to know that R 
also offers a variety of sophisticated pattern-matching tools for the processing of character 
strings. In this section I will introduce and explore many of these tools.

There is one extremely important point to be made right here at the beginning: KNOW 
YOUR CORPORA! As you hopefully recall from the first exercise box in Section 2.1, a 
computer’s understanding of what a word is may not coincide with yours, and that of any 
other linguist may be different yet again. It is absolutely imperative that you know exactly 
what your corpus files look like – both in terms of the corpus data themselves and their 
annotation – which may require going over corpus documentation or, if you use unan-
notated texts, over parts of the corpus files themselves, in order to get to know spelling, 
formatting, annotation, etc.

A little example of something I came across in an undergrad corpus linguistics course 
was that we generated a concordance of in and found that in one of the SGML-annotated 
files of the BNC that we looked at, the word in was tagged as VBZ, which means “third 
person singular form of to be”. All of us were stunned for a second, but then we noticed 
what was going on – can you guess?

THINK

BREAK

The answer is that there were instances of innit as a reduction of isn’t it in the files, and 
innit is tagged in the BNC in SGML annotation as “<w·VBZ>in<w·XX0>n<w·PNP>it” – 
thus, you really must know what’s in your data.

You may now think “But can’t this be done more easily? Surely, ready-made pro-
grams wouldn’t require me to do that?” Well, the answer is “No! And wrong!” There 
is no alternative to knowing your corpora, this cannot be done more easily, and any 
concordance programs that come with more refined search options also require you to 
thoroughly consider the format of the corpus files even if their interface ‘hides’ such 
decisions behind clickable buttons with smiling corpus linguists on them, in settings, 
or in .ini files. This issue will surface repeatedly below in this section and throughout 
all of Chapter 5.

3.7.1 Getting Information From and Accessing Character Vectors

The probably most basic character operation in R gives the length of all character strings 
within a vector. The function nchar takes as its most important argument the name of a 
character vector containing one or more elements and outputs the number(s) of characters 
of all elements of the vector:

>·example<-c("I",·"do",·"not",·"know")¶
>·nchar(example)¶
[1]·1·2·3·4
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Recommendations for further study/exploration

 • On how to determine whether elements of a character vector have more than zero  
characters: ?nzchar¶.

If you want to access a part of a character string, you can use substr, which we will 
always use with three arguments. The first is a character vector of which you want sub-
strings; the second one is a numeric vector with the position(s) of the first character(s) 
you want to access; the third one is a numeric vector with the position(s) of the last 
character(s) you want to access:

>·substr("internationalization",·6,·13)¶
[1]·"national"

or

>·substr(example,·2,·3)¶
[1]·""···"o"··"ot"·"no"

From the plurals above, you probably already inferred that substr also handles longer 
vectors efficiently in the same way:

>·some.first.vector<-c("abcd",·"efgh")¶
>·some.other.vector<-c("ijkl",·"mnop")¶
>·substr(c(some.first.vector,·some.other.vector),·c(1,·2,·3,·4),· 

c(2,·3,·4,·4))¶
[1]·"ab"·"fg"·"kl"·"p"

As you can see, first some.first.vector and some.other.vector are combined into 
one vector with four elements, and then the four different start and end positions of  
characters are applied to this character vector. This can be extremely useful, for instance, 
when you know where in a line of annotation, say, the three-character identifier of a speaker 
is located (as may be the case in CHAT files from the CHILDES database) or when you 
want to access the line numbers in some version of the Brown corpus, which are always the 
first eight characters of each line, etc. (see, for example, Sections 5.4.5 and 5.4.9).

3.7.2 Elementary Ways to Change Character Vectors

The most basic ways in which (vectors of) character strings can be changed involves 
changing all characters to lower or upper case. The names of the relevant functions are 
tolower and toupper respectively, which both just take the relevant character vectors as 
their arguments; we will use this for case-insensitive frequency lists, for example:
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>·tolower(example)¶
[1]·"i"····"do"···"not"··"know"
>·toupper(example)¶
[1]·"I"····"DO"···"NOT"··"KNOW"

Another elementary way to change (vectors of) character strings involves replacing x char-
acters in (elements of) character vectors by x other characters. The name of the function 
is chartr, and it takes three arguments. First, the character(s) to be replaced; second, 
the character(s) that are substituted (this needs to have as many characters as the first 
argument); third, the character vector to which the operation is applied. This can be very 
useful, for example, to perform comprehensive transliteration operations in a single line 
of code or, as we will do in Section 5.4.3 below, recode a phonemic transcription into a 
segmental one distinguishing just vowels and consonants:

>·chartr("no",·"pq",·example)¶
[1]·"I"····"dq"···"pqt"··"kpqw"

3.7.3 Merging/Splitting Character Vectors Without Regular Expressions

If you want to merge several character strings into one, you can use paste. These are the 
default arguments paste takes and their settings (where applicable):

 • one or more character vectors;
 • sep="·": the character string(s) used to separate the different character strings when 

they are merged – the space is the default;
 • collapse=NULL: the character string used to separate the different character strings 

when they are merged into just a single character string.

The use of paste can sometimes be a bit confusing to beginners, but once you think 
through the examples and explanations provided below, the way paste works does make 
sense, and the good news is that we will only use one of the six examples really often.  
It is useful to distinguish three different scenarios, which differ with regard to what you 
are pasting together: (1) multiple one-element vectors, (2) one multiple-element vector, or 
(3) multiple multiple-element vectors.

In scenario (1), sep and collapse don’t make a difference; here, we paste together four 
one-element vectors; we will occasionally use the first of the two examples below to paste 
together a file name into which we save results:

>·paste("I",·"do",·"not",·"know",·sep="·")¶
[1]·"I·do·not·know"
>·paste("I",·"do",·"not",·"know",·collapse="·")¶
[1]·"I·do·not·know"

In scenario (2), we paste together one vector that has four elements and here collapse 
makes sure that all the vectors’ elements get merged into a single character string; the  
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second one of these two examples is something we will do frequently (when we load cor-
pus files line by line and then paste them together into one very long string so that we can 
then break them up where we want them to be split up):

>·qwe<-c("I",·"do",·"not",·"know")¶
>·paste(qwe,·sep="·")¶
[1]·"I"····"do"···"not"··"know"
>·paste(qwe,·collapse="·")¶
[1]·"I·do·not·know"

Finally, in scenario (3), we paste together two multiple-element vectors, and again what 
collapse does is make sure everything is merged into a single output string:

>·paste(qwe,·qwe,·sep="·")¶
[1]·"I·I"·······"do·do"·····"not·not"···"know·know"
>·paste(qwe,·qwe,·collapse="·")¶
[1]·"I·I·do·do·not·not·know·know"

The ‘opposite’ function of paste is strsplit, with which you can split up a character 
string into several character strings. Its first argument is a character vector to be split  
up; the second argument is the character string that strsplit will delete to split up the 
first argument:

>·asd<-"I·do·not·know"¶
>·strsplit(asd,·"·")¶
[[1]]
[1]·"I"····"do"···"not"··"know"

Note that if you use an empty character string as the second argument, R will split up 
the first argument character by character, which can be very useful to immediately see all 
characters that are attested in a file (especially when combined with unlist and table, 
see below):

>·strsplit(asd,·"")¶
[[1]]
·[1]·"I"·"·"·"d"·"o"·"·"·"n"·"o"·"t"·"·"·"k"·"n"·"o"·"w"

It is important to note that the output of strsplit is not a vector – it is a list of, here, 
one element, which contains one vector (as you can infer from the double square brack-
ets). The same works for larger character vectors: The list will have as many parts as  
strsplit’s first argument has parts, which can be useful if you want to split up  
strsplit’s first argument but nevertheless retain the information regarding where in the 
input each element of the output came from:
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>·zxc<-c("This·is·the·first·character·string",· 
"This·is·the·second·character·string")¶

>·strsplit(zxc,·"·")¶
[[1]]
[1]·"This"······"is"········"the"·······"first"·····"character"· 

"string"
[[2]]
[1]·"This"······"is"········"the"·······"second"····"character"· 

"string"

If you do not need to know where each element in the output came from, i.e., you just want 
one vector of all resulting items, just add unlist to change the list into one long(er) vector:

>·unlist(strsplit(zxc,·"·"))¶
[1]·"This"······"is"········"the"·······"first"·····"character"· 

"string"····"This"······"is"········"the"·······"second"···· 
"character"·"string"

This will probably make you realize that this is close to how we will create frequency lists. 
If zxc was loaded from a corpus file, then this is how you create an alphabetically sorted 
or a frequency-sorted frequency list respectively:

>·table(unlist(strsplit(zxc,·"·")))¶
character·····first········is····second····string·······the······This
········2········1·········2·········1·········2·········2·········2
>·sort(table(unlist(strsplit(zxc,·"·"))),·decreasing=TRUE)¶
character········is····string·······the······This·····first····second
········2·········2·········2·········2·········2·········1·········1

While these examples, in which character strings are split up on the basis of, say, just one 
space, are straightforward, strsplit is much more powerful because it can use regular 
expressions. However, before we introduce regular expressions, we will first treat some 
other functions used for searching and replacing character strings.

3.7.4 Searching and Replacing Without Regular Expressions

In this section we will introduce several pattern-matching functions in a very basic manner, 
i.e., without using the powerful regular expression techniques involving character classes 
and placeholders/wildcards. To that end, let us first generate a vector of character strings:

>·txt<-c("This·is·a·first·example·sentence.",·"And·this·is·a·second· 
example·sentence.")¶
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The first function is called grep. If it is executed without invoking its regular expression 
capabilities, its most basic form requires only two arguments: a one-element character 
vector to search for and a character vector (or something that can be coerced into a 
character vector, such as a factor) in which the first argument is to be found. The func-
tion returns the positions of the elements in which the string searched for occurs at least 
one time:

>·grep("second",·txt)¶
[1]·2

This output illustrates two properties of grep that beginners sometimes do not expect 
because (1) when you use “Find: . . . ” in a word processor you don’t get, say, the page 
number where something is attested, but the exact thing you were looking for, and  
(2) beginners have the nasty habit to think too much like humans, a problem we will 
encounter with regular expressions a lot. As for (1), in this most basic form, grep does not 
return the match like a word processor does, but the position of the match. However, if 
you still remember what we said about subsetting in Section 3.2.3, you should be able to 
figure out a way to arrive at the complete elements in which matches were found (which 
are still not the exact matches!).

THINK

BREAK

>·txt[grep("second",·txt)]¶
[1]·"And·this·is·a·second·example·sentence."

However, this result will usually be produced slightly differently. Unless specified other-
wise, grep assumes a default setting for a third argument, value=FALSE, which means 
that only the positions are returned. But if you set value=TRUE, you will get the ele-
ments of the character vectors in which the matches occurred instead of just their position  
numbers/indices:

>·grep("second",·txt,·value=TRUE)¶
[1]·"And·this·is·a·second·example·sentence."

Second, R does of course not know what a word is: It searches for character strings and 
returns the positions of the matches or the matches themselves, irrespective of whether 
what is searched for corresponds to what a user considers a word or not:
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>·grep("eco",·txt,·value=TRUE)¶
[1]·"And·this·is·a·second·example·sentence."

Third, remember that grep returns the position of matches in the vector that was searched 
maximally once (just like match returns only the position of the first match, not all of 
them). The following line returns “1” and “2” only once each, although “is” occurs twice 
in both first lines, once in “This” or “this” and once in “is”. Thus, grep just answers the 
question “Does something occur somewhere at all (i.e., at least once)?”, not “Does some-
thing occur somewhere at all and how often?”

>·grep("is",·txt)¶
[1]·1·2

If you set grep’s argument invert from its default of FALSE to TRUE, then you get the 
positions/elements where what you searched for does not occur:

>·grep("second",·txt,·value=TRUE,·invert=TRUE)¶
·[1]·"This·is·a·first·example·sentence."

Also there is a useful function called grepl, which returns a TRUE or FALSE for every 
element of the vector searched depending on whether the search expression is attested in 
the vector searched or not, which can be useful for later subsetting or conditional expres-
sions; thus, the following shows that the first element of txt does not contain “eco” but 
the second one does:

>·grepl("eco",·txt)¶
[1]·FALSE··TRUE

Note that in all these cases, grep returns the positions of matches in the vector that was 
searched – e.g., the character string “second” occurs in the second character string of the 
vector txt – it also does not return the positions of the matches in the elements of the 
vector, i.e., the fact that the character string “second” begins at character position 15 in 
the second element of the vector txt. However, this information can be retrieved with a 
different function: gregexpr. This function is one of the most powerful search functions 
in the default installation of R. It takes the same two arguments as the most basic form 
of grep, but its output is different: It returns a list with the starting positions and lengths 
of all matches at the same time (the companion function regexpr only finds the first 
matches). This list has as many vectors as the data structure that was searched has vectors 
(recall that behavior from strsplit?), and each of these vectors contains positive integers 
which correspond to the starting positions of all matches. In addition, each of these vec-
tors comes with a match.length attribute that provides the lengths of the matches (and a 
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useBytes attribute that is not relevant right now). It is important that you understand this 
hierarchical arrangement: Again, the list returned by gregexpr has vectors (one for each 
element of the vector that was searched), and each of the vectors in the list has attributes; 
the fact that the attributes are attributes of the vector, not of the list, are represented here 
by the indentation:

>·gregexpr("e",·txt)¶
[[1]]
[1]·17·23·26·29·32    Vector with starting positions of matches 
attr(,”match.length”)     for the first element of text
[1]·1·1·1·1·1       Attribute of that vector with the lengths of 

matches
attr(,"useBytes")              Attribute of that vector indicating byte-by-
[1]·TRUE       byte matching

[[2]]
[1]·16·22·28·31·34·37     Vector with starting positions of matches 
attr(,”match.length”)     for the second element of text
[1]·1·1·1·1·1·1              Attribute of that vector with the lengths of 

matches
attr(,"useBytes")              Attribute of that vector indicating byte-by-
[1]·TRUE       byte matching

If there is no match of the search expression in an element of the vector being searched, 
gregexpr returns vectors of –1 for those:

>·gregexpr("y",·txt)¶·#·output·not·shown·here

But now how do we access the components of the output of gregexpr? Let’s first assign 
the output of gregexpr to a data structure:

>·ges.output<-gregexpr("e",·txt)¶

To extract the numeric vector that contains the starting positions of all matches for the 
first  element of txt, you can just use the familiar double square-brackets notation, and 
even if the output is voluminous, the result is really still just a simple numeric vector, just 
one with attributes:

>·ges.output[[1]]¶
[1]·17·23·26·29·32
attr(,"match.length")
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[1]·1·1·1·1·1
attr(,"useBytes")
[1]·TRUE
>·is.numeric(ges.output[[1]])
[1]·TRUE

The above suggests two more things: you can use length to find out how many matches 
(of “e”) are in txt[1]:

>·length(ges.output[[1]])¶
[1]·5

and you can unlist the list from gregexpr to find out how many matches there are in 
all of txt:

>·length(unlist(ges.output))¶
[1]·11

Now, how do you get at the attributes (because you want to know how long the matches 
are)? There is a function, attributes, to access attributes of objects, so you might think 
the following will do the trick – but why doesn’t it?

>·attributes(ges.output)¶
NULL

THINK

BREAK

This doesn’t work because the attributes are attributes not of the list but of the elements 
of the list. Therefore, this is how you do it:

>·attributes(ges.output[[1]])¶
$match.length
[1]·1·1·1·1·1
$useBytes
[1]·TRUE

Which in turn means you can now access the attributes of this vector separately using 
either bracketing or their names:
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>·attributes(ges.output[[1]])[1]¶
$match.length
[1]·1·1·1·1·1
>·attributes(ges.output[[1]])$match.length¶
[1]·1·1·1·1·1

An alternative to attributes is the function attr, whose first argument is the data struc-
ture whose attributes you want to access and whose second argument is a character string 
with the desired attribute name:

>·attr(ges.output[[1]],·"match.length")¶
[1]·1·1·1·1·1

Thinking back to Section 3.6, can you write code that accesses the lengths of all 11 matches 
in txt in one go?

THINK

BREAK

You can use sapply as follows, either to get a list with all lengths per match separately 
(the first line of code) or immediately unlist this to get all lengths of matches in a single 
vector (the second line of code):

>·sapply(ges.output,·attr,·"match.length")¶
[[1]]
[1]·1·1·1·1·1

[[2]]
[1]·1·1·1·1·1·1

>·unlist(sapply(ges.output,·attr,·"match.length"))¶
·[1]·1·1·1·1·1·1·1·1·1·1·1

Thus, you can also use sapply to count how many matches there are in each element of txt:

>·sapply(ges.output,·length)¶
[1]·5·6

Now everything is in place to get not just the TRUEs or FALSEs indicating whether there 
is at least one match (as with grepl), not just the positions where at least one match was 
found (as with grep(...,·value=FALSE)), not just the whole elements where at least one 
match was found (as with grep(...,·value=TRUE)), and not just the starting positions 
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(and lengths, as with gregexpr), but – finally – the exact matches. I will first show you the 
painful way (so that you learn about its logic) and then two much easier ways.

The painful way uses gregexpr’s output to retrieve the starting points of all matches in 
all elements of txt and then also the lengths of all matches to compute their end points, 
because then, once we have starting points and end points, we can use substr to extract 
the relevant matches from the original input vector txt. However, the pain doesn’t end 
here: When we do that – use substr and get the starting and end points from greg-
expr, we also have to make sure that we get the first argument of substr right, the input  
vector: we cannot give substr just txt as its first argument because in the present case 
we need the first element of txt five times (for the five matches in it and, therefore, the  
five starting and end points we will get from gregexpr), but we also need the second  
element of txt six times (for the six matches in it). Thus, this is what we need to do (make 
sure you look at this in the code file, which provides a lot of commentary and visually 
helpful indentation):

>·substr(rep(txt,·sapply(ges.output,·length)),¶
+····unlist(ges.output),¶
+····unlist(ges.output)+¶ 

unlist(sapply(ges.output,·attr,·"match.length"))¶ 
-1)¶

·[1]·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"

If that isn’t painful, what is? While it is useful to understand this code well, let us now turn 
to the less painful ways of getting the exact matches. First, there is a function in R called 
regmatches, which can take three arguments: first, a character vector with the input data; 
second, an object created by gregexpr with match data (usually from the same input data 
of course); third, invert=FALSE (the default) or TRUE. Thus, we can easily do this now:

>·ges.output<-gregexpr("e",·txt)·#·reminder·for·you¶
>·regmatches(txt,·ges.output)¶
[[1]]
[1]·"e"·"e"·"e"·"e"·"e"

[[2]]
[1]·"e"·"e"·"e"·"e"·"e"·"e"
>·unlist(regmatches(txt,·ges.output))¶
[1]·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"

In fact, we will later create our own function just.matches, which makes this even easier.
The second less painful way involves a function that I wrote for this book – a revi-

sion of the corresponding function in the first edition of this book. This function is called 
exact.matches.2 and you can use it once you have sourced it into R by running the fol-
lowing line and then choosing the file <_qclwr2/_scripts/exact.matches.2.r>:

>·source(file.choose())¶
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The function exact.matches.2 requires minimally two arguments, but can take many 
more, and those first two arguments are the same that grep and gregexpr require:  
(1) a search expression and (2) a (corpus) character vector in which to find the search 
expression. If that’s all you provide, this is how it works; I only show the most important 
first four components of the list that exact.matches.2 generates as output (if you run 
this without [1:4], you will see the final component as well):

>·exact.matches.2("is",·txt)[1:4]¶
$`Exact·matches`
[1]·"is"·"is"·"is"·"is"

$`Locations·of·matches·(lines)`
[1]·1·1·2·2

$`Proportion·of·non-empty·corpus·parts·with·matches`
[1]·1

$`Lines·with·delimited·matches`
[1]·"Th\tis\tis·a·first·example·sentence."······"This\tis\ta·first· 

example·sentence."······
[3]·"And·th\tis\tis·a·second·example·sentence."·"And·this\tis\

ta·second·example·sentence."

With all default settings, the first component contains the exact matches as if we had 
generated them with unlist(regmatches(gregexpr(...),·...)) as above – if you 
add the argument vectorize=FALSE to the exact.matches.2 call, then this first 
component will be a list, i.e., the same as regmatches(gregexpr(...),·...)).

The second component is a numeric vector which states in which parts of the input 
vector there were matches (and how many): Above we can see that both the first and the 
second part of txt contain two instances if “is”. The third component lists the percentage 
of corpus parts containing at least one match, which here amounts to 100 percent.

The fourth component was the main reason to write this function: It returns for each 
match the corpus element in which it was found but also separates the match from its pre-
ceding and subsequent contexts with a tabstop (so that, if you print the content of exact.
matches.2(...)[[4]] into a. txt or. csv file, you get a nice three-column output with 
the context preceding a match in a first column, the match in a second, and the context 
following a match in a third. If you set the argument lines.around to a number greater 
than zero, then you increase the preceding and subsequent context by that number of 
corpus elements. If you set the argument characters.around to a number greater than 
zero, then the preceding and subsequent contexts will be as many characters (as opposed 
to corpus elements/lines). You can also suppress the generation of this fourth component 
of exact.matches.2 (if you’re only interested in the first component, for example, and 
want to avoid the processing burden of computing potentially very many tab-delimited 
matches) by setting an argument gen.conc.output=FALSE. Also, note that by default 
this function deletes spaces around the column-delimiting tabstops – if you do not want 
that, set clean.up.spaces=FALSE; check out formals(exact.matches.2)¶ for addi-
tional arguments.

Thus, with all this, we can do our searches for “e” in txt with regmatches etc. as 
above, or with exact.matches.2 as follows; either is a huge improvement over the 
manual and superlong substr(...) approach:
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>·exact.matches.2("e",·txt)[[1]]¶
·[1]·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"·"e"
>·exact.matches.2("e",·txt,·vectorize=FALSE)[[1]]¶
[[1]]
[1]·"e"·"e"·"e"·"e"·"e"

[[2]]
[1]·"e"·"e"·"e"·"e"·"e"·"e"

All of these functions so far have only accessed (parts of) character vectors, but we have 
not changed the character vectors themselves yet. However, for many cases this is of 
course exactly what we want to do. For example, we might want to delete all tags from 
a corpus file, we might want to change all numbers in a corpus file into one overall code 
(like “NUM”), etc. In R, the function for substitutions is called sub, but just like regexpr, 
sub only performs substitutions on the first match it finds per searched element, which is 
why we will immediately restrict our attention to the global substitution function gsub. 
The following are the main arguments of gsub and their default settings (again first with-
out regular expressions, which will be introduced below):

gsub(pattern,·replacement,·x,·ignore.case=FALSE)¶

The first argument is the expression that you want to replace, the second is the one you 
want to substitute instead. The third argument is the character vector you want to search 
and modify. The fourth argument specifies whether the search to be conducted will be case-
sensitive (ignore.case=FALSE) or not (ignore.case=TRUE). Let us apply this function 
to our small character vector txt. For example, we might want to change the indefinite 
determiner “a” to the definite determiner “the”. By now, you should already know that 
the following will not really work well and why – don’t run it, just think about it first:

>·gsub("a",·"the",·txt)¶

THINK

BREAK

This will not work because with this function call we would assume that R ‘knows’ that 
we are only interested in changing “a” to “the” when “a” is a word, the indefinite deter-
miner. But of course R does not know that:

>·gsub("a",·"the",·txt)¶
[1]·"This·is·the·first·exthemple·sentence."
[2]·"And·this·is·the·second·exthemple·sentence."
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Thus, we need to be more explicit. What is the most primitive way to do this?

>·gsub("·a·",·"·the·",·txt)¶
[1]·"This·is·the·first·example·sentence."
[2]·"And·this·is·the·second·example·sentence."

Note, however, that R just outputs the result of gsub – R has not changed txt:

>·txt¶
[1]·"This·is·a·first·example·sentence."
[2]·"And·this·is·a·second·example·sentence."

Only if we assign the result of gsub to txt again or some other vector will we be able to 
access the vector with its substitutions:

>·(txt.2<-gsub("·a·",·"·the·",·txt))¶
[1]·"This·is·the·first·example·sentence."
[2]·"And·this·is·the·second·example·sentence."

While all these examples are probably straightforward to the point of being self-evident, 
the real potential of the functions discussed above only emerges when they are coupled 
with regular expressions – i.e., placeholders/wildcards – to which we will now turn.

3.7.5 Searching and Replacing With Regular Expressions

In this section, we introduce the most important aspects of regular expressions, which 
will be the most central tool in most of the applications to be discussed below. R offers 
two types of regular expressions, extended and Perl-compatible regular expressions – we 
will only be concerned with the latter because Perl is already widely used so chances are 
that you can apply what you learn here in different contexts. Thus, in order to maximally 
homogenize the explanations below, all regular expressions from now on will be written 
with the argument perl=TRUE even if that may not be necessary in all cases (and may some-
times slow code down a bit, but typically only with fairly complex regular expressions).

Let us begin with expressions that specify (or ‘anchor’) the position of character strings 
within character strings. The caret “^” and the “$” specify the beginning and the end of a 
character string. Thus, the following function only matches the first character string in the 
vector txt since only this one begins with a “t” or, ignore.case=TRUE, a “T”:

>·grep("^t",·txt,·ignore.case=TRUE,·perl=TRUE,·value=TRUE)¶
[1]·"This·is·a·first·example·sentence."

Note that these expressions do not match any particular character in the string that is 
being searched: “^” does not match the first character of the line – it, so to speak, matches 
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the beginning of the line before the first character: You can see that we still provided  
the “t” in the search string, which is, and maps onto, the first character. Thus, these expressions 
are also referred to as zero-width tests and we say that the caret does not consume a character, 
which means, for instance, that it is not a character that the regex engine would replace:

>·gsub("^t",·"_T_",·txt,·ignore.case=TRUE,·perl=TRUE)¶
[1]·"_T_his·is·a·first·example·sentence."
[2]·"And·this·is·a·second·example·sentence."

The next expressions we deal with are not zero-width tests – they do match and  
consume characters. The period “.”, for example, means “any single character except 
for the newline”.3 Thus, for example, if you want to find all occurrences of “s”  
which are followed by one other character and then a “c”, you could enter the  
following into R:

>·grep("s.c",·txt,·ignore.case=TRUE,·perl=TRUE,·value=TRUE)¶
[1]·"And·this·is·a·second·example·sentence."

And of course, if you want a larger but fixed number of intervening characters, you just 
use as many periods as necessary:

>·grep("f...t",·txt,·ignore.case=TRUE,·perl=TRUE,·value=TRUE)¶
[1]·"This·is·a·first·example·sentence."

But now this raises the question of what to do when we want to look for a period, i.e., 
when we do not want the period as a metacharacter but literally. Obviously, we cannot 
take the period as such because the period stands for “any one character but the newline”, 
which means we would get many more matches than we want. Thus, we need to know 
two things: First, a character that tells R “do not use a particular character’s wildcard 
behavior but rather the literal character as such”. These are called escape characters and 
in R this escape character is the backslash “\”. Thus, you write:

>·gsub("\\.",·"!",·txt,·perl=TRUE)¶
[1]·"This·is·a·first·example·sentence!"
[2]·"And·this·is·a·second·example·sentence!"

Now, why do we need two backslashes? The answer is that the two backslashes are actu-
ally just one character, namely the escape character followed by an actual backslash (as 
you can easily verify by entering nchar("\\");·cat("\\")¶ into R). Thus, the two 
backslashes are in fact just one character – to the R interpreter, the first one instructs 
R to treat the second as a literal backslash (rather than part of some other sequence of 
characters), and the second one then says “I really want a period literally, don’t use it as a 
regex!” but when you print them, you really only see one.
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Second, we need to know which characters need to be escaped. The following is a list 
of such characters and their non-literal meanings, all of which will be used further below.

Line anchors

^ the beginning of a character string (but see below)
$ marks the end of a character string

Quantifying expressions

* zero or more occurrences of the preceding regular expression
+ one or more occurrences of the preceding regular expression
? zero or one occurrences of the preceding regular expression
{ and } ranges, mark the beginning and the end of a quantifying expression

Other expressions

. any one character but the newline
\ the escape character
( and )  mark the beginning and the end of a (part of a) regular expression to be treated 

as a single element
| or
[ and ]  mark the beginning and the end of a character class
"  a double quote needs to be escaped if you use double quotes to delimit your 

character vector that makes up the regular expression
'  a single quote needs to be escaped if you use single quotes to delimit your  

character vector that makes up the regular expression (which we don’t do)

While the period stands for “any one character apart from the newline”, you may want 
to do more than retrieve exactly one kind of match. The above list already shows some of 
the quantifying expressions you can use. For example, if you have a vector in which both 
the British and the American spellings of colour and color occur and you would like to 
retrieve both spelling variants, you can make use of the fact that a question mark means 
“zero or one occurrence of the immediately preceding expression”. Thus, you can proceed 
as shown here:

>·colors<-c("color",·"colour")¶
>·grep("colou?r",·colors,·perl=TRUE,·value=TRUE)¶
[1]·"color"··"colour"

And with what search expression would you find both the singular and the plural of both 
spellings? With this one: “colou?rs?” of course.

Another domain of application of such quantifying expressions would be to clean up 
text files by, for example, changing all sequences of more than one space to just one space. 
How would you do this?

THINK

BREAK
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Well, you could write:

>·some.text.line<-"This··is····just·one····example."¶
>·gsub("··+",·"·",·some.text.line,·perl=TRUE)¶
[1]·"This·is·just·one·example."

As a matter of fact, using the question mark and the plus sign are just two special shortcuts 
for a more general notation which allows you to specify, for example:

 • the exact number of matches m of an expression you would like to match: just add 
{m} to an expression;

 • the minimum number of matches m of an expression you would like to match (by 
leaving open the maximum): just add {m,} to an expression;

 • the minimum number of matches m and the maximum number of matches n of an 
expression you would like to match: just add {m,n} to an expression.

Thus, the application of the question mark above is actually just a shorthand for 
an expression involving ranges. So, how could you rewrite the above line grep("co
lou?r",·colors,·perl=TRUE,·value=TRUE)¶ using a (in this case clumsy) range 
expression?

THINK

BREAK

This would be it:

>·grep("colou{0,1}r",·colors,·perl=TRUE,·value=TRUE)¶
[1]·"color"··"colour"

It is important here to clarify the range to which these quantifying expressions apply. 
From the previous examples, it emerges that the quantifiers always apply only to the 
immediately preceding character – you have to resist the human impulse to apply the 
quantifier to, say, “colou” – the {0,1} really only applies to the “u”. However, sometimes 
you may want to quantify something that consists of more than one element. The way to 
do this in R has already been hinted at above: You use opening and closing parentheses 
to group elements (characters and/or metacharacters). Thus, for example, if you want to 
match two or three occurrences of “st”, you could do this:

>·some.vector<-c("a·st·b",·"a·stst·b",·"a·st·st·b")¶
>·grep("(st){2,3}",·some.vector,·perl=TRUE,·value=TRUE)¶
[1]·"a·stst·b"
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As you can see, the expression in parentheses is treated as a single element, which is then 
quantified as specified. Of course, such an expression within parentheses can itself contain 
metacharacters, further parentheses, etc.:

>·grep("(.t){2,3}",·some.vector,·perl=TRUE,·value=TRUE)¶
[1]·"a·stst·b"

Note that what the period matches the first time around does not have to be the same 
character for the second (and additional matches). You can see here that, in the second 
element, the period first matches an “s” and then an “f”:

>·grep("(.t){2,3}",·c("q·stst·w",·"a·stft·a"),·perl=TRUE,· 
value=TRUE)¶

[1]·"q·stst·w"
[2]·"a·stft·a"

In fact, one of the probably more frequent domains in which the notation with parenthe-
ses is applied involves providing R with several alternative expressions to be matched. 
To do that, you simply put all alternatives in parentheses and separate them with a 
vertical bar (or pipe) |:

>·gsub("a·(first|second)",·"another",·txt,· 
ignore.case=TRUE,·perl=TRUE)¶

[1]·"This·is·another·example·sentence."
[2]·"And·this·is·another·example·sentence."

As another example, imagine that you want to replace all occurrences of “a”, “e”, “i”, 
“o”, and “u” by a “V” (for vowel). You could do this as follows:

>·gsub("(a|e|i|o|u)",·"V",·txt,·ignore.case=TRUE,·perl=TRUE)¶
[1]·"ThVs·Vs·V·fVrst·VxVmplV·sVntVncV."
[2]·"Vnd·thVs·Vs·V·sVcVnd·VxVmplV·sVntVncV."

But since this kind of application – the situation where one wishes to replace one  
out of several individual characters with something else – is a particularly  
frequent one, there is actually a shorter alternative notation which uses square  
brackets without “|” to define a class of individual characters and replace them all  
in one go:

>·gsub("[aeiou]",·"V",·txt,·ignore.case=TRUE,·perl=TRUE)¶
[1]·"ThVs·Vs·V·fVrst·VxVmplV·sVntVncV."
[2]·"Vnd·thVs·Vs·V·sVcVnd·VxVmplV·sVntVncV."
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(I am of course hoping that you are thinking, wait a second, [cw]ouldn’t I do this with chartr? 
The answer is yes, see the code file.) It is also possible to define such character classes in square 
brackets using the minus sign as a range operator. For example, if you want to replace any 
occurrence of the letters “a” to “h” and “t” to “z” by an “X”, you can do this as follows:

>·gsub("[a-ht-z]",·"X",·txt,·ignore.case=TRUE,·perl=TRUE)¶
[1]·"XXis·is·X·XirsX·XXXmplX·sXnXXnXX."
[2]·"XnX·XXis·is·X·sXXonX·XXXmplX·sXnXXnXX."

Note that the minus sign is now not used as part of a character class: 
“[a-z]” does not mean “match either ‘a’ or ‘-‘ or ‘z’” – it means “match any of the letters 
from ‘a’ to ‘z’.” If you want to include the minus sign in your character class, you can put 
it at the first position within the square brackets. Thus, to match either “a”, “-”, or “z”, 
you write “[-az]” or “[-za]”.

The same pattern works for numbers. For example, you could replace the numbers 
from 1 to 5 in the string “0123456789” with “3” as follows:

>·gsub("[1-5]",·"3",·"0123456789",·perl=TRUE)¶
[1]·"0333336789"

You should now do “Exercise box 3.6: A few regular expressions.”

For cases in which you would like to match every character that does not belong to a 
character class, you can use the caret “^” as the first character within square brackets.

>·gsub("[^1-5]",·"3",·"0123456789",·perl=TRUE)¶
[1]·"3123453333"

Note how the caret within the definition of a character class in square brackets means 
something else (namely, “not”) than the caret outside of a character class (where it means 
“at the beginning of a string”); this is one of two regular expression characters that has a 
different meaning in a certain environment (here, in square brackets) than in another (at 
the beginning of a string).

While it is of course possible to define all alphanumeric characters or all numbers as 
character classes in this way (“[a-zA-Z0-9]” and “[0-9]” respectively), R offers a few 
predefined character classes. One such character class, written as “\\d” in R (see above on 
double backslashes), is equivalent to “[0-9]”, i.e., all digits:

>·gsub("\\d",·"3",·"a1b2c3d4e5",·perl=TRUE)¶
[1]·"a3b3c3d3e3"
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The opposite of this character class – i.e., what one might want to write as “[^\\d]” – can 
be expressed as “\\D”:

>·gsub("\\D",·"3",·"a1b2c3d4e5",·perl=TRUE)¶
[1]·"_1_2_3_4_5"

Another predefined character class which will turn out to be very useful is that of 
word characters, written as “\\w” in R. This character class is the short form of  
what you could define more lengthily as “[a-zA-Z0-9]” (but many Unicode char-
acters from other scripts can also be included), and again “\\W” is its opposite.  
From what you know by now, it should be obvious that you can combine this  
character class with a plus sign to look for what will, in the case of the Latin  
alphabet, correspond to most words, at least words without apostrophes and hyphens 
in them:

>·gsub("\\w+",·"WRD",·txt,·perl=TRUE)¶
[1]·"WRD·WRD·WRD·WRD·WRD·WRD."·····"WRD·WRD·WRD·WRD·WRD·WRD·WRD."

We will use this character class frequently below. Then, there is the class written as “\\s”, 
which stands for all whitespace characters: tabstops (otherwise written as “\t”), spaces 
(otherwise written as “ ”, or here “·”), newlines (otherwise written as “\n”), and carriage 
returns (otherwise written as “\r”). As before, changing “\\s” into “\\S” gives you the 
opposite character class.

The final such metacharacter to be mentioned here is again an anchor, a zero-
width test (just like the line anchors “^” and “$” mentioned above). The expression 
“\\b” refers to a word boundary, which is the position between a word character 
and a non-word character (as defined above and in either order); again “\\B” is the 
opposite. That is to say, “\\b” is the position between the two characters of “\\w\\W” 
or “\\W\\w”, but includes, or consumes, neither “\\w” nor “\\W”! Note the differ-
ences between the first two searches, where what you search for is consumed and thus 
replaced, and the third one using the zero-width pattern, which does not consume, 
and thus not replace, anything:

>·gsub("\\w\\W",·"<WB>",·txt,·perl=TRUE)¶
[1]·"Thi<WB>i<WB><WB>firs<WB>exampl<WB>sentenc<WB>"
[2]·"An<WB>thi<WB>i<WB><WB>secon<WB>exampl<WB>sentenc<WB>"

>·gsub("\\W\\w",·"<WB>",·txt,·perl=TRUE)¶
[1]·"This<WB>s<WB><WB>irst<WB>xample<WB>entence."
[2]·"And<WB>his<WB>s<WB><WB>econd<WB>xample<WB>entence."

>·gsub("\\b",·"<WB>",·txt,·perl=TRUE)¶
[1]·"<WB>This<WB>·<WB>is<WB>·<WB>a<WB>·<WB>first<WB>·<WB>example 

<WB>·<WB>sentence<WB>."
[2]·"<WB>And<WB>·<WB>this<WB>·<WB>is<WB>·<WB>a<WB>·<WB>second 

<WB>·<WB>example<WB>·<WB>sentence<WB>."
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There are two important potential problems that we have so far simply glossed over. 
The first of these is concerned with what R does when there are several ways to match a  
pattern. Let’s try it out:

>·gregexpr("s.*s",·txt[1],·perl=TRUE)¶
[[1]]
[1]·4
attr(,"match.length")
[1]·22

The answer is clear. We ask R to match any “s” followed by zero or more occurrences 
of any character followed by another “s”. There would be many ways to match this in 
txt[1]. In the following lines, the possible matches for the first string of the vector txt 
are underlined, and the first two lines give the number of the position within the character 
string:

position 000000000111111111122222222223333
position 123456789012345678901234567890123
   This·is·a·first·example·sentence.
   This·is·a·first·example·sentence.
   This·is·a·first·example·sentence.
   This·is·a·first·example·sentence.
   This·is·a·first·example·sentence.
	 	 	 This·is·a·first·example·sentence.

Obviously, R returns the third solution: It begins to match at the first occurrence of “s” –  
at position 4 – and then chooses the longest possible match, as we can also see in the  
following line of code:

>·substr(txt[1],·4,·4+22-1)¶
[1]·"s·is·a·first·example·s"

In regular expressions lingo, this is called greedy matching. However, this may not always 
be what we want. If, for example, we have a corpus line which matches a particular search 
pattern more than once, then, as corpus linguists, we often would not just want one long 
match (with unwanted material in the middle):

>·some.corpus.line<-"he·said,·you·are·lazy·and·you·are·stupid."¶
>·gregexpr("you.*are·\\w+",·some.corpus.line,·perl=TRUE)¶
[[1]]
[1]·10
attr(,"match.length")
[1]·31
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>·substr(some.corpus.line,·10,·10+31-1)¶
[1]·"you·are·lazy·and·you·are·stupid"

Why don’t we want this behavior? Imagine you are interested in the most interesting 
and important linguistic phenomenon that has ever existed, i.e., the constituent order 
alternation of verb-particle constructions in English, i.e., the alternation between 
John picked up the book and John picked the book up. If you have a tagged  
corpus in which verbs and particles are tagged – e.g., the corpus would look like 
this: John_N picked_V the_D book_N up_P – then you don’t want R to do greedy  
matching because of how that would handle sentences with two verb-particle  
constructions such as John_N picked_V up_P the_D book_N and_CJ brought_V 
it_PN back_P. If we look for a verb followed later by a particle, greedy matching  
would return a match that, at first sight, suggests the first verb (picked) goes with the 
second particle (back):

>·vpc.example<-"John_N·picked_V·up_PRT·the_D·book_N·and_CJ· 
brought_V·it_PN·back_PRT"¶

>·gregexpr("[^_·]+_V.*[^_]+_PRT",·vpc.example,·  
ignore.case=TRUE,·perl=TRUE)¶

[[1]]
[1]·8
attr(,"match.length")
[1]·56
attr(,"useBytes")
[1]·TRUE

>·substr(vpc.example,·8,·6+60-1)¶
[1]·"picked_V·up_P·the_D·book_N·and_CJ·brought_V·it_PN·back_P"

Pay attention to the regex used above with gregexpr: Note in particular how the regex 
above operationalizes the notion of a word – one or more characters that are not spaces 
(because spaces separate words from each other, at least according to a simplistic defini-
tion adopted here) and that are not underscores (because those separate words and their 
tags from each other).

Thus, what we are more likely to be interested in is getting to know that there are two 
matches and what these are. There are two ways of setting R’s matching strategy to lazy, 
i.e., non-greedy. The first one applies to a complete search expression, setting all quanti-
fiers in the regular expression to non-greedy matching. You just write “(?U)” as the first 
four characters of your regular expression:

>·gregexpr("(?U)you.*are·\\w+",·some.corpus.line,·perl=TRUE)¶
[[1]]
[1]·10·27
attr(,"match.length")
[1]·9·9
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As you can see, now both consecutive matches are found. However, this is still bad – why?

THINK

BREAK

The matches are just nine characters long, two more than before, which means they 
only added a space and “l”/“s”. And why? Because the (?u) makes every quantifier 
lazy, i.e., also the “+” after “\\w” so R stops after one word character. What we want, 
however, is for the first quantifier to match lazily (the “*”) but for the second to match 
greedily so that the “\\w+” gets the whole word. Thus, we would like a more flexible 
way to set lazy matching: Rather than using non-greedy matching for the complete 
regular expression, you can use greedy and non-greedy matching in one expression by 
adding a question mark to those quantifiers which you would like to use non-greedily. 
As you can see, we now get the desired result – both matches and their correct lengths 
are matched:

>·gregexpr("you.*?are·\\w+",·some.corpus.line,·perl=TRUE)¶
[[1]]
[1]·10·27
attr(,"match.length")
[1]·12·14

There we go. Let’s apply this to vpc.example:

>·gregexpr("[^_·]+_V.*?[^_]+_PRT",·vpc.example,·  
ignore.case=TRUE,·perl=TRUE)¶

[[1]]
[1]··8·44
attr(,"match.length")
[1]·15·24
attr(,"useBytes")
[1]·TRUE

>·substr(rep(vpc.example,·2),·c(8,·44),·c(8+15-1,·44+24-1))¶
[1]·"picked_V·up_PRT"··········"brought_V·it_PN·back_PRT"

Not bad at all. But now note what happens if we apply this solution to the vector txt:

>·gregexpr("s.*?s",·txt[1],·perl=TRUE)¶
[[1]]
[1]··4·14
attr(,"match.length")
[1]··4·12
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We still don’t get all three consecutive occurrences we would probably want, namely 
“s·is”, “s·a·firs”, and “st·example·s”, let alone these plus the additional three that are 
theoretically also possible from above (“s is a firs”, “s a first example s”, and “s is a first 
example s”). Why is that?

THINK

BREAK

This is because when the regex engine has identified the first match – “s·is” – then the 
second “s” in txt[1] has already been consumed as being the second “s” in the match 
and is, thus, ‘not available’ anymore to be the first match next time: The regex engine will 
start to look for new matches only after it. We will therefore revisit this case below to get 
at least at the third useful match.

The second issue we need to address is that we have so far only been concerned with 
the most elementary replacement operations. That is to say, while you have used simple 
matches as well as more complex matches in terms of what you were searching for, your 
replacement has so far always been a specific element (a character or a character string). 
However, there are of course applications where, for example, you may want to add 
something to your match. Imagine, for example, you would like to tag the vector txt such 
that every word is followed by “<w>” and every punctuation mark is followed by “<p>”. 
Now, obviously you cannot simply replace the pattern match as such with the tag because 
then your words and punctuation marks would be replaced rather than have tags added 
to them:

>·(txt.2<-gsub("\\w+",·"<w>",·txt,·perl=TRUE))¶
[1]·"<w>·<w>·<w>·<w>·<w>·<w>."
[2]·"<w>·<w>·<w>·<w>·<w>·<w>·<w>."

Obviously, this might not be the world’s best tagger ever. Second, you cannot simply 
replace word boundaries “\\b” with tags because then you get tags before and after  
the words:

>·(txt.2<-gsub("\\b",·"<w>",·txt,·perl=TRUE))¶
[1]·"<w>This<w>·<w>is<w>·<w>a<w>·<w>first<w>·<w>example<w>· 

<w>sentence<w>."
[2]·"<w>And<w>·<w>this<w>·<w>is<w>·<w>a<w>·<w>second<w>· 

<w>example<w>·<w>sentence<w>."

Thus, what you need is a way to tell R to (1) match something, (2) bear in mind what was 
matched, and (3) replace the match by what was matched together with the additional tag 
you want to insert. Fortunately, regular expressions offer the possibility of what is referred 
to as “back-referencing”. Regular expressions or parts of regular expressions which are 
grouped by parentheses are internally numbered (in the order of opening parentheses) 
so that they are available for future matching and/or replacing in the same function call. 
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Let us first look at the simple tagging example from above. In two steps, you can tag the 
‘corpus’ in the above way:

>·(txt.2<-gsub("(\\w+)",·"\\1<w>",·txt,·perl=TRUE))¶
[1]·"This<w>·is<w>·a<w>·first<w>·example<w>·sentence<w>."
[2]·"And<w>·this<w>·is<w>·a<w>·second<w>·example<w>·sentence<w>."

>·(txt.3<-gsub("([!:,.?])",·"\\1<p>",·txt.2,·perl=TRUE))¶
[1]·"This<w>·is<w>·a<w>·first<w>·example<w>·sentence<w>.<p>"·
[2]·"And<w>·this<w>·is<w>·a<w>·second<w>·example<w>·sentence<w>.<p>"

That is to say, in the first step, the pattern you are searching for is defined as one or 
more consecutive occurrences of a word character, and the parentheses instruct R to treat 
the complete sequence as a single element. Since there is only one set of opening and 
closing parentheses, the number under which the match is available is of course 1. The 
replacement part, “\\1<w>”, then instructs R to insert the remembered match of the first 
parenthesized expression in the search pattern (“\\1”) – which in this case amounts to the 
whole search pattern – and insert “<w>” afterwards. The second step works in the same 
way except that now the parenthesized subexpression is a character class of multiple punc-
tuation marks, which is treated as a single item, to which a punctuation mark tag “<p>” 
is added; note the fact that punctuation marks being in a character class obviates the need 
for writing “\\.” and “\\?”.

Of course, this approach can be extended to handle more complex expressions, too. 
Imagine, for example, your data contain dates in the American-English format, with  
the month preceding the day (i.e., Christmas would be written as “12/25/2016”) and you 
want to reverse the order of the month and the day so that your data could be merged with 
corpus files that already use this ordering. Imagine also that some of the American dates 
do not use slashes to separate the month, the date, and the year, but periods. And, you 
must take into consideration that some people write April 1 as “04/01” whereas others 
write “4/1”. How could you change American dates into British dates using only slashes 
as separators (regardless of what separators are used in the American dates)?

>·(American.dates<-c("7/31/1976",·"02.15.1970",·"11.31.1986"))¶

THINK

BREAK

>·(British.dates<-gsub("(\\d{1,2})\\D(\\d{1,2})\\D",·"\\2/\\1/",· 
American.dates,·perl=TRUE))¶

[1]·"31/7/1976"·"15/02/1970"·"31/11/1986"

This regular expression may look pretty daunting at first, but in fact it is a mere con-
catenation of many simple things we have already covered. The first parenthesized 
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expression, “(\\d{1,2})”, matches one or two digits and, if matched, stores them as 
the first matched regular expression, “\\1”. “\\D” then matches any non-digit char-
acter and, thus, both the period or the slash. Of course, if you are sure that the only 
characters in the data used to separate the parts of the date are a period and slash, 
a character class such as “[./]” would have worked just as well as “\\D”. If you are 
not, then “\\D” may be a better choice because it would also match if the parts of the 
date were separated by hyphens as in “7-31-1976”. The second parenthesized expres-
sion, again “(\\d{1,2})”, matches one or two digits but, if matched, stores the match 
as the second matched regular expression, “\\2”. You might actually want to think 
about how you can also preserve the original separators instead of changing them 
into slashes.

THINK

BREAK

>·(British.dates<-gsub("(\\d{1,2})(\\D)(\\d{1,2})
(\\D)",·"\\3\\4\\1\\2",· 
American.dates,·perl=TRUE))¶

[1]·"31/7/1976"·"15.02.1970"·"31.11.1986"

Let me use this regex to introduce one very nice way in which search expressions in com-
plex regular expressions can be made more readable. This way is what is referred to as 
free-spacing mode and it is defined by a flag “(?x)” that is put first in a regular expres-
sion (just like “(?U)” was above for lazy matching). If your regular expression begins 
with “(?x)”, then – simplifying a bit – spaces “ ” (written here as “·”) and newlines 
are ignored and you can insert comments into regular expressions (prefixed with “#”)  
to make them easier to parse; note that this means that if you want to find a space in 
free-spacing mode, you need to use “\\s” for the space. Here is the above line in free-
spacing mode; it’s obvious how, for longer or more complex regular expressions, this 
makes parsing regexes much simpler, because now every component of the regex can 
be explained properly right in the code, which is why I will sometimes make use of this 
in the code file:

>·(British.dates<-gsub(¶
+····"(?x)······#·set·free-spacing¶
+····(\\d{1,2})·#·1·or·2·digits,·memorize·as·\\1¶
+····(\\D)······#·1·non-digit··,·memorize·as·\\2¶
+····(\\d{1,2})·#·1·or·2·digits,·memorize·as·\\3¶
+····(\\D)······#·1·non-digit··,·memorize·as·\\4¶
+····",¶
+····"\\3\\4\\1\\2",¶
+····American.dates,·#·in·American.dates¶
+····perl=TRUE))·····#·using·Perl-compatible·regular·expressions¶
[1]·"31/7/1976"·"15.02.1970"·"31.11.1986"
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So far we have used back-referencing in such a way that the match of a search expres-
sion or parts of the match of a search expression were used again in the replacement 
pattern. Note, however, that back-referencing also includes the possibility of re-using 
a match within the search pattern itself. Let us look at a simple example first. Imagine 
you are interested in the rhyming of adjacent words and would, therefore, like to 
find in a character vector just like txt cases where adjacent words end with the 
same character sequences, obviously because these are likely candidates for rhymes.4  
More specifically, imagine you would like to add “<r>” to every potential rhyme 
sequence such that “This is not my dog” gets changed into “This<r> is<r> not my 
dog”, but that you only want cases of adjacent words so that the string “This not is 
my dog” would not match. In such a case, you would want to find a sequence of at 
least two characters at the end of a word, which we can translate as “\\w{2,}?\\W+”. 
However, it is more complex than that. You must instruct R to bear the sequence of 
characters in mind, which is why you would need to write “(\\w{2,}?)”. Then, this 
character sequence in question must be followed by at least one non-word character 
(e.g., a space or a comma and a space) plus the word characters of the beginning 
of the next word: “\\W+\\w*?”. Note, however, that we write “\\w*?” because 
the beginning of the word may already rhyme so the beginning is optional, hence 
the asterisk. Since you will have to put those back into the string, you will need to  
memorize and, thus, parenthesize them, too. Then, you only want matches if the same 
character sequence you found at the beginning is matched again: “\\1”. However,  
you only want it to match if this is again at the end of a word (i.e., followed by “\\W”) 
and, what is more, you will have to memorize that non-word character to put it  
back in: “\\1\\W”. As you can see, the back-reference is back to a pattern within the 
search.

When this is all done, the replacement is easy: You want to replace all this by the 
potentially rhyming characters followed by “<r>”, then the characters after the potentially 
rhyming characters, then the potentially rhyming characters, and the next non-word char-
acter. All in all, this is how it looks:

>·gsub("(\\w{2,}?)(\\W+\\w*?)\\1(\\W)",·"\\1<r>\\2\\1<r>\\3",·txt,· 
perl=TRUE)¶

[1]·"This<r>·is<r>·a·first·example·sentence."
[2]·"And·this<r>·is<r>·a·second·example·sentence."

You can now also test that this regular expression does return a match on “This is 
not my dog” but does not match “This not is my dog”, because in the latter the This 
and the is are not adjacent anymore; check out the code file for the (free-space com-
mented) code. When you do so, hopefully, you look at this and immediately see a way 
to improve it. If not, think about (or try out) what happens if the elements of the vector 
txt did not have final periods. How could you improve the script in this regard and 
simplify it at the same time?

THINK

BREAK
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The solution and simpler strategy would be this:

>·gsub("(\\w{2,}?)(\\W+\\w*?)\\1\\b",·"\\1<r>\\2\\1<r>",·txt,· 
perl=TRUE)¶

As you can see, instead of the final non-word character, this uses a word boundary at the 
end. Why (is this better)? This is because the expression “\\1\\b” only consumes the rhyming 
characters, which has two consequences. First, this expression also matches the end of the 
string if there is no period because it does not require a separate non-word character to match 
after the rhyming character(s). Second, because the expression does not consume anything 
after the rhyming character(s), you need not capture anything after their second occurrence 
because you do not have to put anything back in; this is why this expression works with only 
two, not three, back-references. Thus, the second version is actually preferable.

This example and its discussion gloss over the additional issue of how the approach 
would have to be changed to find rhyming words that are not adjacent, and you will meet 
this issue in the next exercise box.

The final kind of expression to be discussed here is referred to as lookaround. 
Lookaround is a cover term for four different constructs:

Lookahead

(?=...) positive lookahead: match if you see . . . on the right
(?!...) negative lookahead: match if you do not see . . . on the right

Lookbehind

(?<=...) positive lookbehind: match if you see . . . on the left
(?<!...) negative lookbehind: match if you do not see . . . on the left

Lookaround is sometimes a bit difficult to understand for beginners, but often exception-
ally useful. The key characteristics of lookaround expressions are that

 • like most regular expressions we have seen before, they match characters (rather than, 
say, positions);

 • unlike most regular expressions we have seen before, they give up the match – i.e., 
they do not consume characters and are therefore, just like line anchors, zero-width 
assertions – and only return whether they matched or did not match.

Let us look at a simple example for positive lookahead. You use positive lookahead to match 
something that is followed by something else (which, however, you do not wish to consume 
with that expression). For example, imagine you have the following vector example:

>·example<-c("abcd",·"abcde",·"abcdf")¶

If you now want to match “abc” but only if “abc” is followed by “de”, you can use  
positive lookahead like this:
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>·grep("abc(?=de)",·example,·perl=TRUE)¶
[1]·2

You may now ask “So what, I could just write this . . . ”:

>·grep("abcde",·example,·perl=TRUE)¶
[1]·2

True, but one area where the difference is particularly relevant is when you want to not 
just find, but also replace. If you want to replace “abc” by “xyz”, but only if that “abc” 
is immediately followed by “de”, you can’t just write the following because it will also 
consume and thus replace the “de”:

>·gsub("abcde",·"xyz",·example,·perl=TRUE)¶
[1]·"abcd"··"xyz"···"abcdf"

With positive lookahead, no problem:

>·gsub("abc(?=de)",·"xyz",·example,·perl=TRUE)¶
[1]·"abcd"··"xyzde"·"abcdf"

As you can see, the string “de” is not consumed, and thus not replaced. Of course, you 
can combine lookaround expressions with nearly all the regular expressions you already 
know. For example, you could replace every character in front of an “e” by two occur-
rences of that character:

>·gsub("(.)(?=e)",·"\\1\\1",·example,·perl=TRUE)¶
[1]·"abcd"···"abcdde"·"abcdf"

Maybe somewhat more realistically, you could tag every “vowel letter” (“[aeiou]”) that is 
between two “consonant letters” (“[bcdfghjklmnpqrstvwxyz]”):

>·gsub("(?<=[bcdfghjklmnpqrstvwxyz])([aeiou])(?=[bcdfghjklmnpqr 
stvwxyz])",· 
"<\\1>",·txt,·perl=TRUE)¶

[1]·"Th<i>s·is·a·f<i>rst·ex<a>mple·s<e>nt<e>nce."
[2]·"And·th<i>s·is·a·s<e>c<o>nd·ex<a>mple·s<e>nt<e>nce."

However, positive lookahead is not only useful for replacements. Let us return again to 
the problem of finding the three instances of one “s” followed by some characters up to 
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another “s” that we faced with the vector txt. The last time we managed to get two out 
of the three desired matches (when we introduced lazy matching), but we still had the 
problem that a consumed second “s” was not available as a first “s” in the next match. As 
you may already guess, the answer is to not consume the second “s”, and you now know 
how to do that: with positive lookahead:

>·gregexpr("s.*?(?=s)",·txt[1],·perl=TRUE)¶
[[1]]
[1]··4··7·14
attr(,"match.length")
[1]··3··7·11

Finally, all three matches are identified: Check out the code for how you can extract them 
(with a crude approach that introduces the function paste0 and only works well in simple 
cases like the one here).

Negative lookahead allows you to match something if it is not followed by something 
else. In this example, you capitalize only those “d” characters that are not followed by “e”:

>·gsub("d(?!e)",·"D",·example,·perl=TRUE)¶
[1]·"abcD"··"abcde"·"abcDf"

Note the difference from what you may think is the same, but which in fact is not the same, 
and it is again different in how the lookahead does not consume the “e”, whereas “[^e]” does:

>·gsub("d[^e]",·"D",·example,·perl=TRUE)¶
[1]·"abcd"··"abcde"·"abcD"

Negative lookahead is especially useful when you want to replace unwanted strings, and 
here is an example we need to discuss in detail. Imagine you have a sentence with an SGML 
word-class annotation as in the BNC. In this format, every word is preceded by a tag in angu-
lar brackets (see www.natcorp.ox.ac.uk/docs/URG/posguide.html). The first character after 
the opening angular bracket of the tag is the tag’s name “w” (for “word”), which is mostly 
followed by a space and a three character POS tag. However, the BNC also has so-called port-
manteau tags, which indicate that the automatic tagger could not really decide which of two 
tags to apply. For example, a portmanteau tag “<w·AJ0-VVN>” would mean that the tagger 
was undecided between the base form of a regular adjective (“AJ0”) or the past participle of a 
lexical verb (“VVN”). Apart from POS tags, other information is also included. For example, 
tags named “s” contain a name–value pair providing the number of each sentence-unit in a 
file; tags named “ptr” are used to indicate overlapping speech and contain a name–value pair 
identifying the location and the speaker of the overlapping speech. This is an example:

>·example1<-"<w·UNC>er<c·PUN>,·<w·AV0>anyway·<w·PNP>we<w·VBB>'re· 
<w·AJ0>alright·<w·AV0>now·<ptr·target=KB0LC003><w·AV0>so 
<c·PUN>,·<w·PNP>you·<w·VVB>know·<ptr·target=KB0LC004></u>"¶
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Imagine now you want to delete all tags that are not word tags or punctuation-mark 
tags. In other words, you want to keep all tags that look like this “<[wc]·...(-...)?>”. 
Unfortunately, you cannot do this with negated character classes: Something involving 
“[^wc·]” does not work because R will understand this to mean that the “w”, the “c”, and 
the space are one-character alternatives, but not as meaning “not ‘w·’ and also not ‘c·’”. 
Now you might say, okay, but I can do this:

>·gsub("<[^wc][^·].*?>",·"",·example1,·perl=TRUE)¶
[1]·"<w·UNC>er<c·PUN>,·<w·AV0>anyway·<w·PNP>we<w·VBB>’re· 

<w·AJ0>alright·<w·AV0>now·<w·AV0>so<c·PUN>,·<w·PNP>you· 
<w·VVB>know·"

And yes, this looks nice. But . . . you are just lucky because example1 does not have a 
tag like “<wtr·target=KB0LC004>”, which begins with “<w” and which you would also 
want to delete. Look what would happen:

>·example2<-"<w·UNC>er<c·PUN>,·<w·AV0>anyway·<w·PNP>we<w·VBB>’re· 
<w·AJ0>alright·<w·AV0>now·<ptr·target=KB0LC003><w·AV0>so 
<c·PUN>,·<w·PNP>you·<w·VVB>know·<wtr·target=KB0LC004></u>"¶

>·gsub("<[^wc][^·].*?>",·"",·example2,·perl=TRUE)¶
[1]·"<w·UNC>er<c·PUN>,·<w·AV0>anyway·<w·PNP>we<w·VBB>’re· 

<w·AJ0>alright·<w·AV0>now·<w·AV0>so<c·PUN>,·<w·PNP>you· 
<w·VVB>know·<wtr·target=KB0LC004>"

The last tag, which you wanted to delete, was not deleted. Why? Because it does not 
match: You were looking for something that is not “w” or “c” followed by something that 
is not a space, but this tag has a “w” followed by a non-space. The same problem arises 
when there is no “w” at the beginning of the tag in question, but a space in its second 
position:

>·example3<-"<w·UNC>er<c·PUN>,·<w·AV0>anyway·<w·PNP>we<w·VBB>’re· 
<w·AJ0>alright·<w·AV0>now·<ptr·target=KB0LC003><w·AV0>so 
<c·PUN>,·<w·PNP>you·<w·VVB>know·<p·tr·target=KB0LC004>xyz 
</u>"¶

>·gsub("<[^wc][^·].*?>",·"",·example3,·perl=TRUE)¶
[1]·"<w·UNC>er<c·PUN>,·<w·AV0>anyway·<w·PNP>we<w·VBB>’re· 

<w·AJ0>alright·<w·AV0>now·<w·AV0>so<c·PUN>,·<w·PNP>you· 
<w·VVB>know·<p·tr·target=KB0LC004>"

One answer to our problem is negative lookahead. Here’s how you do it, and you can try 
it out with example2 and example3 as well to make sure it works:

>·gsub("<(?![wc]·...(-...)?>).*?>",·"",·example1,·perl=TRUE)¶
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It is important that you understand how this works, so let me go over it in detail. 
First, the expression matches an opening angular bracket “<”, no problem here. Then, 
negative lookahead says, match only if the parenthesized lookahead expression, i.e., the 
characters after the “?!” after the opening angular bracket, does not (negative looka-
head) match “<[wc]· . . . (- . . . )?>”. Now comes the tricky part. You must recall that 
lookahead does not consume: thus, after having seen that the characters after the angu-
lar bracket are not “[wc]· . . . (- . . . )?>”, R’s regular expression engine is still at the 
position after the first consumed character, the angular bracket; that’s what zero-width 
assertion was all about. Therefore, after having said what you don’t want to see after 
the “<” – which is “[wc]· . . . (- . . . )?>” – you must now say what you do want to 
see, which is anything, hence the “.*?”, but only until the next angular bracket closing  
the tag. Another way to understand this is as follows: negative lookahead says “match the  
stuff after the negative lookahead (‘.*?’), but not if it (also) looks like the stuff in  
the negative lookahead (‘[wc]· . . . (- . . . )?>’).”

So how does it apply to the example1? The first tag “<w·UNC>” is not matched because 
the expression cannot match the negative lookahead: “<w·UNC>” is exactly what “?!” 
says not to match. The same holds for the next few tags. Once the regex engine arrives at 
“<ptr·target=KB0LC003>”, though, something different happens. The regex engine sees 
the “<” and notices that the characters that follow the “<” are not “[wc]· . . . (- . . . )?>”. 
Thus, it matches, but does not consume; the engine is still after the “<”. The string “ptr 
target=KB0LC003” is then matched by “.*?”, and the closing “>” is matched by “>”. 
Thus, everything matches, and R can replace this by “”, effectively deleting it.

This is a very useful approach to know and some of the scripts below that handle BNC 
files will make use of this expression to “clean up” the file before further searches take 
place (so that overlap tags do not interrupt sequences of words we are interested in, for 
instance). An extension of this not only deletes unwanted tags, but also the material that 
follows these unwanted tags up until the next tag:

>·gsub("<(?![wc]·...(-...)?>).*?>[^<]*",·"",·example3,·perl=TRUE)¶

Recommendations for further study/exploration

 • On how to match with positive and negative lookbehind: explore (?<=) and 
(?<!). Note that Perl-compatible regular expressions do unfortunately not 
allow variable-length lookbehind.

You should now do “Exercise box 3.7: A few more regular expressions.”

3.7.6 Merging/Splitting Character Vectors With Regular Expressions

We saw in Section 3.7.3 that we can split up character strings using strsplit. While 
the above treatment of strsplit did not involve regular expressions, this function can  
handle regular expressions in just about the way that grep and the other functions can. 
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Let us exemplify this by means of a character string that may be found like this in the BNC 
with SGML annotation: Every word is preceded by a POS tag in angular brackets, just as 
in the above examples.

>·(tagtext<-"<w·DPS>my·<w·NN1>mum·<w·CJC>and·<w·DPS>my· 
<w·NN1>aunt·<w·VVD>went·<w·PRP>into·<w·NN1>service")¶

Imagine we want to get the words and get rid of the tags. Looking at the above, there 
seem to be two alternatives to do that: First, we could simply delete the tags (with gsub) 
and then strsplit on spaces. Second, we could strsplit on tags. Which one is better 
and why?

THINK

BREAK

This was a bit of a trick question. Obviously, the second is better because it’s just one 
operation. But there is a potentially more important reason. Look at the excerpt from a 
BNC file shown in Figure 3.5.

If you pursue the first of the two strategies, you end up with the following word tokens: 
“now”, “because”, “of”, “obvious”, and “reasons” – if you pursue the second, you get 
“now”, “because·of”, “obvious”, and “reasons” because splitting up on the tag doesn’t lose 
the (potentially very useful) information that the BNC compilers considered because of a 
multi-word unit. Think how this seemingly small decision has potentially big implications: If 
you generate a frequency list of the BNC using the first approach, then you lose the counts of 
all multi-word units but every because of, in spite of, out of, etc. increases the frequencies of 
of as well as because, in, spite, and out. A frequency list generated with the second approach 
doesn’t have that problem, which is why we will go with the second approach here.

Back to tagtext: If you want to split up this character string at each tag such that every 
word is one element of an overall vector, this is what you could do:

>·unlist(strsplit(tagtext,·"<w·...>",·perl=TRUE))¶
[1]·""········"my·"·····"mum·"····"and·"····"my·"·····"aunt·"··· 

"went·"···"into·"···"service"

As you can see, the function looks for occurrences of “<w·” followed by three characters 
and a “>” and splits the string up at these points. Recall again that unlist is used here to 
let R return a vector, not a list. While this works fine here, however, life is usually not that 

Figure 3.5 A few words from the BNC World Edition (SGML format).
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simple. For one thing, not all tags might correspond to the pattern “<w· . . . >”, and in fact 
not all do. Punctuation mark tags, as you already saw above, look different:

>·tagtext<-"<w·DPS>my·<w·NN1>mum·<c·PUN>,·<w·DPS>my· 
<w·NN1>aunt·<w·VVD>went·<w·PRP>into·<w·NN1>service"¶

However, you should be able to find out quickly what to do. This is a solution that would 
work when the tag beginnings are either “<w·” or “<c·” (result not shown here):

>·unlist(strsplit(tagtext,·"<[wc]·...>",·perl=TRUE))¶

Again, however, life is more complex than this: recall also that we have to be able to 
accommodate portmanteau tags:

>·tagtext<-"<w·DPS>my·<w·NN1>mum·<c·PUN>,·<w·DPS>my· 
<w·AJ0-VVN>beloved·<w·NN1>aunt·<w·VVD>went·<w·PRP>into· 
<w·NN1>service"¶

Among the ways of handling this, this is one with alternatives, but without ranges:

>·unlist(strsplit(tagtext,·"<[wc]·(...|...-...)>",·perl=TRUE))¶

As you can see, the expression either looks for any three characters or for any three char-
acters followed by a hyphen and another three characters. The other possibility involves 
an expression with a range such that we are either looking for three or seven (three + “-” + 
three) characters; strictly speaking, the former alternative is better since it is more restric-
tive (by specifying the nature of the up to seven characters in more detail).

>·unlist(strsplit(tagtext,·"<[wc]·.{3,7}>",·perl=TRUE))¶
[1]·""·········"my·"······"mum·"·····",·"·······"my·"······ 

"beloved·"·"aunt·"····"went·"····"into·"····"service"

One final thing is less nice. As you can see, strsplit splits up at the tags, but it does not 
remove the spaces after the words. This may not seem like a great nuisance to you but, 
before you go on reading, look at the last word and think about in what way this may be 
problematic for further corpus-linguistic application.

THINK

BREAK
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If you could not think of something, consider what would happen if the vector tagtext 
looked like this:

>·tagtext<-"<w·DPS>my·<w·NN1>service·<w·DPS>my·<w·AJ0-VVN>beloved· 
<w·NN1>aunt·<w·VVD>went·<w·PRP>into·<w·NN1>service"¶

THINK

BREAK

THINK

BREAK

The problem arises when you apply the above regular expression to this version of tagtext:

>·unlist(strsplit(tagtext,·"<[wc]·(...|...-...)>",·perl=TRUE))¶
[1]·""·········"my·"······"service·"·"my·"······"beloved·"· 

"aunt·"····"went·"····"into·"····"service"

As you can see, there is one occurrence of “service” with a following space – the 
first one – and one without a following space – the second one. The second one 
is not followed by a space because its characters were the last ones in the vector tag 
text and, more often, they might not be followed by a space because they are immediately 
followed by a punctuation mark. The problem is that if you now wanted to generate a 
frequency list using table, which you already know, R would of course treat “service” 
and “service·” differently, which is presumably not what anyone would want:

>·table(unlist(strsplit(tagtext,·"<[wc]·(...|...-...)>",· 
perl=TRUE)))¶

······aunt···beloved···into···my···service···service····went
··1······1·········1······1····2·········1··········1······1

Thus, what would a better solution look like, i.e., a solution that deletes the spaces?

This is what you could do:

>·unlist(strsplit(tagtext,·"·*<[wc]·(...|...-...)>·*",·perl=TRUE))¶
[1]·""········"my"······"service"·"my"······"beloved"·"aunt"···· 

"went"····"into"····"service"

This was just a simple example, but I hope it has shown how important it is to know what 
you’re doing and to what you’re doing it.
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Recommendations for further study/exploration

 • On how to do approximate pattern matching: ?agrep¶ and also check out 
?adist¶.

 • Spector (2008: chapter 7).
 • On regular expressions in general: Stubblebine (2007), Goyvaerts and Levithan 

(2012), the “regular expression bible”, Friedl (2006), and in particular the abso-
lutely wonderful website www.regular-expressions.info.

3.8 Two Particularly Relevant Areas: Unicode and XML

3.8.1 Some Notes on Handling Unicode

This section looks at non-English non-ASCII data. Just as most corpus-linguistic work has 
been done on English, this chapter has so far also been rather Anglo/ASCII-centric. In this 
section we are going to deal with data involving Unicode by briefly looking at data involv-
ing Cyrillic characters. There is good news and bad news. The good news is that nearly 
everything that you have read so far applies to Unicode files with Cyrillic characters, too. 
There are a few small changes, such as that you cannot really use regular expressions such as 
“\\w”, “\\W”, or “\\b” to work (because they are defined with regard to a Latin alphabet),  
but otherwise nothing major. The bad news for Windows users is that, with R for 
Windows at least, it is often not as straightforward to handle Unicode as it is with 
R for MacOS X or R for Linux, which is mainly due to the fact that Mac OS X and 
Linux are UTF-8 operating systems so they play well with input files that have the same 
encoding, which is one of many reasons (see Section 3.8.2 for another one) why I rec-
ommend doing corpus processing with R on a Linux machine (and it takes very little 
time to install a long-term support version of, for instance, Kubuntu or Linux Mint on 
a desktop computer).

Let us load a file that has UTF-8 encoding – like actually nearly all others before – but 
now also non-Western European characters in it, namely the file with Cyrillic characters 
we looked at above, <_qclwr2/_inputfiles/corp_utf8_cyrillic.txt>:

>·rm(list=ls(all=TRUE))¶
>·corpus.file<-readLines(con<-file(file.choose(),·encoding="UTF-8"),· 

warn=FALSE);·close(con)¶
>·tail(corpus.file)¶
[1]·"*·Короткий·срок·изготовления·двери·на·заказ·(10·дней)."
[2]·"*·Качественная·установка."
[3]·"*·Гарантия·1·год·на·все·двери."
[4]·"*·Возможность·скидок·для·оптовых·клиентов."
[5]·"Мы·работаем·для·Вас!"
[6]·""

Let us first briefly look at generating frequency lists. I will treat three ways of creating 
case-insensitive frequency lists of the words in this file, all of which involve the strategy 
of splitting up the corpus file using strsplit, but they differ in how we define how you 
are splitting.
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The first of these is basically no different from how we did it above, which is why 
I reduce most of the exposition to just the code, which you will understand without 
problems. To make it a little more interesting, however, we will first determine which 
characters are in the file and which of these we might want to use for strsplit, so, how 
do you find out all characters that are used in the corpus file?

THINK

BREAK

You need to remember that strsplit splits up (elements of) a vector characterwise if 
no splitting character is provided. Thus:

>·table(unlist(strsplit(corpus.file,·"")))¶

This tells you pretty much exactly which characters to use for splitting (and which not 
to worry about here, such as semicolons and single quotes), and you can proceed as 
above:

>·words.1<-unlist(strsplit(corpus.file,·"[-–!:,\"\\?\\.\\*\\
(\\)\\s\\d]+",· 
perl=TRUE))¶

>·words.1<-tolower(words.1[nzchar(words.1)])¶
>·sorted.freq.list.1<-sort(table(words.1),·decreasing=TRUE)¶
>·head(sorted.freq.list.1,·10)¶
words.1¶
·······и········в······для·daminnad········к········–····белья
······12········9········5········4········4········3········3
····двери······мы·······на
········3·······3········3

By the way, note that we could apply tolower and toupper in the familiar way without 
problems.

As mentioned above, one difference to the above treatment of ASCII data is that 
in an American-English locale, you cannot use characters such as “\\b” or “\\W” with 
perl=TRUE here because what is a word character depends on the locale, and the Cyrillic 
characters simply are not part of the ASCII character range [a-zA-Z]. However, there is 
a nice alternative worth knowing, which brings us to the second way to split up the cor-
pus file into words, which is using character points and, more usefully, character ranges. 
Specifically, you can access each Unicode character in R individually by the sequence “\u” 
followed by a four-digit hexadecimal number.5 This has two important consequences: 
First, once you know a Unicode character’s number, you can use that number to call the 
character, which is particularly handy if, for example, you want to define a search expres-
sion in Cyrillic characters but don’t have a Cyrillic keyboard and don’t want to fiddle 
around with system keyboard settings, etc. Here are some examples:
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>·"\u0401"·#·Ё
[1]·Ё
>·"\u0410"·#·А¶
[1]·А
>·"\u044F"·#·я¶
[1]·я
>·"\u0451"·#·ё¶
[1]·ё

Thus, you can look up the characters for the Russian word meaning “but” from the 
Unicode website or sites at Wikipedia, ‘construct’ it at the console, and even assign it to a 
character vector, which could then be the search expression for grep, gregexpr, exact.
matches.2, etc.:

>·(x<-"\u043d\u043e")¶
[1]·"но"

Second, when the characters of the alphabet you are concerned with come in ranges, you 
can easily define a character class using hexadecimal Unicode ranges. For instance, the 
small and capital characters of the Russian Cyrillic alphabet can be defined as follows:

>·(russ.char.yes.capit<-"[\u0410-\u042F\u0401]")¶
>·(russ.char.yes.small<-"[\u0430-\u044F\u0451]")¶

Note that the square brackets with which we define this character class are part of the 
character strings – this is so we can use these two character vectors as search expressions 
in grep etc. This of course then also means that you can easily define non-word characters 
in nearly the same way:

>·(russ.char.yes<-"[\u0401\u0410-\u044F\u0451]")¶
>·(russ.char.no<-"[^\u0401\u0410-\u044F\u0451]")¶

(Several regular-expression engines actually have a variety of predefined so-called Unicode 
blocks – i.e., contiguous ranges of code points – but the Perl-compatible regular expres-
sions R uses do not support predefined Unicode blocks, so the above way of defining 
ranges manually is probably often your best choice.)

Thus, the second way to create the above kind of frequency list is this: You split on one 
or more occurrences of characters that are not Cyrillic letters:

>·words.2<-unlist(strsplit(corpus.file,·paste0(russ.char.no,·"+"),· 
perl=TRUE))¶

>·words.2<-tolower(words.2[nzchar(words.2)])¶
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>·sorted.freq.list.2<-sort(table(words.2),·decreasing=TRUE)¶
>·head(sorted.freq.list.2,·10)¶
····и·······в·····для·······к···белья···двери······мы······на
···12·······9·······5·······4·······3·······3·······3·······3
·нижнего·····все
·······3·······2

If you compare this output to the one above, you should learn another important 
lesson: The word “daminnad” shows up four times in the first list, but not in the  
second. This is of course because the characters that make up this word are not 
Cyrillic characters as defined by the above Unicode character ranges, which is why 
they get used by strsplit and, thus, effectively get deleted. Also, note that just 
because the “a” in “daminnad” and the ASCII “a” look the same to the human eye 
does not mean they are the same Unicode character. For example, what may look like 
ASCII spaces or commas in the file <_qclwr2/_inputfiles/corp_utf8_mandarin.txt>  
are not ASCII characters! Thus, you must be very careful about how to define your 
splitting characters.

The third and final way is based on the fact that there are several predefined Unicode 
categories which you can use with a regular expression that defines so-called proper-
ties: the regex for that involves the syntax “\\p{ . . . }”, where you replace . . . with the 
name of the property you wish to use. The code file provides a few examples of Unicode 
categories you can set with properties (and www.regular-expressions.info/unicode.html 
provides many more), but here I will only show how you use a property to define a so-
called Unicode script for the task of creating our frequency list of Russian words with 
the Cyrillic alphabet:

>·words.3<-exact.matches.2("\\p{Cyrillic}+",·corpus.file,· 
gen.conc.output=FALSE)[[1]]¶

>·words.3<-tolower(words.3[nzchar(words.3)])¶
>·sorted.freq.list.3<-sort(table(words.3),·decreasing=TRUE)¶
>·head(sorted.freq.list.3,·10)¶
words.3
····и·······в·····для·······к···белья···двери······мы···· 

··на·нижнего·····все
···12·······9·······5·······4·······3·······3·······3···· 

···3·······3·······2

As you can see, this approach returns the same results as the second one, but this one of 
course presupposes that the writing system you are studying is predefined as a Unicode 
script.

Let us now turn to concordancing with Unicode data, which is also nearly the same 
as with ASCII data; the main difference being again that, with perl=TRUE, you cannot 
use, say, “\\b”. Let us begin with a simple example in which we look for a Russian word 
meaning “but”, which is “но”. You first define it as a search word (and often it is useful 
to immediately put parentheses around it so you can use back-referencing later when, for 
instance, you want to put tabstops around the match):
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>·search.word<-"(но)"¶

The simplest way to look for this is of course to just use the above search.word as the 
search expression with grep. However, if you look for the search expression you will find 
many examples where “но” is part of adjectival inflection (e.g., “ноe” or “ного”) or of the 
derivational morpheme “ность”:

>·exact.matches.2(search.word,·corpus.file,·case.sens=FALSE)[[4]]
[6:8]¶

[1]·"Торговый·дом··Эдера·–·компания,·развивающая·стратегические· 
от\tно\tшения·с·партнерами,·находя·индивидуальный·подход· 
и·учитывая·не·только·свои·интересы,·но·и·интересы· 
каждого·из·партнеров,·для·обеспечения·взаимовыгодного· 
сотрудничества."

[2]·"Торговый·дом··Эдера·–·компания,·развивающая·стратегические· 
отношения·с·партнерами,·находя·индивидуальный·подход·и· 
учитывая·не·только·свои·интересы,\tно\tи·интересы·каждого·из· 
партнеров,·для·обеспечения·взаимовыгодного·сотрудничества."

[3]·"Торговый·дом··Эдера·–·компания,·развивающая·стратегические· 
отношения·с·партнерами,·находя·индивидуальный·подход·и· 
учитывая·не·только·свои·интересы,·но·и·интересы·каждого· 
из·партнеров,·для·обеспечения·взаимовыгод\tно\tго· 
сотрудничества."

To get rid of false hits, you might decide to find “но” only when it is used with non- 
word characters around it (because you can’t use “\\b”) and define a search expression 
such this one:

>·(search.expression<-paste0(russ.char.no,·search.word,· 
russ.char.no))¶

[1]·"[^ЁА-яё](но)[^ЁА-яё]"

But you already know that would cause problems with matches that are at the beginnings 
or ends of lines because then there are no preceding or subsequent characters respectively. 
You have therefore two choices: Either you define a better word boundary or you use 
negative lookaround. I will illustrate both options using the function exact.matches.2 
from above.

For a better word boundary, you can add beginnings and ends of character strings to 
the non-Cyrillic-character range you defined earlier:

>·(word.boundary<-paste0("(^|$|",·russ.char.no,·")"))¶
[1]·"(^|$|[^ЁА-яё])"
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and then create and use a new search expression:

>·(search.expression<-paste0(word.boundary,·search.word,· 
word.boundary))¶

[1]·"(^|$|[^ЁА-яё])(но)(^|$|[^ЁА-яё])"
>·exact.matches.2(search.expression,·corpus.file,·case.sens=FALSE)

[[4]]¶
[1]·"Торговый·дом··Эдера·–·компания,·развивающая·стратегические· 

отношения·с·партнерами,·находя·индивидуальный·подход·и· 
учитывая·не·только·свои·интересы,\tно\tи·интересы·каждого· 
из·партнеров,·для·обеспечения·взаимовыгодного· 
сотрудничества."

[2]·"Молодежное·нижнее·белье·эконом·класса·DAMINNAD·(Россия):· 
трусы,·майки,·комплекты.·Эта·молодежная·дерзкая·серия· 
нижнего·белья·обеспечит·Вам·хорошее·настроение.·В·целом,· 
для·DAMINNAD·характерна·приверженность·к·комфортным·и· 
удобным·в·носке·вещам,\tно\tесть·и·стремление·к· 
оригинальности,·экстравагантности.·Ведь·DAMINNAD·–·это· 
важнейшее·средство·самовыражения,·а·молодость·–·именно·то· 
время,·когда·позволено·все·и·когда·любая·одежда·тебе·к· 
лицу.·В·ОБЩЕМ,·МОЛОДО·И·ПОЗИТИВНО!!!"

As you can see, now only the one desired match in the third line is found plus another one 
in the fifth line.

The alternative involves negative lookaround: You look for the search word, but 
only if there is no character from the Cyrillic character range in front of it and no 
character from the Cyrillic character range after it. As you can see, the same matches 
are returned:

>·(search.expression<-paste0("(?<!",·russ.char.yes,·")",· 
search.word,·"(?!",·russ.char.yes,·")"))¶

>·exact.matches(search.expression,·corpus.file,· 
case.sens=FALSE)[[4]]¶

However, since none of these matches actually involves a match at the beginning or end of 
a string, let’s just make sure that the former approach, the one involving the well-defined 
word boundaries, works by looking for the Russian translation of in, “в”:

>·search.word<-"(в)"¶

If you define the search expressions just like above and then perform both searches with 
exact.matches.2, you will see that matches of “в” within words are not returned – as 
desired – but that the line-initial match in the eighth line is found:
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>·(search.expression<-paste0(word.boundary,·search.word,· 
word.boundary))¶

>·(search.expression<-paste0("(?<!",·russ.char.yes,·")",· 
search.word,·"(?!",·russ.char.yes,·")"))¶

This concludes our brief excursus on Unicode character searches in this section. However, 
since this is an important issue, I would like to encourage you to not only get more familiar  
with this kind of encoding, but also do Exercise box 3.8 now.

You should now do “Exercise box 3.8: Unicode.”

3.8.2 Some Notes on Handling XML Data

XML, the eXtensible Markup Language, is one of the most widely used formats that 
corpora come in; it is typically the format of choice in which information in the form of 
markup and annotation (recall Section 2.1.2) is added to the transcripts or written texts 
that corpora contain. It is therefore useful to at least briefly discuss how such data can 
be processed in R. For my discussion of XML below, I provide an input file that is a very 
small subpart of the file <D94.xml> from the BNC World Edition, but I will show the 
code and results you would obtain if you run the relevant code on the complete file; since 
the BNC World Edition in XML format is now freely available (from http://ota.ox.ac.uk/
desc/2554), I reiterate my strong recommendation that you download this corpus: You 
can then use the complete version D94.xml here and, more importantly, for the many 
case studies in the next chapter that use it. If for some reason you cannot get your hands 
on the BNC, you can access a random sample from the BNC XML World Edition at the 
companion website of this book, but because of the sampling process, you can only do 
everything with it that treats it as a flat text file (as many case studies in Chapter 5 do), but 
applications that presuppose the hierarchical nature of the actual XML annotation (e.g., 
anything using the packages XML and xml2) will not work.

Space precludes an exhaustive discussion of the XML format, but a few comments 
about it are probably in order. XML is a hierarchical format (that lends itself well to rep-
resentation as a tree that does not allow cross-nesting/overlapping) in which you add to 
data markup and annotation in the form of either start and end tags (which may contain 
attribute–value pairs), or just start tags (with attribute–value pairs), and in fact you have 
seen examples above that are similar to that annotation already. For instance, consider 
Figure 3.6, which shows how the word “It” is annotated in the BNC World Edition:

Figure 3.6 The XML representation of “It” in the BNC World Edition.

Everything between the first set of angular brackets is the start tag, the word “It” is 
the so-called data value, and everything between the second set of angular brackets that 
begins with “/” is the end tag. The start tag contains three attribute–value pairs:
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If you want to process XML files with R, there are two ways in which you can do that. 
One is simply what we did in the previous sections of this chapter: We treat the XML file 
as a regular flat text file (essentially not paying much attention to the hierarchical struc-
ture of the file) and use regular expressions to find exactly what we want. Often this is 
fast and unproblematic and I must admit that the vast majority of my work with XML 
files is really just that. The other way is using (one of) two R packages that are dedicated 
to XML processing: You can use the package XML (www.omegahat.net/RSXML; I used 
version 3.98-1.4) and/or the package xml2 (https://github.com/hadley/xml2/issues; I used 
version 1.0.0). In general, the former is more powerful than the latter, which is why I will 
focus on it here, but there is one problem: On the Windows operating system the XML 
package has a memory leak which makes it impossible to handle larger amounts of data 
with it – the code that runs fine on Linux will make your computer crash very quickly on 
Windows. Thus, for some of the case studies below, I will provide a solution that uses the 
more powerful XML package, but also provide a solution using the xml2 package, which 
does not have that problem.

XML files in the BNC are stored as UTF-8 text files, which you can either load with scan 
and then convert using the function xmlInternalTreeParse from the XML package, or 
you can even load the file directly from the hard drive with xmlInternalTreeParse; I am 
showing the former here because it allows you to have both versions of the file in memory 
with only one hard drive access:

>·library(XML)¶
>·D94.flatfile<-scan(file.choose(),·what=character(),sep="\n")¶
>·D94.file<-xmlInternalTreeParse(D94.flatfile)¶

Figure 3.7 The XML representation of the number of sentence tags in the BNC World Edition.

Figure 3.8 A hypothetical XML representation of “It” in the BNC World Edition.

 • c5 = “PNP” (which means “the CLAWS 5 tag of the word annotated here is PNP”, 
which means “personal pronoun”);

 • hw = “it” (which means “the lemma/headword of the word annotated here is it”);
 • pos = “PRON” (which means “the more coarse-grained POS tag of the word anno-

tated here is PRON”, which means “pronoun”).

An example where no end tag is used – these are sometimes referred to as empty elements –  
can be seen in Figure 3.7, which is an opening tag (providing the information that there are 
37 sentence tags (<s . . . >) in this file, and then the tag ‘closes itself’ with the “/>” at the end:

Note that one can theoretically store information in either format: the information 
shown in Figure 3.6 might theoretically just as well be represented as in Figure 3.8 – you 
have to know what the corpus you want to work with looks like:
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A summary of D94.file will provide you with frequency tables of attribute names and 
nodes (output not shown here), which is already interesting: If all you wanted was the 
number of words, you could already get it from there:

>·summary(D94.file)¶
>·summary(D94.file)[["nameCounts"]]["w"]¶

However, you will usually want to define a structure containing the root of the XML file:

>·D94.root<-xmlRoot(D94.file)¶

Let us now look at the structure of an XML file. If you open the file <D94.xml> (or, if nec-
essary, <_qclwr2/_inputfiles/corp_D94_part.xml>) in a browser, you will see a hierarchical 
representation (by means of indentation) of the file contents. As Figure 3.9 shows for <corp_
D94_part.xml>, the file has a so-called root element called bncDoc, which has two parts: the 
TEI header and a part called “stext” that contains the (spoken) corpus text. The header, in 
turn, has four parts, and the stext part of <corp_D94_part.xml> contains three utterances.

You can explore the root a bit by, for instance, running xmlName(D94.root)¶ or 
xmlAttrs(D94.root)¶, but for our purposes this does not buy us much – it is more inter-
esting to see how we can access the information we see in Figure 3.9 about the children of 
the root; note the list-like notation with double square brackets:

>·xmlSize(D94.root)¶
[1]·2
>·names(D94.root)¶
··teiHeader·······stext·
"teiHeader"·····"stext"·

Figure 3.9 The topmost hierarchical parts of BNC World Edition: <corp_D94_part.xml>.
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>·xmlName(D94.root[[1]])¶
[1]·"teiHeader"
>·xmlName(D94.root[[2]])¶
[1]·"stext"

You can also check out the contents of both of the root’s parts, either as a hierarchically 
represented object quite similar to what you see in a browser or as a one-element character 
vector (output not shown):

>·D94.root[[1]]¶
>·xmlValue(D94.root[[1]])¶
>·D94.root[[2]]¶
>·xmlValue(D94.root[[2]])¶

Now, how do you explore the header more? The header of <corp_D94_part.xml> is 
shown in Figure 3.10, and the R code that gives you access to the number of elements the 
header consists of and their names is this:

>·xmlSize(D94.root[[1]])¶
>·names(D94.root[[1]])¶
>·D94.root[[1]][3:4]¶

What about the main corpus part, stext? As you can see in Figure 3.11, the immediate 
constituents of stext are the utterances, so you can use the same code you used above to 

Figure 3.10 The header of <corp_D94_part.xml>.
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get at the parts of the header to now get at the parts of stext: just access D94.root[[2]], 
and the subsetting allows you to target specific utterances:

>·xmlSize(D94.root[[2]])¶
>·names(D94.root[[2]])¶
>·D94.root[[2]][1]¶
>·D94.root[[2]][1:3]¶

But that still doesn’t give us easy access to a specific utterance and its characteristics 
and parts, or content. For brevity’s sake, let’s define an object containing the first utter-
ance and look at it in more detail: we can retrieve the code of the speaker who said it 
(“D94PSUNK”, i.e., the speaker is unknown), the name of the utterance tag (“u”, from 
“<u who= . . . ”), the size of the utterance in terms of its immediate constituents (i.e., one 
sentence), and what the actual data value of the utterance is:

>·utt1<-D94.root[[2]][[1]]¶
>·xmlAttrs(utt1)¶
·······who
"D94PSUNK"
>·xmlName(utt1)¶
[1]·"u"
>·xmlSize(utt1)¶

Figure 3.11 The stext part of <corp_D94_part.xml>.
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·[1]·1
>·xmlValue(utt1)¶
[1]·"It·wouldn't·be·any·bother·to·me,·if·you"

However, the most useful ways of accessing corpus data from such XML files are either 
of the following:

 • The function xpathSApply with a first argument being the object returned by  
xmlInternalTreeParse (above that was the object D94.file), the second argument 
defining the hierarchical level at which you want to operate, and an optional third and 
fourth argument being a function that you want to apply there and maybe additional 
arguments for that function.

 • The function xmlSApply with a first argument being the root of an object returned by 
xmlInternalTreeParse (above that was the object D94.root) and the second argu-
ment being a function that you want to apply to D94.root’s parts.

For instance, both approaches can be used to tell you the two parts that <D94.xml> has:

>·xpathSApply(D94.file,·"/bncDoc/*",·xmlName)¶
[1]·"teiHeader"·"stext"
>·xmlSApply(D94.root,·xmlName)¶
··teiHeader·······stext
"teiHeader"·····"stext"

The former line of code can be read as “apply XPath syntax to all elements of D94.file at 
the level right below the bncDoc level (i.e., the topmost one), and for each of the elements 
at that level, return its name.” In the remainder of this section I will focus on how to use 
xpathSApply because I find it more straightforward and useful to work with; in particu-
lar, we will mostly use the following kind of command (don’t enter this, there’s no “>·”:

xpathSApply(xmlInternalTreeParse(some.file),
 "location.in.hierarchy",
 FUN,·...)
# FUN will usually be one of these 3 functions:
# xmlValue
# xmlAttrs
# xmlGetAttr

(Often, the code file will sometimes also provide code alternatives using xmlSApply and 
another function called getNodeSet, but if you want to you can skip those; the focus 
really is on the above approach with xpathSApply.) Most of the time now, I will not 
show the output because it is often too voluminous.

Given the above, you will not find it surprising that you can target the next lower levels 
like this: all that changes is the location description, which essentially uses a slash notation 
that is reminiscent of folder structures on your computer:
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>·xpathSApply(D94.file,·"/bncDoc/teiHeader/*",·xmlName)¶
>·xpathSApply(D94.file,·"/bncDoc/teiHeader/*",·xmlSize)¶

You can see the parts of the header and how many parts each of them has. More inter-
estingly, we can apply the same logic to the other part of the root, namely stext, and use 
xmlValue to immediately get the content of the corpus file without markup/annotation 
and without ever having had to use any regex:

>·xpathSApply(D94.file,·"/bncDoc/stext",·xmlValue)¶

Instead of an absolute path, where you move down the XML tree via the single 
slash-separated parts, you can also use relative paths indicated by two slashes to skip 
multiple intervening levels. The following jumps right down to the utterance level in 
stext and accesses each utterance separately, which means you can apply all sorts of 
text processing functions from above to it (such as nchar to get utterance lengths in 
characters):

>·xpathSApply(D94.file,·"//u",·xmlValue)¶
>·nchar(xpathSApply(D94.file,·"//u",·xmlValue))¶

This also means you can access any other level right away: sentences, words, punctuation 
marks, or even info from the header about the nature of the data, which here is spoken 
conversation (check out Figure 3.11 to verify the output):

>·xpathSApply(D94.file,·"//s",·xmlValue)¶
>·xpathSApply(D94.file,·"//w",·xmlValue)¶
>·xpathSApply(D94.file,·"//c",·xmlValue)¶
>·xpathSApply(D94.file,·"//classCode",·xmlValue)¶

You can check the code for a few more examples of such relative paths, which also exem-
plify the use of xpathSApply without a third argument. Also, note that you can move 
up one or more levels from the one you specified and you can provide alternatives, as 
exemplified in the following two examples. The first uses the “..” notation from terminal/
command prompts to access the level above fileDesc (which is teiHeader, see Figure 3.10); 
the second uses the “|” notation we know from logical expressions above to access both 
listed alternative parts:

>·xpathSApply(D94.file,·"//fileDesc/..")¶
>·xpathSApply(D94.file,·"//profileDesc·|·//revisionDesc")¶
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You can also immediately identify the lengths of all utterances (in terms of their  
components, i.e., sentences) and the speakers of all utterances, which are extracted 
from the who=“ . . . ” attribute–value pair of the utterance tag (see Figure 3.11 again),  
hence xmlAttrs:

>·xpathSApply(D94.file,·"//u",·xmlSize)¶
>·xpathSApply(D94.file,·"//u",·xmlAttrs)¶

The last example was a first step toward getting at the attribute–value pairs of the XML 
tags. Above, we mostly looked at retrieving the data values of our XML data, but of 
course we want to also use the often detailed annotation that is within the tags. The above 
approach with xpathSApply(...,·...,·xmlAttrs) works best if tags have just one 
attribute, as the utterance tags do, but it is more cumbersome when elements have more 
attributes; see the code file for the matrix output you get from this:

>·xpathSApply(D94.file,·"//w",·xmlAttrs)¶

For instance, we have seen that words have much more annotation and provide three 
attribute–value pairs: two with differently detailed POS tags and one with the word’s 
lemma. How do we retrieve those easily? By using the function xmlGetAttr with a speci-
fication of which attribute we want (which I hope is reminiscent of the function attr 
discussed above):

>·xpathSApply(D94.file,·"//w",·xmlGetAttr,·"hw")¶
>·xpathSApply(D94.file,·"//w",·xmlGetAttr,·"pos")¶
>·xpathSApply(D94.file,·"//w",·xmlGetAttr,·"c5")¶
>·xpathSApply(D94.file,·"//u",·xmlGetAttr,·"who")¶

Finally, let us do some more advanced searches, searches that tap into different kinds and 
levels of annotation at the same time. A feature that they use is checking whether an attrib-
ute at some level has a certain value or not. The first of the following two lines should be 
read as “apply to those utterance elements of D94.file whose who-value (i.e., speaker) 
is ‘D94PS000’ the function xmlValue (which extracts the data value)”, which returns a 
nice character value of D94PS000’s utterances. The second line retrieves all words whose 
c5 tag says they are modal verbs:

>·xpathSApply(D94.file,·"//u[@who·=·'D94PS000']",·xmlValue)¶
>·xpathSApply(D94.file,·"//w[@c5·=·'VM0']",·xmlValue)¶

Note how the logical expression that checks whether the c5 tag is “VM0” uses single 
quotes to keep them separate from the opening double quote before //w. The following 
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examples work the same way but add a layer of complexity in that they do not just return 
the data value of the elements that meet a certain condition, but their attribute values 
(POS tags in the first, lemmas in the second):

>·xpathSApply(D94.file,·"//w[@c5·=·'VM0']",·xmlGetAttr,·"pos")¶
>·xpathSApply(D94.file,·"//w[@c5·=·'ITJ']",·xmlGetAttr,·"hw")¶

Finally, let’s recognize that we can combine logical conditions both on one level of hier-
archical organization and on different levels. The first example determines how often will 
is used as a modal verb by combining two conditions on the level of the word tag, namely 
the c5 and the hw attribute–value pairs; the second one determines how often a certain 
speaker uses the lemma will as a modal verb by combining one condition on the utterance 
level with two additional ones on the word level; the third adds yet another condition on 
the sentence level to that:

>·length(xpathSApply(D94.file,·"/bncDoc/stext/u/s/w[@c5·=·'VM0'·and· 
@hw·=·'will']",·xmlValue))¶

>·xpathSApply(D94.file,·"/bncDoc/stext/u[@who·=·'D94PS000']/s/w 
[@c5·=·'VM0'·and·@hw·=·'will']",·xmlValue)¶

>·xpathSApply(D94.file,·"/bncDoc/stext/u[@who·=·'D94PS000']/
s[@n·=·'31']/w[@c5·=·'VM0'·and·@hw·=·'will']",·xmlAttrs)¶

As you can see, this package allows us to do very powerful searches of the kind we’d 
expect from a database. Many of them, for instance those just targeting words and 
their tags, could be done with regular expressions, but the kinds of searches exem-
plified here at the end show how useful some knowledge of how to use R for XML 
with XPath searches really is because they allow you to combine information from 
different levels of annotation relatively easily – all of the above is possible even when 
you treat an XML file as a text file – but trust me, it’s painful. In what follows, I pro-
vide a very brief overview of a few additional ways in which the XML package can 
help you search XML corpus data in sophisticated ways. I will focus in particular on 
three things: (1) how speaker-specific information can be retrieved; (2) how you can 
search and retrieve information from different levels of the XML tree; and (3) some 
XPath syntax aspects that allow for simple character processing. The examples in 
this part will be based on the BNC Word Edition file <_qclwr2/_inputfiles/corp_H00.
xml>, part of whose header is shown in Figure 3.12; note how this file contains data  
from three speakers – PS2AB, PS2AC, and PS2AD – for whom different kinds of infor-
mation are available.

Given the previous discussion, the following should be mostly obvious ways  
of retrieving all information regarding the speakers as lists (lines 1 and 2),  
retrieving all the names of all the attributes provided for each speaker (line 3,  
which previews the notion of an anonymous function you will learn more about  
in Section 3.10), and retrieving two specific characteristics for each speaker (lines  
4 and 5):
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>·xpathSApply(H00.file,·"//person")¶
>·xpathSApply(H00.file,·"//person",·xmlAttrs)¶
>·xpathSApply(H00.file,·"//person",·function(x)·names(xmlAttrs(x)))¶
>·xpathSApply(H00.file,·"//person",·xmlGetAttr,·"sex")¶
>·xpathSApply(H00.file,·"//person",·xmlGetAttr,·"dialect")¶

The next few lines should be similarly obvious: They apply the logic of logical expressions in 
xpathSApply applied above to sentences, words, etc. now to the person tag in the header: 
the following lines retrieve all the attributes of the (one and only) male speaker (line 1),  
his “id” attribute which is the code all his utterance tags will use in the who-attribute (line 
2), and the data value of this tag, which here turns out to be his name, “Ken” (line 3):

>·xpathSApply(H00.file,·"//person[@sex·=·'m']",·xmlAttrs)¶
>·xpathSApply(H00.file,·"//person[@sex·=·'m']",·xmlGetAttr,·"id")¶
>·xpathSApply(H00.file,·"//person[@sex·=·'m']",·xmlValue)¶

Note that you can unfortunately not expect complete consistency in the data all the time: 
If you tweak the above line to retrieve data for the female speakers (by replacing =‘m’  
with =‘f’), then you will see that xmlValue does not return the female speakers’ names but 
their occupation.

Figure 3.12 The teiHeader/profileDesc part of <corp_H00.xml>.
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Once you know the male speaker’s id, it is easy to retrieve what he said in sentences 
(line 1) or in words (line 2):

>·xpathSApply(H00.file,·"/bncDoc/stext/u[@who·=·'PS2AD']/s",· 
xmlValue)¶

>·xpathSApply(H00.file,·"/bncDoc/stext/u[@who·=·'PS2AD']//w",· 
xmlValue)¶

and we can combine this kind of query with everything we discussed above to, for instance, 
find out which inflectional forms of the verb lemma work the male speaker uses:

>·xpathSApply(H00.file,·"//u[@who·=·'PS2AD']//w[@pos·=·'VERB'·and· 
@hw·=·'work']",·xmlValue)¶

[1]·"working·"·"working·"

Let me finally mention that XPath also allows you to exploit more features of the hier-
archical tree that an XML file represents. First, you can use so-called XPath axes which 
define the relationships between different nodes in an XML tree using kinship and order-
ing terms such as ancestor, child, sibling, or parent on the one hand and preceding and 
following on the other. Thus, the following line retrieves from H00.file the utterances 
by the speaker with the id “PS2AD”, specifically sentence 162, looks for words whose 
POS tag is “VERB” and whose lemma is “work”, and then recovers the data values of 
the preceding words (which are siblings of work by virtue of being in the same sentence):

>·xpathSApply(H00.file,·"//u[@who·=·'PS2AD']/s[@n·=·'162']/ 
w[@pos·=·'VERB'·and·@hw·=·'work']/ 
preceding-sibling::w",·xmlValue)¶

See the code file for another similar example. Along the same lines, the next example does 
something similar but does not retrieve data values, but values of an attribute, namely 
lemma annotation. Specifically, it retrieves from H00.file the utterances by the speaker 
with the id “PS2AD”, looks for words whose POS tag is “VERB” and whose lemma 
is “work”, and then recovers the hw attributes (i.e., lemmas) of the next preposition(s) 
(which, too, are siblings of work by virtue of being in the same sentence):

>·xpathSApply(H00.file,·"//u[@who·=·'PS2AD']// 
w[@pos·=·'VERB'· 
and·@hw·=·'work']/following-sibling::w[@pos·=·'PREP']",· 
xmlGetAttr,·"hw")¶

Second, XPath allows you to use so-called predicates to utilize numerical and textual 
characteristics of the data for your searches. Such predicates work similarly to the logi-
cal expressions you already know from above (e.g., “u[@who = ‘PS2AD’]”) by stating a 
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condition and selecting those data values or attributes etc. for which the condition is true. 
Space does not permit an exhaustive discussion of everything XPath has to offer, so a few 
examples of predicates, whose names make it very obvious what they do, shall suffice. 
The next two lines, for example, return all words that have more than six characters, 
which may include spaces (line 1) and all words beginning with the character “q” (line 2):

>·xpathSApply(H00.file,·"//w[string-length()>6]",·xmlValue)¶
>·xpathSApply(H00.file,·"//w[starts-with(text(),·'q')]",· 

xmlValue)¶

The next two lines return all sentences that contain a word beginning with a “q” (line 1) 
and their sentence numbers in the file (line 2):

>·xpathSApply(H00.file,·"//w[starts-with(text(),·'q')]/ 
parent::s",·xmlValue)¶

>·xpathSApply(H00.file,·"//w[starts-with(text(),·'q')]/ 
parent::s",·xmlGetAttr,·"n")¶

Finally, the next two lines retrieve all sentences beginning with “Was” (line 1) and all 
words beginning with “w” in sentences beginning with “Was” (line 2):

>·xpathSApply(H00.file,·"//w[starts-with(text(),·'Was')]/ 
parent::s",·xmlValue)¶

>·xpathSApply(H00.file,·"//w[starts-with(text(),·'Was')]/ 
parent::s/w[starts-with(text(),·'w')]",·xmlValue)¶

Again, I hope it becomes obvious why having even only the most basic knowledge of 
XPath and how to use it in R is a good thing for any corpus linguist. Let me finally very 
briefly mention the package xml2, which is useful to avoid the XML package’s memory 
leak on Windows. With that package, you can load an XML file as follows:

>·library(xml2)¶
>·(D94.file<-read_xml(file.choose()))¶

You can then access some information regarding the structure and parts of this object 
using the following set of functions:

>·xml_structure(D94.file)¶
>·xml_children(D94.file)¶
>·xml_name(D94.file)¶
>·xml_text(D94.file,·trim=TRUE)¶
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but for our purposes the most important function is xml_find_all, which does what you 
might expect: It finds all elements of a particular type/hierarchy level, which means we can 
easily retrieve all sentences (line 1) or all words (line 2):

>·xml_find_all(D94.file,·".//s")¶
>·xml_find_all(D94.file,·".//w")¶

We can also very easily convert these results into character vectors that we can then handle 
with regular expressions. The following line retrieves all adjectives:

>·exact.matches.2("(?<=\"ADJ\">).*?(?=·?<)",· 
as.character(xml_find_all(D94.file,·".//w")), 
gen.conc.output=FALSE)[[1]]¶

Recommendations for further study/exploration

 • On how to convert XML data structures into lists and data frames: ?xml 
ToDataFrame and ?xmlToList¶.

 • On using R to process XML data: Nolan & Temple Lang (2014) and Munzert, 
Rubba, Meißner, & Nyhuis (2015, in particular chs. 3–4).

The next section introduces a few functions to handle files and folders; some of these will 
do things you usually perform using parts of your operating system such as Explorer in 
MS Windows.

3.9 File and Directory Operations

You have already encountered one of the most important functions. On all three major 
kinds of operating systems, Windows, Mac OS X, and Linux, you can use the function 
file.choose to interactively choose one file in a file manager window. On Windows, the 
additional function choose.files allows you to interactively choose one or more files for 
either reading or writing (or to create one new one); on Mac OS X and Linux, this function 
is unfortunately not available, but there is a bit of a workaround based on the package 
rChoiceDialogs, which requires the package rJava and which you can load as follows:

>·library(rChoiceDialogs)¶

This package provides a useful function called rchoose.files, which allows you to 
interactively choose multiple (already existing!) files and returns the paths of the files you 
chose as a character vector (which you can then loop over, for instance, to load each file 
with scan).
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Other important functions have to do with directories. First, the package rChoiceDia-
logs again provides a useful function called rchoose.dir, which allows you to interactively 
choose an existing directory (and on Windows even to create a new one). Then, you 
need to know a bit about R’s working directory, i.e., the directory that is accessed if no 
other directory is provided in a given function. By default, i.e., if you haven’t changed R’s 
default settings, then this is either R’s installation directory, the logged-in user’s main data 
directory, or, if you use RStudio and double-clicked on an R script file (< . . . .r>), then 
it’s the directory that file is located in; most of the time while you’re working through this 
book, it should therefore be <_qclwr2/_scripts>, which is what some output operations in 
Chapter 5 assume. You can easily find out what the current working directory is by using 
getwd without any arguments at the prompt:

>·getwd()¶
[1]·"home/stgries/_qclwr2/_scripts"

If you want to change the working directory at the console, you use setwd and provide 
as the only argument a character string with the new working directory (either manually 
or again with rchoose.dir()). Note that when you do this in RStudio on Windows, the 
Explorer window sometimes doesn’t come to the foreground so you may have to Alt-Tab 
your way to it (or find it in the taskbar).

>·setwd(rchoose.dir())¶
>·getwd()¶

If you now want to find out which files are in your working directory, you can use dir. 
The default settings of dir are:

dir(path=".",·pattern=NULL,·all.files=FALSE,·full.names=FALSE,· 
recursive=FALSE)

The first one specifies the directory whose contents are to be listed; if no argument is pro-
vided, the current working directory is used. The second argument is an optional regular 
expression with which you can restrict the output. If, for example, you have all 4,049 files 
of the BNC World Edition (the XML version) in one directory, but you only want those 
file names starting with “D”, this is how you could proceed:

>·dir(rchoose.dir(),·pattern="^D")¶

The default setting of the third argument returns only visible files; if you change it to TRUE, 
you would also get to see all hidden files. The default setting of the fourth argument only 
outputs the names of the files and folder without the path of the directory you are search-
ing. If you set this argument to TRUE, you will get the complete path for every file and 
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folder, which is usually recommended. By the way, the function basename does exactly 
the opposite: It cuts off all the path information.

>·basename("/_qclwr2/bestbookever.txt")¶
[1]·"bestbookever.txt"

Finally, the default setting recursive=FALSE only returns the content of the  
current directory, but if you set this to TRUE, the contents of all subdirectories will also 
be returned. This is of course useful if your corpus files come in a particular directory 
structure. For example, you can use the following line in a script to prompt the user  
to input a directory and then store the names of all files in this directory and all its 
subdirectories into one vector called corpus.files, and we will do just that very often 
in Chapter 5:

>·corpus.files<-dir(rchoose.dir(),·recursive=TRUE,·full. 
names=TRUE)¶

Apart from the number of files in a directory and their names, however, you can also 
retrieve much more useful information using R. The function file.info takes as input a 
vector of file names and outputs whether something is a file or a directory, the sizes of the 
files, the file permissions, and dates/times of file modification, creation, and last access. 
Thus, the easiest and most comprehensive way to take a detailed look at your working 
directory is therefore:

>·file.info(dir())¶

There are some other file management functions, which are all rather self-explanatory; I 
will only provide some of the options here and advise you to explore the documentation 
for more details:

 • file.create(x) creates the file(s) in the character vector x;
 • dir.create(x) creates the directory that is provided as a character string either 

as a directory in your working directory or as a relative or rooted directory; thus, 
dir.create("temp") will create a directory called “temp” in your current working 
directory and dir.create("../temp") will create a directory called “temp” one 
directory above your current working directory;

 • unlink(x) deletes the files/directories in the character vector x; file.remove(x) can 
only delete files;

 • file.exists(x) checks whether the file(s) in the character vector x exist(s) or not;
 • download.file(x,·...) downloads the website at the URL x (e.g., <http:// . . . >) 

into the file . . . specified).

Sometimes, you need to use a data structure, such as a data frame or a list, again and 
again; as such, you want to save it into a file. While you can always save data frames as 
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tab-delimited text files with write.table, which are easy to use with other software, 
sometimes your files may be too large to be opened with other software (in particular 
spreadsheet software such as Microsoft Excel or LibreOffice Calc). The option of using 
raw text files may also not be easily available with lists. Finally, you may want to save disk 
space and not only save your data, but also compress them at the same time. In such cases, 
you may want to use save. In its simplest syntax, which is the only one we will deal with 
here (see the documentation for more detailed coverage), you can save any object into a 
binary compressed file, which will usually be much smaller than the corresponding text 
file and which, if you gave it the extension “.RData”, makes your data available to a new 
R/RStudio session upon a simple double-click. As an example, consider a data frame aa 
with the following structure (details such as factor levels etc. are omitted):

'data.frame':···57437·obs.·of··12·variables:
·$·PERSON···:·Factor·w/·12·levels·...
·$·PERSON2··:·Factor·w/·2·levels·...
·$·FILE_ID··:·num·...
·$·FILE_LINE:·int·...
·$·VERB·····:·Factor·w/·6754·levels·...
·$·LEMMAS···:·Factor·w/·2451·levels·...
·$·VERBTAG··:·Factor·w/·40·levels·...
·$·ASPECT···:·Factor·w/·2·levels·...
·$·ASPECT2··:·Factor·w/·2·levels·...
·$·TENSE····:·Factor·w/·2·levels·...
·$·TENSES1··:·Factor·w/·2·levels·...
·$·TENSES2··:·Factor·w/·3·levels·...

This data frame was loaded from a tab-delimited text file with a size of 5.45 MB 
(5,721,842 bytes). The following function call would save this file into a user-specified 
file, which should have the extension. RData (e.g., <aa.RData>) with a size of 579 KB 
(593,822 bytes) that, if double-clicked, opens a new instance of R and makes the data 
available instantly:

save(aa,·file="aa.RData")¶

If you have saved the data structure as an .RData file and want to open it in a new R  
session, you can just as well use load to access your data again:

load(file=file.choose())¶

You will be prompted to choose a file, and then the data structure(s) will be available (type 
ls()¶ at the console to get a listing of all objects in your current workspace). Also, you 
can just save your whole R workspace, not just one data structure, into a user-definable 
file with save.image, which is useful to store intermediate results for later processing into 
an. RData file. This file can either be loaded from within R, or you can just double-click 
on them to open R and restore your workspace.
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Let me finally mention how you would go about saving graphs generated in R. There 
are two possibilities. The first is to generate the graph in RStudio with whatever code 
is needed and save it by clicking the Export button in the relevant RStudio Plots pane, 
then click Save as Image . . . , choose a file format (I usually use .png), define the width 
and height of the plot in pixels or by drag-and-drop graph boundaries, and save it into 
the desired output file. The second is more flexible and does this with code: First, open a 
graphics device for the desired output format with the indicated dimensions in pixels (line 
1), plot the file into that graphics device (line 2), and then close that device (line 3), as in 
this example:

>·png(filename="03-9_graph.png",·width=600,·height=600)¶
>····plot(1:10,·1:10,·type="b")¶
>·dev.off()¶

You can now open the file with an image viewer (e.g., GIMP) and look at it.

Recommendations for further study/exploration

 • On how to read tab-delimited text files: ?read.csv¶.
 • On how to produce text representations of objects into files: ?dump¶ and ?dput¶.
 • On how to divert output to a file instead of the screen/console: ?sink¶.
 • On how to handle compressed files: ?bzfile¶ and ?gzfile¶.

3.10 Writing Your Own Functions and Some Final Recommendations

The fact that R is not just a statistics software but a full-fledged programming language 
means you are not limited by the functions that already exist in R or in any package that 
you may install – you can fairly easily write your own functions to facilitate and/or auto-
mate tedious and/or frequent tasks. In this section I will give a few very small examples 
of the logic of how to write your own functions, which is something that will become 
extremely useful when we turn to the case studies in Chapter 5.

Let’s imagine a scenario in which we want to generate a frequency table of a vector, 
which we would normally do with table, but we do not want the table sorted alphabeti-
cally (table’s default) or by frequency (which we would do with sort(table(...)) – we 
want our table to be sorted by the order of occurrence in the input vector. Let’s quickly 
generate a vector that contains a random sample of the first ten letters of the alphabet  
(see again ?letters¶):

>·rm(list=ls(all=TRUE));·set.seed(1)¶
>·qwe<-sample(letters[1:10],·100,·replace=TRUE)¶
>·head(qwe,·20)¶
[1]·"c"·"d"·"f"·"j"·"c"·"i"·"j"·"g"·"g"·"a"·"c"·"b"·"g"·"d"·"h"· 

"e"·"h"·"j"·"d"·"h"
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That means we want our frequency list to first give the frequency of the letter “c”, then 
that of “d”, then “f”, then “j”, then “i” (because “c” is already covered), etc. The easiest 
way to write a function consists of the following three steps:

1 You write the code that you would use if you didn’t write a function (i.e., as we have 
always done so far).

2 You determine which of the data structures you are using in your code are required 
for the code/function to work.

3 You wrap a function definition around your code and (1) make sure that the func-
tion definition requests or defines the required data structures (and any others you  
may want to add) and (2) use names that are general and useful enough to cover  
all applications you have in mind for this function (this is only for readability/ 
interpretability later).

We begin with step 1. If we have a vector qwe of which we want a frequency list, but  
one sorted in a particular way, then we should probably first generate a default  
frequency list:

>·(asd<-table(qwe))¶
qwe
·a··b··c··d··e··f··g··h··i··j
·7··6·11·14·14··5·11·15·11··6

But now we want to have this output ordered as mentioned above. That means we need 
to find for each letter that is actually attested in qwe – i.e., the names of the frequencies 
in asd – at what position it shows up in qwe for the first time. This formulation should 
remind you of the function match, which, to quote from above, “match returns a vector 
of the positions of (first!) matches of its initial argument in its second”:

>·match(names(asd),·qwe)¶
·[1]·10·12··1··2·16··3··8·15··6··4

That means the letter “a” (the first name of asd) shows up in position 10 of qwe;  
the letter “b” (the second name of asd) shows up in position 12 of qwe, and, crucially, 
the letter “c” (the third name of asd) shows up in position 1 of qwe, etc. That in  
turn means two things: (1) we want the above output reordered so that the 1  
(for “c”) comes first, the 2 (for “d”) comes second etc.; and (2) once we have 
that ordering of these numbers, we can then apply these numbers to re-order asd.  
Hence for (1):

>·order(match(names(asd),·qwe))¶
#·[1]··3··4··6·10··9··7··1··2··8··5
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And from that, we can do (2), which is our desired outcome:

>·asd[order(match(names(asd),·qwe))]¶
qwe
·c··d··f··j··i··g··a··b··h··e
11·14··5··6·11·11··7··6·15·14

Now that we have completed step 1 of writing a function, we now turn to step 2 and look 
at all the code we wrote and determine which data structures are minimally required for 
this whole thing to work. It turns out the only data structure required is the input vector, 
which above was called qwe, and this is because there is only one other data structure we 
use, which is asd, but asd can be derived from qwe. Thus, we now can turn to step 3: We 
take all the code we wrote, but wrap it into a function definition (let’s assume we want to 
call our function table.1stocc, for table sorted by first occurrence), ensure that the user 
is forced to provide an input vector, and use more revealing names than qwe, asd, and the 
like. In the code below, I assign what we would like the function to output – the sorted 
frequency table – to an object called output, which then, by ending the function definition 
with return(output), is returned as the result of the function:

>·table.1stocc<-function(input.vector)·{¶
+····freq.table<-table(input.vector)¶
+····output<-freq.table[order(match(names(freq.table),· 

input.vector))]¶
+····return(output)¶
+·}¶

Now we can test our new function by giving it qwe as an argument. The function then 
maps qwe onto the function-internal more usefully named input.vector and executes 
everything without problems. If you save this little bit of code now, the function defini-
tion, then you never have to worry about how to do this again: If this task ever comes up 
(again), just remember you have this function, problem solved:

>·table.1stocc(qwe)¶
input.vector
·c··d··f··j··i··g··a··b··h··e
11·14··5··6·11·11··7··6·15·14

Let us briefly discuss one other interesting application, namely a function that we will 
use a lot in the scripts in Chapter 5, a function we will call just.matches. Let us first  
re-generate the example vector txt from above:

>·txt<-c("This·is·a·first·example·sentence.",
·········"And·this·is·a·second·example·sentence.")¶
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Let’s assume we want to find all words that end in “is”; this is how we would use reg-
matches and gregexpr for this when we want the result in a vector:

>·unlist(regmatches(txt,·gregexpr("\\w*is\\b",·txt,·perl=TRUE)))¶
[1]·"This"·"is"···"this"·"is"

Since finding exact matches like this (and maybe vectorizing them) is definitely a very fre-
quent task for a corpus linguist, it would be nice if this could be done shorter and without 
having to repeat the argument txt twice. Thus, we could write a function just.matches 
that does this for us, and here’s one way to go about this:

>·just.matches<-function(search.expression,·corpus,·pcre=TRUE,· 
vectorize=TRUE,·...)·{¶

+····output<-regmatches(corpus,¶
+·······gregexpr(search.expression,·corpus,·perl=pcre),...)¶
+····if(vectorize)·{·output<-unlist(output)·}¶
+····return(output)¶
+·}¶

The first line defines a function just.matches, but also specifies that it requires at least 
two arguments – the search expression and the input/corpus vector. However, the function 
definition also states that an additional argument pcre is by default – i.e, unless otherwise 
specified by the user – set to TRUE, as is another additional argument vectorize. That is, 
if the user does not change these settings, these are used by R when this function is run. 
Finally, there is an ellipsis at the end of the function definition, which stands for “what-
ever other arguments a user might want to provide to a certain location in the body of the 
function, where the ellipsis is taken up again”.

The body of the function then defines an object output using nearly the exact 
same code we used manually before, but (1) it sets gregepxr’s perl argument to the 
value of pcre that is defined when just.matches is called (i.e., by default to TRUE);  
(2) it uses the value of vectorize to decide whether the user receives a vector (the default) 
or a list; and (3) it passes any arguments the user may have provided to just.matches 
on to the regmatches function, which means we can, for example, use invert in  
our function:

>·just.matches("\\w*is\\b",·txt)¶
[1]·"This"·"is"···"this"·"is"
>·just.matches("\\bexample\\b",·txt,·invert=TRUE)¶
[1]·"This·is·a·first·"······"·sentence."············"And·this·is·a· 

second·"·"·sentence."

(Of course, the former at least could also be done with the function I provide, exact.
matches.2, which could also be tweaked to accept invert as well – if I ever needed 
that functionality, I might update exact.matches.2 accordingly.) I hope you can see 
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by now how useful it can be to recognize that some task will be repeated a lot so it 
may be more efficient to define a function for it, which usually not only speeds up the 
process considerably, but also makes your code easier to read for you; we will use this  
function a lot of times in the case studies below – sometimes I will use exact. 
matches.2, sometimes just.matches, and sometimes both (to show how they would 
yield the same results).

You should now do “Exercise box 3.10: Writing your own functions.”

The penultimate recommendation of this chapter is concerned with the very use-
ful notion of so-called anonymous, or inline, functions. These are functions that are  
(1) defined as above but not given a name and (2) used as they are being defined, i.e., 
they are defined in the very same line in which they are applied. This can be extremely 
useful for doing small tasks for which no ready-made function is available. Let’s con-
sider an example: We want to find out for each sentence in a corpus how many unique 
words, how many types, it contains. The following two lines create a ‘corpus’ called qwe 
and split it up into ‘words’:

>·qwe<-c("a·b·c·d·e·f·g·f·e·d·c·b·a",·"m·n·o·m·n·o·m·n·o")¶
>·words<-strsplit(txt,·"\\W+",·perl=TRUE)¶

We would now want to use sapply to access each element of words and count the number 
of word types. But there is no function to count the number of unique word types –  
there is only a function to count the number of tokens, which is length. Thus, we can do 
the following but it doesn’t give us what we want:

>·sapply(words,·length)¶
[1]·13··9

In other words, we are applying length to each element of words, but what we need is 
to apply length to the result of applying unique to each element of words, but there is 
no function for length(unique(...)). We could just solve this ad hoc by using the fol-
lowing bit of code:

>·sapply(sapply(words,·unique),·length)¶
[1]·7·3

It works, but for didactic purposes we want to talk about how to solve this with a function 
or, more importantly, an anonymous/inline function. Thus, we could define a function for 
that like we did above (return is not used here because it’s not strictly speaking necessary –  
the function will automatically return the last-assigned object):
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>·types<-function(some.vector)·{¶
+····length(unique(some.vector))¶
+·}¶
>·sapply(words,·types)¶
[1]·7·3

Or, because this may seem like overkill, we do the following, namely put the body of our 
definition of types into the second argument slot of sapply directly. In the following line, 
we apply to the elements of words a nameless (hence anonymous) function that requires 
one argument that is internally called x and to which R applies length(unique(x)); 
note that you of course don’t have to use x – you can use any name, but just like with 
regular functions above, whatever name you use must be the one that is in the ... slot of 
length(unique(...)). This way, we avoid having to define a function and just do the 
definition and application of the function in one line (hence inline). Note that the x in the 
function definition is not available outside of the function, which means it doesn’t matter 
if there is or isn’t an object called x before you run the line below, and it means that after 
you run the line below there is still no object called x. x is used for the duration of the 
anonymous function only and does not get retained in your general workspace.

>·sapply(words,·function(x)·length(unique(x)))¶
[1]·7·3

Anonymous functions can sometimes be very useful and we will use them on occasion.
Finally, most of this book uses only the functionality from base R so as to minimize users’ 

dependence on functions in additional packages, which may introduce changes that are not 
backwards-compatible more often than base R will. However, one of the few exceptions I 
want to make to this practice involves an extremely useful operator from the package dplyr 
(https://github.com/hadley/dplyr), which is written as %>%. This operator can make code 
much more readable, in particular when your code involves a lot of nested functions.

>·library(dplyr)¶

Remember how we generated just the exact matches with our ‘normal’ R code? We did it 
like this (or see the more heavily commented version using several lines and indentation 
in the code file):

>·unlist(regmatches(txt,·gregexpr("\\w*is\\b",·txt,·perl=TRUE)))¶
[1]·"This"·"is"···"this"·"is"

The ‘annoying’ thing about this is that, if you want to understand what the code does, 
you have to process it from the inside out: The first thing that is done is the gregexpr 
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search, the result of which is then passed outside to regmatches, the result of which is 
then passed outside to unlist – not exactly intuitive, and this example involves just one 
short line and two nested function calls. The operator %>% can simplify this by making 
the order in which you write functions in the code the same as the order in which they 
are executed. Here is a very simple example, which you can read as ‘take txt and to it 
apply nchar’:

>·txt·%>%·nchar¶
[1]·33·38

This is the same as nchar(txt)¶: The function nchar requires one argument and the %>% 
operator takes its left-hand side (lhs, the vector txt) and makes it the first argument of 
its right-hand side (rhs, the function nchar). Now what if the lhs is not the first argument 
of the rhs? Then you can use a period to indicate where in the rhs the lhs should be, as 
in the following example, where we make txt the second argument in the call of just.
matches. So this should be read as “take txt and give it to just.matches (as the second 
argument) to look for “\\w*is\\b” in it”:

>·txt·%>%·just.matches("\\w*is\\b",·.)¶
[1]·"This"·"is"···"this"·"is"

So how does this apply to the above line returning just the matches? The following is read 
as “take txt, make it the thing to be searched by gregexpr (i.e., gregexpr’s second argu-
ment), take the result from gregexpr and make it the second (match data) argument of 
regmatches, take the result from that and unlist it”:

>·txt····································%>%·#·take·txt¶
+····gregexpr("\\w*is\\b",·.,·perl=TRUE)·%>%·#·find·"\\w*is\\b"¶
+····regmatches(txt,·.)··················%>%·#·give·to·regmatches¶
+····unlist··································#·and·unlist¶
[1]·"This"·"is"···"this"·"is"

While this is of course not as reader-friendly and concise as if you already have a function 
just.matches, it is much more reader-friendly than the previous code version with the 
multiple embedding, because you read it from top to bottom, which is the order in which 
things are done, rather than having to read code from the inside out (rather than the usual 
left-to-right). Thus, check the code file for how sleek a definition of this table.1stocc 
this operator allows you to write. This operator takes a bit of getting used to and to make 
good use of it you have to remember that operators such as subsetting or subtracting 
can be written as functions (namely “[” and “-”) etc., but it is such a useful alterna-
tive to multiple embeddings that several of the case studies in Chapter 5 will provide the  
traditional code, but also the %>% alternative.
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Notes
1 If you let R output vectors to the screen that unlike the above are so long that they cannot be 

shown in one row anymore, R will use as many lines as necessary to represent all elements of the 
vector, and each line will start with the number (in square brackets) of the first element of the vec-
tor that is given in each line. Try it out: enter 1:100¶ at the prompt.

2 This is actually a generally important concept: R shows missing or unavailable data as NA. Since 
this may happen for many different reasons, let me mention two aspects relevant in the present 
context. First, you can check whether (some elements of) something is/are not available using the 
function is.na which takes the element to be tested as its argument. For example, if the vector 
a consists only of the number 2, then is.na(a) gives FALSE (because there is something, the  
number 2), but is.na(a[2])·gives TRUE, because there is no second element in a. Second, many 
functions have default settings for how to deal with NA, which is why the unexpected behavior of 
a function can often be explained by checking whether NA’s distort the results. To determine the 
default behavior of functions regarding NA, check their documentation.

3 The issue of how paragraph breaks are represented in files is actually more problematic than it 
might appear at first sight. Different operating systems mark paragraph breaks in text-processing 
software differently: Microsoft Windows uses a carriage return (CR) and a line feed (LF). In many 
programming languages, text editors, and also in R, the former is represented as “\r” while the 
latter – often also referred to as newline – is represented as “\n”. Unfortunately, other operating 
systems use different characters to represent what for the user is a paragraph break: Linux/Unix 
systems, for instance, use only LF. In order to avoid errors with regular expressions, it is often 
useful to look at the file in a text editor that displays all control characters to determine which 
paragraph mark is actually used.

4 In a language with many-to-many correspondence of spelling and pronunciation such as English, 
this can of course only be a heuristic. However, this regular expression would certainly narrow 
down the search space considerably, and when applied to languages such as Spanish or to pho-
netic transcription, which could in fact be assigned to a text given a database such as CELEX, the 
regular expression below could do the trick.

5 The hexadecimal system is a numerical system that has 16 as its base (unlike the familiar decimal 
system, which of course has base 10). Instead of the ten numbers 0 to 9 that the decimal system 
uses, the hexadecimal system uses 16 distinct characters, 0–9 and a–f (or A–F). Thus, the deci-
mal number 8 is also 8 in the hexadecimal system, the decimal number 15 is hexadecimal F, the 
decimal number 23 is hexadecimal 17 (namely 1 × 16 + 7 × 1), and the decimal number 1970 is 
hexadecimal 7B2 (namely 7 × 256 + 11 × 16 + 2 × 1).
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4 Some Basic Statistical Notions and Tests

[I]t seems to me that future research should deal with frequencies in a much more empirically  
sound and statistical professional way. . . . In the long run, linguistic theorising without a 
firm grip on statistical methods will lead corpus linguistics into a dead-end street.

(Mukherjee 2007:140f.)

Corpus linguistics is a discipline which is based on distributional data: ‘things’ – words, 
morphemes, semantic features – occur in corpora or not, they co-occur with other things 
or they do not, their frequencies of occurrence or co-occurrence are proportional to those 
of other ‘things’ or not, etc. Thus and as mentioned in Section 2.1, all one really obtains 
from corpora are frequencies of occurrence and co-occurrence. This has two important 
corollaries, the first of which was also mentioned above: Whatever a corpus linguist is 
interested in needs to be operationalized and interpreted in terms of frequencies. The  
second is just as important: If you have frequencies and other distributional data, then you 
need to employ the tools of the discipline that is concerned with frequencies and distribu-
tions, which is statistics. Thankfully, over the past ten or so years, corpus linguistics has 
evolved considerably in terms of the statistical tools that are being used, but (1) the obvi-
ous fact that a corpus linguist needs statistical expertise is still not as widely accepted as 
it should be – scholars in many other disciplines that deal with much more well-behaved 
data (i.e., smaller and more balanced data sets) have accepted their statistical needs much 
longer ago; and (2) while more statistical methods are used these days, they are often 
applied and/or reported on incorrectly. While I cannot provide a full-fledged introduc-
tion to statistics for (corpus) linguists in this book – for that, see Gries (2013), which, as 
mentioned above, is to some extent a companion volume of this one – in this chapter I will 
introduce some of the absolute basics of statistical thinking, analysis, and visualization 
that can aid corpus-linguistic research.

4.1 Introduction to Statistical Thinking

Before we begin to actually explore ways corpus data can be analyzed statistically with 
R, we need to cover a few basic statistical concepts. The first concept is that of a vari-
able. A variable is a symbol of a set of values or levels characterizing an entity figuring 
in an investigation; in the remainder of this chapter, variables will be printed in small 
caps. For example, if you investigate the lengths of subjects (by counting their lengths  
in words), then we can say the subject of The man went to work gets a value of 2  
for the variable Length. There are two ways in which variables must be distinguished:  
in terms of the role they play in an analysis and in terms of their information value, or 
level of measurement.
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4.1.1 Variables and Their Roles in an Analysis

You will need to distinguish between dependent and independent variables. Dependent 
variables are the variables whose behavior/distribution you investigate or wish to explain; 
independent variables are the variables whose behavior/distribution you think correlates 
with what happens in the dependent variables. Thus, independent variables are often, but 
not necessarily, the causes for what’s happening with dependent variables.1

4.1.2 Variables and Their Information Value

In this brief chapter we will distinguish only two classes of variables. The variable class 
with the lower information value of the two is that of categorical variables. If two enti-
ties A and B have different values/levels on a categorical variable, this means that A and 
B belong to different classes of entities. For example, you can code the two NPs the book 
and a table with respect to the variable Definiteness as definite and indefinite respec-
tively, and the fact that the two NPs receive different levels on this variable means that, 
with regard to Definiteness, they are different. Other examples for categorical variables 
(and their possible levels) are

 • phonological variables: Stress (stressed vs. unstressed), StressPosition (stress on 
first syllable vs. stress on second syllable vs. stress elsewhere);

 • syntactic variables: NP-type (lexical vs. pronominal), Construction (V NP PP vs. 
V NP NP);

 • semantic variables: Animacy (animate vs. inanimate), Concreteness (concrete vs. 
abstract), LexicalAspect (activity vs. accomplishment vs. achievement vs. state).

Given what you read in Section 3.3, you will not be surprised to read that categorical varia-
bles of this kind are usually stored as factors in R, and maybe sometimes as character vectors.

The other variable class to be distinguished here is that of numeric variables. For 
example, the syllabic length of an NP is a numeric variable; other examples are pitch fre-
quencies in hertz, word frequencies in a corpus, number of clauses between two successive 
occurrences of two ditransitives in a corpus file, and the reaction time toward a stimulus 
in milliseconds. Again, given what you have read in Chapter 3, you will correctly expect 
that such variables are stored as numeric vectors in R.

This classification of variables in terms of their role in an analysis and their information 
value will be important to choose the right statistical technique for the evaluation of data 
because not every statistical technique can be applied to every kind of variable.

4.1.3 Hypotheses: Formulation and Operationalization

One of the most central notions in statistical analysis is that of a hypothesis. The term 
hypothesis is used here in a somewhat stricter sense than in the everyday sense of “assump-
tion”. Following Bortz (2005: 1–14), in what follows, hypothesis refers to

 • a statement characterizing more than a singular state of affairs;
 • a statement that has at least implicitly the structure of a conditional sentence (with 

if . . . , then . . . or the more/less . . . , the more/less . . . );
 • the hypothesis must be potentially falsifiable. 

While the first criterion needs no additional explanation, the second criterion requires a 
little elaboration. The logic behind this criterion is that, while hypotheses typically have 
one of the above syntactic forms, they need not. All that is required is that the statement 
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can be transformed into a conditional sentence. For example, the statement On average, 
English subjects are shorter than English objects does not explicitly instantiate a condi-
tional sentence, but it can be transformed into one: If a constituent is an English subject, 
it is on average shorter than a constituent that is an English object. Or, for example, 
the statement More frequent words have more senses than less frequent words does not 
explicitly instantiate a conditional sentence, but it can be transformed into one: The more 
frequent a word is, the more senses it has.

The third criterion should also briefly be commented on. It means that there must be 
conceivable states of affairs that show the hypothesis to be false. Thus, Drinking alcohol 
may influence the reaction times of subjects in an experiment is not a hypothesis in this 
sense because may influence basically means “may influence or may not”, so every result 
of an experiment – an influence or a lack of it – is compatible with the hypothesis. Note 
that this criterion does not mean that the falsifying state of affairs is ever observed – it 
really only means that one can imagine it so that, if it ever were to happen, one could 
recognize it (by virtue of the similarity to the imagined outcome).

Above, hypotheses were characterized as invoking the notion of conditionality. This char-
acterization reiterates the first central distinction of variables, that between independent and 
dependent variables. Simplistically speaking, independent variables are variables that are men-
tioned in the if-clause or the first the more/less clause, while dependent variables are variables 
mentioned in the then-clause or the second the more/less clause. It is important to understand, 
however, that there are two parameters according to which hypotheses are classified.

The first parameter refers to the contrast between the so-called alternative hypothesis 
(abbreviated as H1) and the so-called null hypothesis (abbreviated as H0). Usually, the 
former is a hypothesis that,

 • if you look at just one dependent variable, states that the values/levels of the depend-
ent variable do not follow a random distribution of the investigated entities (or some 
other expected distribution such as the normal distribution or a uniform distribution);

 • if you look at dependent and independent variables, states that the values/levels of 
the dependent variable vary non-trivially as a function of the values/levels of the inde-
pendent variable(s).

For example, On average, English subjects are shorter than English objects would be an 
alternative hypothesis because it states that some non-trivial part of the variation you find in 
the lengths of XPs is due to the fact that the XPs instantiate different grammatical relations, 
namely subjects and direct objects. H0, by contrast, is the logical counterpart of H1 that,

 • if you look at just one dependent variable, states that the values/levels of the depend-
ent variable are randomly distributed or do not vary quasi-systematically from some 
specified distribution (such as the normal or the binomial distribution);

 • if you look at dependent and independent variables, states that the values/levels of the 
dependent variable do not vary non-trivially as a function of the values/levels of the 
independent variable(s).

You can often form a H0 by inserting not into H1 (that is, On average, English subjects 
are not shorter than English objects), but typically H0 states there is no effect (that is, On 
average, English subjects and English objects do not differ in their lengths or On average, 
English subjects and English objects are equally long).

The second parameter is concerned with the language of the hypothesis, so to speak. 
Both the H1 and H0 come in two forms. The first of these is the one you have already seen, 
a text form in natural human language. The other form is its ‘translation’ into a statistical  
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form in mathematical language, which brings me to the issue of operationalization, the 
process of deciding how the variables in your text hypotheses shall be investigated. In other 
words, you answer two interrelated questions. First, “What will I perceive when we per-
form our study and observe the values/levels of the variables involved?” Second, “Which 
mathematical concept will I use – counts/frequencies, averages, dispersions, or correlations –  
when I couch my hypothesis into numeric terms?” This is necessary because, often, the 
formulation of the hypotheses in text form leaves open what exactly will be counted, meas-
ured, etc. and how. In the above case, for example, it is not yet clear how you will know 
whether a particular subject is longer than a particular direct object:

(1) The younger bachelors ate the nice little parrot.

With regard to the question of subject and object lengths, this sentence can support either 
H1 or H0, depending on how you operationalize the variable Length. If you operationalize 
Length as “number of morphemes”, the subject gets a value of 5 (The, young, comparative 
-er, bachelor, plural s) and the direct object gets a value of 4 (the, nice, little, parrot). On the 
other hand, if you operationalize Length as number of words, the subject and the object get 
values of 3 and 4 respectively. Finally, if you operationalize Length as “number of letters 
(without spaces)”, both subject and object get a value of 19.

With regard to the latter question, you also must decide on a mathematical concept. 
For example, if you investigate, say, 99 sentences and choose to operationalize lengths as 
numbers of morphemes, your hypotheses could involve averages:

H0:  The average length of the subjects in morphemes is the same as the average length 
of the direct objects in morphemes; mean length of subjects = mean length of 
direct objects.

H1:  The average length of the subjects in morphemes is different from the average 
length of the direct objects in morphemes; mean length of subjects ≠ mean length 
of direct objects.

or frequencies:

H0:  The number of cases where the subject is longer (in morphemes) than the direct 
object is the same as the number of cases where the subject is not longer (in  
morphemes) than the direct object.

H0:  The number of cases where the subject is longer (in morphemes) than the direct 
object is different from the number of cases where the subject is not longer (in  
morphemes) than the direct object.

Thus, you must exercise care in operationalizing your variables: Your operationalization 
of variables determines the validity of the investigation, i.e., whether you measure/investi-
gate what you intend to measure/investigate.

You should now do “Exercise box 4.1: How would you operationalize these vari-
ables? Why?” and “Exercise box 4.2: Formulate alternative and null hypotheses in 
text form and in statistical form.”



Some Basic Statistical Notions and Tests 145

While the discussion so far has focused on the situation in which we have maximally two 
variables, a dependent and an independent one, of course life is usually not that simple – 
there is virtually always more than one determinant for some phenomenon. While we will 
not deal with statistical techniques to deal with several independent variables here (but see 
Gries 2013: ch. 5), it is important for you to at least understand how such phenomena would 
be approached conceptually. We have been talking about the alternative hypothesis that, 
on average, English subjects are shorter than English objects, which involves one dependent 
variable (Length) and one independent variable (GramRelation: subject vs. object). For 
the sake of the argument, let us imagine you now suspect that the lengths of some constitu-
ents do not only vary as a function of their being subjects and objects, but also in terms of 
whether they occur in main clauses or subordinate clauses. Technically speaking, you are 
introducing a second independent variable, ClauseType, with two levels, main clause and 
subordinate clause. Let us also assume you do a pilot study – without having a hypothesis 
yet – in which you look at 120 subjects and objects (from a corpus) as shown in Table 4.1.

You then count for each of the 120 cases the length of the subject or object in syllables and 
compute the mean lengths for all four conditions, subjects in main clauses, objects in main 
clauses, subjects in subordinate clauses, and objects in subordinate clauses. Let us assume 
these are the main effects you find, where a main effect is the effect of one variable in isolation:

 • Constituents that are subjects are shorter than constituents that are objects.
 • Constituents in main clauses are shorter than in subordinate clauses. 

There are now two possibilities for what these results can look like (or three, depending on 
how you want to look at it). On the one hand, the two independent variables may work 
together additively. That means the simultaneous combination of levels of independent 
variables has the effect that we would expect on the basis of their individual effects. In this 
case, you would therefore expect that

 • the shortest constituents are subjects in main clauses while the longest constituents are 
objects in subordinate clauses;

 • the length difference between main and subordinate clause subjects is the same as the 
length difference between main and subordinate clause objects; and

 • the length difference between main clause subjects and objects is the same as the 
length difference between subordinate clause subjects and objects. 

This perfectly additive result is represented in a so-called interaction plot in Figure 4.1.
However, the independent variables may not work together additively, but interact. 

Two variables are said to interact if their joint influence on the dependent variable is 
not additive, i.e., if their joint effect cannot be inferred on the basis of their individual 
effects alone. In our example: If direct objects are longer than subjects and if elements in  

Table 4.1 Fictitious data set for a study on constituent lengths

Gramrelation: 
subject

Gramrelation: 
object

Totals

ClauseType: main 30 30  60
ClauseType: subordinate 30 30  60
Totals 60 60 120
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subordinate clauses are longer than elements in main clauses, but you also find that objects 
in subordinate clauses are in fact very short, then this would be called an interaction of 
GramRelation and ClauseType. One such scenario is represented in Figure 4.2.

Figure 4.2 Interaction plot for GramRelation × ClauseType 2.

Figure 4.1 Interaction plot for GramRelation × ClauseType 1.
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As you can see, the mean length of subjects is still smaller than that of objects. Also, 
the mean length of main clause constituents is still smaller than that of the subordinate 
clause constituents. However, the combinations of these levels does not result in the same  
predictable effect as it did in Figure 4.1. In other words, while objects are overall longer 
than subjects – the main effect – not all objects are: The objects in subordinate clauses are 
not only shorter than objects in main clauses, but in fact also shorter than subjects in subor-
dinate clauses. Thus, if there is an interaction of this kind – which is often easy to recognize 
because of the crossing lines in such an interaction plot, then you should really not talk 
that much about the main effects of the variables participating in a significant interaction 
because the interaction indicates that the main effects are only true in parts of the data.

There is yet another kind of interaction, which is represented in Figure 4.3.
This may strike you as strange. Again, the main effects are the same: Subjects are 

shorter than objects and main clause constituents are shorter than subordinate clause 
constituents. But as opposed to Figure 4.2, even the prediction that objects in subordinate 
clauses are the longest elements and subjects in main clauses are the shortest elements is 
borne out. So why is this still also an interaction?

It is still an interaction because while the lines in the interaction plot do not intersect, 
the slope of the black line is much steeper than that of the gray line. Put differently, while 
the difference between the means of subjects and objects in main clauses is only two  

Figure 4.3 Interaction plot for GramRelation × ClauseType 3.

THINK
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syllables, it is four syllables in subordinate clauses, and because of this unexpected ele-
ment, this is still an interaction.

Interactions are a very important concept, and whenever you consider or investigate 
designs with multiple independent variables, you must be careful about how to formulate 
your hypotheses – sometimes you may be more interested in an interaction than a main 
effect – and how to evaluate and interpret your data.

One final aspect is noteworthy here. Obviously, when you formulate hypotheses, you 
have to make many decisions: which variables to include, which variable levels to include, 
which kinds of relations between variables to consider (additive vs. interaction), etc. One 
important guideline in formulating hypotheses you should always adhere to is called 
Occam’s razor. Occam’s razor, named after William of Ockham (1285–1349), is the name 
for the following Latin principle: entia non sunt multiplicanda praeter necessitatem, which 
means “entities should not be multiplied beyond necessity” and, generally boils down to 
“try to formulate the simplest explanation or model possible”. I use model here in the 
way defined by Johnson (2008: 106), referring to a “proposed mathematical description 
of the data with no assumptions about the possible mechanisms that cause the data to be 
the way they are”. More specifically, this principle – also referred to as the principle of 
parsimony or succinctness – boils down to the following guidelines (that statistically all 
amount to not making the numbers of coefficients to be estimated from the data any larger 
than is warranted):

 • Don’t invoke more variables than needed: If you can explain the same amount of vari-
ability of a dependent variable with two models with different numbers of independent 
variables, choose the model with the smaller number of independent variables.

 • Do not invoke more variable levels than necessary: If you can explain the same amount 
of variability of the dependent variable with two models that have different numbers 
of levels of independent variables, choose the model with the smaller number of levels 
of independent variables. For example, if you can explain 60 percent of the variation 
in the data with a variable that distinguishes two levels of animacy (animate vs. inani-
mate), then prefer this variable over one that distinguishes three levels (e.g., human vs. 
animate vs. inanimate) but also only explains 60 percent of the variation in the data.

 • Choose additive relationships over relationships involving interactions: If you can 
explain 60 percent of the variation of the dependent variable with a model without 
interactions, then prefer this model over one that involves interactions and also only 
explains 60 percent of the variation. 

One motivation for this principle is of course simplicity: simpler models are easier to 
explain and test. Also, this approach allows you to reject the unprincipled inclusion of 
ever more variables and variable levels if these do not explain a sufficiently substantial 
share of the data. Thus, you should always bear this principle in mind when you formulate 
your own hypotheses.

4.1.4 Data Analysis

When you have formulated your hypotheses, and only then, you begin with the analysis 
of the data. (In other words, it is problematic to collect data, pour over them for hours 
in search of any pattern that might be interesting, see some pattern, and then declare you 
have a hypothesis, namely, tadaah!, the pattern and then proceed with statistical testing.) 
For example, your analysis might begin with you writing a script to retrieve corpus data. 
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The best way of handling data is to store your data in a data frame that you either edit in R 
or, more conveniently, in a spreadsheet software such as LibreOffice Calc. There are a few 
crucial aspects to your handling of the data, which I cannot emphasize enough. First, every 
row represents one and only one analyzed case or observation of the dependent variable. 
Second, every column but the first represents either the data in question (e.g., (parts of)  
a concordance line to be investigated) or one and only one variable with respect to 
which the data are coded. Third, the first column just gets a counter from 1 to n so that 
you can always restore the data frame to one particular (the original?) order, and the 
first row should contain the names of all columns (i.e., variables). Fourth, missing data 
points are entered as NA (not as empty cells). In corpus studies, it is often useful to also 
have columns for variables that you might call “source of the data”; these would con-
tain information regarding the corpus file and the line of the file where the match was 
obtained etc.

Let us assume you investigated the alternative hypothesis Subjects are longer than 
objects (operationalizing length as “length in words”). First, a think break: What is the 
independent variable, and what is the dependent variable?

The independent variable is the categorical variable GramRelation, which has the 
levels subject and object, and the dependent variable is the numeric variable Length. If 
you now formulated all four hypotheses – H0 and H1 in text and statistical forms – and 
decided to analyze the (ridiculously small) sample in (2),

(2) a The younger bachelors ate the nice little parrot.
 b He was locking the door.
 c The quick brown fox hit the lazy dog.

then your data frame should not look as shown in Table 4.2, an arrangement students 
often use.

The data frame in Table 4.2 violates all of the above rules. First, every row contains 
two data points, not just one; for instance, row 1 contains two measurements of the 
dependent variable, 3 and 4. Second, the data frame in Table 4.2, leaving aside the first 
column, which was only included for expository purposes, does not have a column for 
every variable. Rather, it has two columns, each of which represents one level of the inde-
pendent variable GramRelation. Before you look below, think about how you would 
have to reorganize Table 4.2 so that it conforms to the above rules.

Table 4.2 A bad data frame

Sentence Subject Object

The younger bachelors ate the nice little parrot. 3 4
He was locking the door. 1 2
The quick brown fox hit the lazy dog. 4 3

THINK

BREAK
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Table 4.3 is how your data frame should look. Now every observation has one and 
only one row, and every variable – independent and dependent – has its own column.

An even more precise variant may have an additional column listing only the subject 
or object that is coded in each row, i.e., listing The younger bachelors in the first row. As 
you can see, every data point – every subject and every object – gets its own row and is in 
turn described in terms of its variable levels in the two rightmost columns. This is how you 
should virtually always store your data. Ideally, you save data from text processing with 
R into a format that already looks like that of Table 4.3, then you may add additional 
annotation either in/with R or in some spreadsheet software, and then you save the data 
(1) in the native format of that software (to preserve colors or other formatting that would 
not be preserved in a text file) and (2) as a .txt file or, better, a tab-separated .csv file.

4.1.5 Hypothesis (and Significance) Testing

Once you have created a data frame such as Table 4.3 containing all your data, you must 
evaluate the data. As a result of that evaluation, you obtain frequencies/counts, averages, 
dispersions, or correlations. The most essential part of the statistical approach of hypoth-
esis testing is that, contrary to what you might expect, you do not try to prove that your 
H1 is correct – you try to show that H0 is most likely (!) not true, and since H0 is the logical 
counterpart of your H1, this in turn lends credence to H1. In other words, in most cases 
you wish to be able to show that H0 can not account for the data well enough so that 
you can adopt H1. But what does “well enough” mean? The conventional interpretation 
of “well enough” is the following: If the probability to get your results when H0 is true is 
less than 0.05 (i.e., 5 percent), then it seems as if H0 doesn’t really account very well for 
the results that you have; thus, you reject H0 as too bad an account of your results and 
instead assume H1.

This may seem a little confusing because there are suddenly two probabilities: one that 
says how likely you are to get your result when H0 is true, another one which is typically 
set to 0.05. This latter probability p is the probability not to be exceeded to still accept H1. 
It is called significance level and is a threshold value defined before the analysis. The for-
mer probability p to get the obtained result when H0 is true is the probability to err when 
accepting H1. It is called the probability of error or the p-value – this p is computed on the 
basis of your data, i.e., computed after the analysis. You may now wonder how this prob-
ability is computed, but this is a question we will not be concerned with in this book – see 
Gries (2013: 26–45) for detailed discussion. Suffice it here to say that the probabilities of 
error are typically computed in one of two ways: either parametrically, i.e., on the basis of 

Table 4.3 A better data frame

Case Sentence Relation Length

1 The younger bachelors ate the nice little parrot. Subject 3
2 The younger bachelors ate the nice little parrot. Object 4
3 He was locking the door. Subject 1
4 He was locking the door. Oobject 2
5 The quick brown fox hit the lazy dog. Subject 4
6 The quick brown fox hit the lazy dog. Object 3

THINK

BREAK
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approximations, which work very well if the data meet certain distributional criteria, or 
non-parametrically, e.g., on the basis of counting frequencies of different outcomes out of 
all possible outcomes. In the remainder of this chapter, we will use R functions to make 
either of those two computations.

Now that the groundwork has been laid, we will look at a few statistical techniques 
that allow you to compute p-values to determine whether you are allowed to reject the 
H0 and, therefore, accept your H1. For each of the tests, we will also look at all relevant 
assumptions. Unfortunately, considerations of space do not allow me to discuss more than 
some of the most elementary monofactorial statistical techniques and skip the treatment 
of all the techniques that would also be useful, in particular the multifactorial statistics 
that one ultimately always requires. Since the graphical representation and exploration of 
distributional data often facilitates the understanding of the statistical results, I will also 
briefly show how simple graphs are produced. However, again considerations of space do 
not allow for a detailed exposition here in the book, so do study the code files, which pro-
vide a lot of information, review the documentation of the graphics functions I mention, 
and refer to the documentation for par, Johnson (2008) and Gries (2013), and, for more 
advanced readers, Baayen (2008) and Murrell (2011).

4.2 Categorical Dependent Variables

One of the most frequent corpus-linguistic scenarios involves categorical dependent vari-
ables in the sense that one records the frequencies of several mutually exclusive outcomes 
or categories. We will only distinguish two cases, one in which one just records frequen-
cies of a dependent variable as such without any additional information (such as which 
independent variable is observed at the same time) and one in which you also include a 
categorical independent variable.

4.2.1 No Independent Variables

Let us look at a syntactic example, namely the word order alternation of English verb-
particle constructions as exemplified in (3):

(3) a. He brought back the book. Verb Particle DirectObject
 b. He brought the book back. Verb DirectObject Particle

Among other things, one might be interested in finding out whether the two semantically 
so similar constructions are used equally frequently. To that end, one could decide to look 
at corpus data for the two constructions. The first step of the analysis consists of formu-
lating the hypotheses to be tested. In this case, this is fairly simple: Since H0 usually states 
that data are not systematically distributed, the most unsystematic distribution would be a 
random one, and if sentences are randomly distributed across two construction categories, 
then both constructions should be equally frequent, just like tossing a coin will in the long 
run yield nearly identical frequencies of heads and tails. Thus:

H0:  The frequencies of the two constructions (V Part DO vs. V DO Part) in the 
population are not different; nV Part DO = nV DO Part, and variation in the sample is just 
random noise.

H1:  The frequencies of the two constructions (V Part DO vs. V DO Part) in the 
population are different; nV Part DO ≠ nV DO Part, and variation in the sample is not just 
random noise.
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Gries (2003) used a small data sample from the BNC Edition 1 and counted how often 
each of these two constructions occurred. If the data frame is set up as in Table 4.3, the 
simplest descriptive approach would be to use table on the column with the dependent 
variable so as to arrive at something like Table 4.4.

For this simple example, we will not load a data frame but immediately tell R what the 
data look like:

>·Gries.2003<-c(194,·209)¶
>·names(Gries.2003)<-c(“V-P-DO”,·”V-DO-P”)¶

As a first step, we look at the distribution of the data. One simple way of representing this 
distribution graphically would be to use a bar plot:

>·barplot(Gries.2003)¶

The question that now arises is of course whether this is a result that one may expect by 
chance or whether the result is unlikely to have arisen by chance and, therefore, probably 
reflects a regularity to be uncovered. The actual computation of the test is in this case very 
simple, but for further discussion below it is useful to briefly comment on the underlying 
logic. The test that is used to investigate whether an observed frequency distribution devi-
ates from what might be expected on the basis of chance is called the chi-squared test for 
goodness of fit (because it tests how good the fit of the observed data is to some expected 
distribution). In this case, H0 states the frequencies are the same so, since we have two 
categories, the expected frequency of each construction is the overall number of sentences 
divided by two (Table 4.5).

Like with most statistical tests, however, we must first determine whether the test we 
want to use can in fact be used. The chi-squared test should only be applied if:

 • all observations are independent of each other (i.e., the value of one data point does 
not influence that of another); and

 • all expected frequencies are larger than or equal to 5.2 

The latter condition is obviously met, and we assume for now that the data points  
are independent such that the constructional choice in any one corpus example is  

Table 4.4 Observed distribution of verb-particle constructions in Gries (2003a)

Verb Particle DirectObject Verb DirectObject Particle

194 209

Table 4.5 Expected distribution of verb-particle constructions in Gries (2003a)

Verb particle DirectObject Verb DirectObject particle

201.5 201.5
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independent of other constructional choices in the sample – note that this assump-
tion is often not correct (because, often, one speaker contributes multiple data points, 
which means all the data points he contributes could be affected by that speaker’s idi-
osyncratic behavior) and would therefore need to be carefully defended in each case. 
The actual computation of the chi-squared value is summarized in the equation in (4): 

(4) χ
−Σ2 observed expected)

expected
201.5)

=
−

= +
=i

n

1

2 2194
201 5

20( (
.

( 99
201 5

0 558
2− 201.5)

.
.≅

You take the observed value of each cell in the table, subtract from it the expected 
value for that cell, square the obtained difference, divide it by the expected value for 
that cell again, and sum up all values (see the code file for a quick manual computation 
of this value). Each of these two summands is sometimes referred to as a contribution 
to chi-squared.

However, we just do the whole test in R, which is extremely simple. Since R already 
knows what the observed data look like (from the vector Gries.2003), we can imme-
diately use the function chisq.test to compute the chi-squared value and the p-value 
at the same time by providing chisq.test with three arguments: a vector with the 
observed data, a vector with the probabilities resulting from H0 (i.e., two times 0.5, 
because according to H0 we have two equally likely constructions), and correct=TRUE or 
correct=FALSE: If the size of the data set n is small (15 ≤ n ≤ 60), it is sometimes recom-
mended to perform a so-called continuity correction; by calling correct=TRUE you can 
perform this correction. We immediately assign the result of this test to an object G2003.
test and also check out its structure:

>·(G2003.test<-chisq.test(Gries.2003,·p=c(0.5,·0.5),· 
correct=FALSE))¶

 Chi-squared·test·for·given·probabilities
data:··Gries.2003
X-squared·=·0.55831,·df·=·1,·p-value·=·0.4549

>·str(G2003.test)¶
List·of·9
·$·statistic:·Named·num·0.558
··..-·attr(*,·"names")=·chr·"X-squared"
·$·parameter:·Named·num·1
··..-·attr(*,·"names")=·chr·"df"
·$·p.value··:·num·0.455
·$·method···:·chr·"Chi-squared·test·for·given·probabilities"
·$·data.name:·chr·"Gries.2003"
·$·observed·:·Named·num·[1:2]·194·209
··..-·attr(*,·"names")=·chr·[1:2]·"V-P-DO"·"V-DO-P"
·$·expected·:·Named·num·[1:2]·202·202
··..-·attr(*,·"names")=·chr·[1:2]·"V-P-DO"·"V-DO-P"
·$·residuals:·Named·num·[1:2]·-0.528·0.528
··..-·attr(*,·"names")=·chr·[1:2]·"V-P-DO"·"V-DO-P"
·$·stdres···:·Named·num·[1:2]·-0.747·0.747
··..-·attr(*,·"names")=·chr·[1:2]·"V-P-DO"·"V-DO-P"
·-·attr(*,·"class")=·chr·"htest"
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The result is unambiguous: The p-value is much larger than the usual threshold value of 
0.05 so we conclude that the frequencies of the two constructions in Gries’s sample do not 
differ from a random distribution. Another way of summarizing this result would be to 
say that Gries’s data can be assumed to come from a population in which both construc-
tions are equally frequent.

You may now wonder what the df-value means. The abbreviation “df” stands for 
“degrees of freedom” and has to do with the number of values that were entered into 
the analysis (two in this case) and the number of statistical parameters estimated from 
the data (one in this case); it is customary to provide the df-value when you report all 
summary statistics, as I will exemplify below for each test to be discussed. For reasons 
of space, I cannot discuss the notion of df here in any detail but refer you to full-fledged 
introductions to statistics instead (e.g., Crawley 2012).

As you can see from the structure output, chisq.test also computes the expected 
frequencies as well as a variety of other results, which are all stored in a list. If we  
are interested in the expected frequencies, we just need to call the part of the result/ 
list we are interested in:

>·G2003.test$expected¶
[1]·201.5·201.5

The usual statistical lingo to summarize this result would be something like this: “The 
verb-particle construction where the particle directly follows the verb occurs 194 times 
although it was expected 201.5 (i.e., 202) times. On the other hand, the construction with 
the particle following the direct object was produced 209 times although it was expected 
201.5 (i.e., 202) times. According to a chi-squared test for goodness of fit, this differ-
ence, however, is statistically insignificant (χ2 = 0.56; df = 1; p = 0.455): We must assume  
the two constructions are equally frequent in the population for which the sample is  
representative.”

You should now do “Exercise box 4.3: Unidimensional frequency distributions.”

Recommendations for further study/exploration

 • On another way to test whether an observed frequency differs from an expected 
percentage: ?prop.test¶.

4.2.2 One Independent Categorical Variable

The probably more frequent research scenario with dependent categorical variables, how-
ever, is that one records not just the frequency of some dependent variable but also that of 
an independent categorical variable that one might suspect is correlated with the depend-
ent one. Fortunately, the required method is very similar to that of the previous section:  
It is called the chi-squared test for independence and has the same two requirements 
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as the chi-squared test in the previous section. In order to explore how this test works 
when an additional variable is added, let us revisit the example of Gries (2003) from 
above. The above discussion actually provided only a part of the data. In fact, the above 
characterization left out one crucial factor, namely one of many independent variables 
whose influence on the choice of construction Gries wanted to investigate. This inde-
pendent variable to be looked at here was Concreteness, i.e., whether the referent of 
the direct object was abstract (such as, e.g., peace) or concrete (such as, e.g., the book). 
Again, we first formulate the hypotheses. Since we have seen in the previous section how 
the chi-squared statistic is computed – namely with the absolute differences between 
observed and expected values in the numerator of (4), we immediately add the statistical 
hypotheses as well:

H0:  The frequencies of the two constructions (V Part DO vs. V DO Part, the depend-
ent variable) do not vary depending on whether the referent of the direct object is 
abstract or concrete (the independent variable); chi-squared = 0.

H1:  The frequencies of the two constructions (V Part DO vs. V DO Part, the depend-
ent variable) vary depending on whether the referent of the direct object is abstract 
or concrete (the independent variable); chi-squared > 0.

We first read the data from <_qclwr2/_inputfiles/stat_vpc.csv> into R:

>·Gries.2003<-read.table(file.choose(),·header=TRUE,·sep="\t",· 
comment.char="")¶

>·str(Gries.2003);·attach(Gries.2003)¶
'data.frame':···403·obs.·of··2·variables:
·$·CONSTRUCTION:·Factor·w/·2·levels·"V_DO_PART","V_PART_DO":· 

2·1·1·1·2·1·...
·$·CONCRETENESS:·Factor·w/·2·levels·"abstract","concrete":· 

1·1·2·2·2·2·1·...

Since we now know the column names etc., we tabulate (as usual, the first-named variable 
goes into the rows) and use the generic plot command to get a so-called mosaic plot of a 
table of our two variables (we use t(table(...)) to transpose the table so that the plot 
has the same row–column arrangement as the table):

>·table(CONSTRUCTION,·CONCRETENESS)¶
············CONCRETENESS
CONSTRUCTION·abstract·concrete
···V_DO_PART·······64······145
···V_PART_DO······125·······69
>·mosaicplot(t(table(CONSTRUCTION,·CONCRETENESS)),· 

main="The·relation·between·CONCRETENESS·and· 
CONSTRUCTION")¶

In this kind of plot, the frequencies of the two levels of Concreteness are reflected in 
the widths of the bars, while the frequencies of the two constructions within each level of 
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Concreteness are indicated by how the two bars are split. It immediately emerges that 
the two constructional choices are characterized by very different proportions of concrete 
and abstract DO referents: When Concreteness is concrete, the construction V DO Part 
is more frequent, when Concreteness is abstract, V Part DO is.

Does this distribution differ significantly from one expected by chance? The function 
to test whether there is a correlation between two categorical variables or not is again 
chisq.test, and the most important arguments it takes are:

 • a two-dimensional table for which you want to compute a chi-squared test;
 • correct=TRUE or correct=FALSE; see above. 

We have already loaded the data so we can immediately execute the function:

>·(G2003.test<-chisq.test(table(CONSTRUCTION,·CONCRETENESS),· 
correct=FALSE))¶

········Pearson's·Chi-squared·test
data:··table(CONSTRUCTION,·CONCRETENESS)
X-squared·=·46.184,·df·=·1,·p-value·=·1.076e-11

For the sake of completeness, we also compute the expected frequencies by calling up a part 
of the output that is normally not provided (by adding $expected to the name of the list):

Figure 4.4 Mosaic plot of the distribution of verb-particle constructions in Gries (2003).



Some Basic Statistical Notions and Tests 157

>·G2003.test$expected¶
············CONCRETENESS
CONSTRUCTION·abstract·concrete
···V_DO_Part·98.01737·110.9826
···V_Part_DO·90.98263·103.0174

Note that you can compute the expected frequency for any of the four cells of the table of 
the observed frequencies by multiplying the row total of the row of a cell by the column 
total of the column of that cell and dividing that by the overall total of the table, as is here 
shown for the top left cell:

>·209*189/403¶
[1]·98.01737

The results show that the variable Concreteness is highly significantly correlated 
with the choice of construction. However, there are two things we still don’t really 
know. One is how strong the effect is: It is important to note that one cannot use the 
chi-squared value as a measure of effect size, i.e., as an indication of how strong the 
correlation between the two investigated variables is. This is due to the fact that the chi-
squared value is dependent on the effect size, but also on the sample size. We can test 
this in R very easily:

>·chisq.test(table(CONSTRUCTION,·CONCRETENESS)*10,·correct=FALSE)¶
········Pearson's·Chi-squared·test
data:··table(CONSTRUCTION,·CONCRETENESS)·*·10
X-squared·=·461.84,·df·=·1,·p-value·<·2.2e-16

As is obvious, when the sample is increased by one order of magnitude, so is the  
chi-squared value. This is of course a disadvantage: While the sample size of this 
increased table is ten times as large, the relations of the values in the table have of 
course not changed. In order to obtain a measure of effect size that is not influenced by 
the sample size, one can transform the chi-squared value into a measure of correlation. 
This is the formula for the measure φ (read: phi, for k × 2 / m × 2 tables, where k and 
m are the numbers of rows and columns respectively) or Cramer’s V (for k × m tables 
with k, m > 2):

(5) φ or Cramer’s V = 
χ

−

2

n k m* min ,[ ]( )1

The theoretically extreme values of this correlation coefficient are 0 (no correlation) and 
1 (perfect correlation). With R, this computation can be done in one easy step, but for 
expository reasons we break it down into smaller steps:
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>·numerator<-G2003.test$statistic¶
>·denominator<-sum(table(CONSTRUCTION,·CONCRETENESS))* 

(min(dim(table(CONSTRUCTION,·CONCRETENESS)))-1)¶
>·fraction<-numerator/denominator¶
>·(phi<-sqrt(fraction))¶
X-squared
0.3385275

Thus, the correlation is not particularly strong but highly significant. But where does it 
come from and how can the results be interpreted? In this simple case, the mosaic plot 
above already gave it all away, but in tables with more rows and columns, interpreting 
the result from such a plot may be more difficult. Thus, the most straightforward way 
to answer these questions involves inspecting (1) the so-called Pearson residuals and/or  
(2) an association plot. The Pearson residuals indicate the degree to which observed and 
expected frequencies differ: The more they deviate from 0, the more the observed frequen-
cies deviate from the expected ones. Each residual of a cell is obs-exp/sqrt(exp), so if you square 
them you get the above-mentioned contributions to chi-squared, whose sum in turn 
corresponds to the overall chi-squared value. They are generated just like the expected 
frequencies, by calling up the result of the chi-squared test again, this time requesting 
another part of the output normally not provided:

>·G2003.test$residuals¶
············CONCRETENESS
CONSTRUCTION··abstract··concrete
···V_DO_Part·-3.435969··3.229039
···V_Part_DO··3.566330·-3.351548

This table is interpreted as follows: Positive values mark observed frequencies which are 
larger than expected and negative values mark observed frequencies which are smaller 
than expected, and you already know that the more the values deviate from 0, the 
stronger the effect. Thus, the strongest effect in the data is the strong preference of 
abstract objects to occur in V DO Part; the second strongest effect is the dispreference 
of abstract objects to occur in V Part DO etc. (In this case, all residuals are similarly 
high, but in tables where this is not so, one could distinguish the cells that matter from 
those that do not.)

A visual approach to the same issue involves a so-called association plot (Figure 4.5). 
The function assocplot requires only one argument, namely a two-dimensional table, and 
again we usually want to transpose it so its dimensions line up with those of the input table:

>·assocplot(t(table(CONSTRUCTION,·CONCRETENESS)),·col=c 
("black",·"grey"))¶

In this representation, black and gray boxes represent table cells whose observed 
frequencies are greater and smaller than the expected ones respectively (i.e., what  
corresponds to positive and negative Pearson residuals), and the area of the box is  
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Figure 4.5 Association plot of the distribution of verb-particle constructions in Gries (2003).

proportional to the difference in observed and expected frequencies (in a way you can read 
up on at ?assocplot¶).

In sum, the data and their evaluations would be summarized as follows: “According to 
a chi-squared test for independence, there is a statistically highly significant albeit moder-
ate correlation between the choice of a verb-particle construction and the abstractness/
concreteness (χ2 = 46.18; df = 1; p < 0.001; φ = 0.34). The significant result is due to the 
fact that the construction where the particle follows the verb directly is preferred with 
abstract objects while the construction where the particle follows the direct object is pre-
ferred with concrete objects.”

Let me briefly mention one important area of application of the chi-squared test and 
other related statistics: measures of collocational strength. Collocational statistics quan-
tify the strength of association or repulsion between a node word and its collocates. Node 
words tend to attract some words – such that these words occur close to the node word 
with greater than chance probability – while they repel others – such that these words 
occur close to the node word with less than chance probability – while they occur at 
chance-level frequency with yet others. Let us look at one example from the case study 
chapter below, the collocation of alphabetical order. In the BNC, there are 6,024,359 
numbered sentences (occurrences of “<s·n”) and 225 and 28,662 such sentences that  

Table 4.6 Observed distribution of alphabetical and order in the BNC

Order Other words Totals

Alphabetical 96 129 225
Other words 28,566 5,995,568 6,024,134
Totals 28,662 5,995,697 6,024,359
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contain alphabetical tagged as an adjective and order tagged as a singular noun, and there 
are 96 sentences in which both of these words occur. This distribution is summarized in 
Table 4.6.

Of course, you can evaluate this distribution with a chi-squared test; you use the matrix 
function to create a table like Table 4.6:

>·example·<-·matrix(c(96,·28566,·129,·5995568),·ncol=2,· 
dimnames= 
list(ALPHABETICAL=c("yes",·"no"),·ORDER=c("yes",·"no")))¶

>·example¶
············ORDER
ALPHABETICAL···yes······no
·········yes····96·····129
·········no··28566·5995568
>·addmargins(example)¶
············ORDER
ALPHABETICAL···yes······no·····Sum
·········yes····96·····129·····225
·········no··28566·5995568·6024134
·········Sum·28662·5995697·6024359
>·(example.test·<-·chisq.test(example,·correct=FALSE))¶
 Pearson's·Chi-squared·test
data:··example
X-squared·=·8458.9,·df·=·1,·p-value·<·2.2e-16

As you can see, this distribution is highly significant because the observed co-occurrence of 
alphabetical and order (96) is much larger than the expected one (1.07, check example.
test$expected). Two issues have to be mentioned, however. First, the chi-squared test 
is actually not the best test to be applied here given the small expected co-occurrence fre-
quency, which is much smaller than five. As a matter of fact, there is a huge number of 
other statistics to quantify the reliability and the strength of the co-occurrence relationship 
between two (or more) words (see Evert 2004). Second, testing a single collocation like 
alphabetical order is of course not very revealing, so, ideally, one would test all collocates 
of alphabetical and all collocates of alphabetic to identify semantic or other patterns in 
the distributional tendencies. We will return to collocational/collostructional statistics in 
the next chapter.

You should now do “Exercise box 4.4: Two-dimensional frequency distributions.”

4.3 Numeric Dependent Variables

Another frequent kind of scenarios involves numeric dependent variables. In Section 4.3.1 
I will briefly review a few useful descriptive statistics for such dependent variables, but 
will not discuss significance tests for this scenario (cf. Gries 2013 for much discussion and 
worked examples). In Sections 4.3.2 and 4.3.3 we will then distinguish two cases, one in 
which you have a two-level categorical independent variable and one in which you have a 
numeric independent variable.
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4.3.1 No Independent Variables

First, let us briefly review some useful descriptive statistics with which you can summarize 
numeric data. Usually, one distinguishes measures of central tendency – what you prob-
ably know as averages – and measures of dispersion.

Measures of central tendency serve to summarize the central tendency of a numeric 
variable in a single statistic. The most widely known measure of central tendency is the 
mean. You compute the mean by summing all observations/cases and dividing that sum 
by the number of observations. In R you use mean, which takes as its only argument a 
vector of values:

>·mean(c(1,·2,·3,·2,·1))¶
[1]·1.8

Despite its apparent simplicity, there are two important things to bear in mind. First,  
the mean is extremely sensitive to outliers: A single very high or very low value can  
influence the mean so strongly that it stops being a useful statistic. In the example  
below, the mean value of 168.1667 neither represents the first five nor the sixth value 
particularly well:

>·mean(c(1,·2,·3,·2,·1,·1000))¶
[1]·168.1667

In such cases, you should better either trim the data of extremes (using mean’s argument 
trim) or choose the median as a less sensitive measure of central tendency. If you sort the 
values in ascending order, the median is the middle value (or the mean of the two middle 
values). As you can see below, the median of this vector is 2, which represents the distribu-
tion of the first five values very well. Thus, whenever you look at a distribution as extreme 
as the above example or whenever your data are better conceived of as ordinal (i.e., rank 
data), you should use the median, not the mean:

>·sort(c(1,·2,·3,·2,·1,·1000))¶
·[1]····1····1····2····2····3·1000
>·median(c(1,·2,·3,·2,·1·1000))¶
[1]·2

The second important thing to bear in mind is to never, ever (!) report a measure of cen-
tral tendency without a measure of dispersion because without a measure of dispersion, 
i.e., the variability of the data around its central tendency, one can never know how well 
the measure of central tendency does in fact summarize all of the data: Obviously, if in 
the case of the above extreme distribution you only report a mean in 168.17 without 
reporting the huge dispersion of the distribution, you’re really not providing anything 
informative at all.3 Let us look at a less contrived example by comparing two cities’ average  
temperature in one year.
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>·City1<-c(-5,·-12,·5,·12,·15,·18,·22,·23,·20,·16,·8,·1)¶
>·City2<-c(6,·7,·8,·9,·10,·12,·16,·15,·11,·9,·8,·7)¶
>·mean(City1)¶
[1]·10.25
>·mean(City2)¶
[1]·9.833333

From the means alone, it seems as if the two cities have very similar climates – the differ-
ence between the means is very small. However, if you look at the data in more detail, 
especially when you do so graphically as in Figure 4.6, you can see immediately that the 
cities have very different climates – I know where I prefer to be in February – but just hap-
pen to have similar averages; make sure you go through the code that generates Figure 4.6, 
which contains a lot of important functions and settings.

Obviously, the mean of City2 summarizes the central tendency in City2 much bet-
ter than the mean of City1 because City1 exhibits a much greater degree of dispersion  
of the data throughout the year. Measures of dispersion quantify this and summarize it 
into one statistic. One widely used dispersion measure for numeric data is the so-called 
standard deviation, which is computed as represented in (6):

(6) sd= Σ −
i

n

ix x

n
=

−
1

2

1

( )

While this may look daunting at first, the ‘translation’ into R (as applied to City1) should 
clarify this:

Figure 4.6 Average fictitious temperatures of two cities.
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>·numerator<-sum((City1-mean(City1))^2)¶
>·denominator<-length(City1)-1¶
>·sqrt(numerator/denominator)¶
[1]·11.12021

But of course R has a function for this:

>·sd(City1)¶
[1]·11.12021
>·sd(City2)¶
[1]·3.157483

Note in passing that the standard deviation is the square root of another well-known 
measure of central tendency, the so-called variance (the R function is var). As is obvious, 
the measure of dispersion confirms what was already obvious from the graph: the values 
of City2 are much more homogeneous than the values of City1. It is important, however, 
to note here that you can only make this kind of statement on the basis of standard devia-
tions or variances when the means of the two vectors to be compared are very similar. This 
is because the standard deviation is dependent on the size of the mean:

>·sd(City1)¶
[1]·11.12021
>·sd(City1*10)¶
[1]·111.2021

Thus, if the means of two distributions are markedly dissimilar, then you must not com-
pare their dispersions by means of the standard deviation – rather, you should compare 
the dispersions on the basis of the variation coefficient, which you get by dividing the 
standard deviation by the mean:

>·sd(City1)/mean(City1)¶
[1]·1.084899
>·sd(City1*10)/mean(City1*10)¶
[1]·1.084899
>·sd(City2)/mean(City2)¶
[1]·0.3210999

As you can see, now the measures of dispersion for City1 and its derivative are the same, 
and they are still considerably higher than that of City2, which is to be expected, given 
the similarities of the means.

Another way of summarizing the dispersion of a numeric variable is again using a 
measure that helps in cases when the data are decidedly non-normal (i.e., not likely  
bell-shaped) and/or when you have outliers etc. (just like the median may replace the mean 
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for measures of central tendencies in such cases). This measure of dispersion for ordinal 
variables is the so-called interquartile range (IQR), which gives you the length of the inter-
val around the median that includes about half of the data:

>·IQR(City1)¶
[1]·14.5
>·IQR(City2)¶
[1]·3.5

Again, the conclusions are the same: City1 is more heterogeneous than City2.

Recommendations for further study/exploration

 • On how to get quartiles or deciles for a numeric vector: quantile(0:100)¶ and 
?quantile¶.

 • On how to get the range of a vector (i.e., a shortcut for max(City1)-
min(City1)): ?range¶.

 • On how to get the median absolute deviation, another robust measure of disper-
sion: ?mad¶.

A good way to look at such data is the boxplot, a graph that provides a lot of informa-
tion about the distribution of a vector; see the top panel of Figure 4.7, which is generated  
as follows:

>·boxplot(City1,·City2,·notch=TRUE,·xlab="Cities",· 
ylab="Temperature",·main="Box·plot·of·temperatures:\nCity·1·vs.· 
City·2",·names=c("City·1",·"City·2"));·grid()¶

This plot tells you something about the central tendencies of both cities because the 
bold horizontal lines represent the medians of each distribution. Second, it also tells you 
something about dispersion because the horizontal lines delimiting the boxes at the top 
and at the bottom extend from the upper to the lower hinge (roughly, the two data points 
delimiting the highest 25 percent and the lowest 25 percent of all the data). Third, the 
whiskers – the dashed vertical lines with the horizontal limits – extend to the most extreme 
data points which are no more than 1.5 times the interquartile range from the box (the 
default value of 1.5 can be changed; enter ?boxplot¶ at the R prompt). Fourth, outliers 
beyond the whiskers would be represented by small circles. Finally, the notches extend 
to ±1.58*IQR/sqrt(n) (enter ?boxplot.stats¶ at the R prompt for information on 
hinges and whiskers). If the notches of two boxplots do not overlap, this is strong prima 
facie evidence that the medians are significantly different from each other (but of course 
you would still have to test this properly). The function grid() draws the dashed gray line 
grid into the coordinate system.

If we apply this to our example, we can see all of what we have observed so far sepa-
rately in one glance: The central tendencies of both cities are very similar (because the 



Figure 4.7 Plots of the temperatures of the two cities.
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medians are close to each other and the notches overlap). The first city exhibits much more 
heterogeneous values than the second city (because the boxes and the whiskers of the first 
city cover a larger range of the y-axis; also, the notches of City1 are huge). Note finally 
the difference between the top and the bottom of the box in the top plot. While the bottom 
poses no problems, the top is sometimes difficult to understand because the horizontal 
line, so to speak, folds back-/downwards. This is R’s way of giving you both the correct 
top end of the box and the full extension of the notch. In this case, the upper end of the 
box does not go up as far as the notch, which is why the line for the notch extends higher 
than the upper limit of the box.

The lower panel of Figure 4.7 shows what is an even more informative but often less 
intuitive plot, the empirical cumulative distribution function (ecdf) of the temperatures in 
each city, which is generated as follows:

>·plot(ecdf(City1),·verticals=TRUE,·pch=18,·cex=1.5,· 
xlab="Temperature",· 
ylab="Cumulative·%·of·temperatures",·main="Empirical· 
cumulative·%s·of·temperatures:\nCity·1·(black)·vs.· 
City·2·(grey)")

>·lines(ecdf(City2),·verticals=TRUE,·pch=19,·cex=1.5,·col="grey")
>·grid()

Each point indicates how much in percent of the data of one city (on the y-axis) are 
covered by the corresponding temperature on the x-axis and all smaller ones. For 
instance, we can estimate from the plot that 25 percent of all temperature values of 
City1 are 1 or less, that 33 percent of all temperature values of City1 are 5 or less, 
etc. This plot is often more informative than a boxplot because it doesn’t bin data 
points (into a box covering the middle 50 percent of the data): Rather, every unique 
observed data point (here a temperature) is represented with a point and, for instance, 
the fact that the temperatures of City2 are much less variable is revealed by the fact 
that the gray curve for City2 covers a much smaller range of the x-axis limits than the 
black curve for City1.

Recommendations for further study/exploration

 • On how to generate histograms of numeric data: ?hist¶, which we will use in 
Chapter 5.

 • On how to compute one-sample t-tests and one-sample Wilcoxon signed-rank 
tests to test whether the central tendency of one dependent numeric variable 
differs from an expected value (see below for the corresponding two-sam-
ple test): ?t.test¶ and ?wilcox.test¶; Gries (2013: sections 4.3.1.1 and 
4.3.1.2).

 • On how to test whether one dependent numeric variable is distributed differ-
ently from what is expected (see below for the corresponding two-sample test): 
?ks.test¶ and Gries (2013: section 4.1.2.2). 
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4.3.2 One Independent Categorical Variable

Another very frequent scenario involves the situation in which you have a numeric depend-
ent variable and a categorical independent variable; the more detailed discussion here will 
be restricted to the case where the independent categorical variable has just two levels.  
As an example for this scenario, we can return to the example we discussed above: the 
different lengths of subjects and (direct) objects. Let us first formulate our hypotheses, 
assuming we operationalize the lengths by the numbers of syllables:

H0:  On average, English subjects are as long as English direct objects; mean length of 
English subjects = mean length of English direct objects.

H1:  On average, English subjects not as long as English direct objects; mean length of 
English subjects ≠ mean length of English direct objects.

(One might in fact hypothesize that subjects are not just of different length, but also how 
they differ from objects, namely by being shorter, because referents of subjects are often 
assumed to be given or accessible information, and given/accessible information is usually 
encoded with less linguistic material than new(er) information. In the interest of keeping 
matters simple, we will stick with H1 above, which only postulates a difference in length, 
but not also the direction of the difference.) Let us further assume we have investigated 
so many randomly drawn subjects and direct objects from a corpus until we had 152 
instances of each and stored them in a data frame that conforms to the specifications in 
Section 4.1.4. We first load the data from <_qclwr2/_inputfiles/stat_subjectobject.csv>:

>·subj.obj<-read.table(file.choose(),·header=TRUE,·sep="\t",· 
comment.char="")¶

>·str(subj.obj);·attach(subj.obj)¶
'data.frame':···304·obs.·of··3·variables:
·$·CASE····:·int··1·2·3·4·5·6·7·8·9·10·...
·$·LENGTH··:·int··5·1·7·1·1·4·10·1·3·1·...
·$·RELATION:·Factor·w/·2·levels·"object","subject":· 

2·2·2·2·2·2·2·2·2·2·...

Next, we look at the data graphically by again using boxplot. Although this was not 
mentioned above, there are two different ways of using boxplot. One is to provide the 
function with vectors as arguments, as we did above for the two cities. We could do the 
same here like this:

>·boxplot(LENGTH[RELATION=="subject"],·LENGTH[RELATION=="object"],· 
notch=TRUE)¶

but if the data frame looks as I told you it should, then R also offers the possibility to 
use a formula notation in which the dependent variable is followed by a tilde (~) and the 
independent variable. We also immediately add the ecdf plot for objects and subjects (and 
to practice, you should also generate histograms for these data):
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Figure 4.8 Plots of the lengths of subjects and objects.

>·boxplot(LENGTH~RELATION,·notch=TRUE,·xlab="Grammatical· 
relations",·ylab= 
"Length",·main="Box·plot·of·lengths·of·grammatical·relations: 
\nobjects·vs.·subjects");·grid()¶



Some Basic Statistical Notions and Tests 169

>·plot(ecdf(LENGTH[RELATION=="object"]),·verticals=TRUE,·pch="o",· 
xlab="Length",·ylab="Cumulative·%·of·lengths:\nobsjects·vs.· 
subjects",·main="Empirical·cumulative·%s·of·lengths: 
\nobjects·vs.·subjects")¶

>·lines(ecdf(LENGTH[RELATION=="subject"]),·verticals=TRUE,·pch="s"); 
·grid()¶

As we can see, the median of the objects is slightly larger than that of the subjects, but 
we can also immediately see that there is a lot of variability and that the ecdf curves are 
very similar. (Given the nature of the data, a logged y-axis for the boxplot might make the 
graph easier to grasp; also, see the code file for how to generate side-by-side histograms of 
the object and subject lengths.)

Let us now also compute the means and standard deviations as well as medians and 
interquartile ranges:

>·tapply(LENGTH,·RELATION,·mean)¶
··object··subject
5.118421·3.769737
>·tapply(LENGTH,·RELATION,·sd)¶
··object··subject
6.021962·3.381818
>·tapply(LENGTH,·RELATION,·median)¶
·object·subject
······4·······3
>·tapply(LENGTH,·RELATION,·IQR)¶
·object·subject
······3·······4

The usual test for such a case – a dependent numeric variable and an independent 
categorical variable – is either the so-called t-test for independent samples (if the inde-
pendent categorical variable has two levels, as it does here) or a one-way ANOVA (if 
the independent categorical variable has three or more levels); if you use a one-way 
ANOVA with a binary independent variable, the results will be identical to those of the 
t-test. The next step again consists of determining whether we are in fact allowed to 
perform a t-test here. The t-test for independent samples is a parametric test and may 
only be used if:

 • the observations of the samples are independent of each other such that there is no 
meaningful relation between, say, pairs of data points;

 • the populations from which the samples are drawn are normally distributed (especially 
with sample sizes smaller than 30); and

 • the variances of the two samples are homogeneous. 

As to the former assumption, the subjects and objects were randomly drawn from a corpus 
so there is no relation between the data points. As to the latter two assumptions, Figure 4.8  
suggests that at least the assumption of normality of the object and subject lengths will not 
be met: If the data were perfectly normally distributed, the ecdf curves should be s-shaped. 
There are formal statistical tests for these conditions (?shapiro.test¶ and ?var.test¶; 
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see Gries 2013: sections 4.1.1.1 and 4.2.1), but we will skip those here for lack of space 
and because corpus data tend to violate at least one if not both of these assumptions any-
way; if you run the relevant tests on this data set, you would indeed see that you wouldn’t 
be allowed to do a t-test.

Thus, we compute the non-parametric alternatives to the t-test/the one-way ANOVA, 
which are the U-test (if the independent categorical variable has two levels, as it does 
here) or the Kruskal–Wallis test (if the independent categorical variable has three or 
more levels). The function for the U-test is called wilcox.test, the function for the 
Kruskal–Wallis test is kruskal.test, and both accept the formula notation we have 
seen above:

>·wilcox.test(LENGTH~RELATION)¶
 Wilcoxon·rank·sum·test·with·continuity·correction
data:··LENGTH·by·RELATION
W·=·14453,·p-value·=·0.0001305
alternative·hypothesis:·true·location·shift·is·not·equal·to·0

>·kruskal.test(LENGTH~RELATION)¶
 Kruskal-Wallis·rank·sum·test
data:··LENGTH·by·RELATION
Kruskal-Wallis·chi-squared·=·14.639,·df·=·1,·p-value·=·0.0001302

Note how, since the independent variable has only two levels, the p-values of both 
tests are virtually completely identical so you could have used either test, but once 
your independent variable has more than two levels, you have to use kruskal.test. 
Here, both p-values are much smaller than 0.05, which is why we conclude that the 
difference in the median lengths is most likely not due to chance. Thus, this result 
would be summarized as follows: “The median length of direct objects was four sylla-
bles (interquartile range: three) while the median length of subjects was three syllables 
(interquartile range: four). Since the data violated the assumption of normality, a 
U-test/Kruskal–Wallis test was computed, which showed that the difference between 
the two lengths is highly significant (for the U-test: W = 14,453, p < 0.001): In the 
population of English for which our sample is representative, direct objects are longer 
than subjects.”

You should now do “Exercise box 4.5: Averages.”

4.3.3 One Independent Numeric Variable

The final statistical method we look at is one where both the dependent and the inde-
pendent variables are numeric. As an example, let us assume that we are again interested 
in the lengths of XPs. Let us also assume that we generally believe that the best way 
of operationalizing the length of an element is by counting its number of syllables. 
However, we may be facing a data set that is so large that we don’t think we have 
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the time to really count the number of syllables, something that could require a lot 
of manual counting (but see Section 5.4.3). Since you already know how to use R to 
count words automatically, however, we are now considering having R assess the XPs 
lengths by counting the words and using that as an approximation for the XPs’ lengths 
in syllables. However, we would first want to establish that this is a valid strategy so 
we decide to take a small sample of our XPs and count their lengths in syllables and 
lengths in words and see whether they correlate strongly enough to use the latter as a 
proxy towards the former.

This kind of question can be addressed using a linear correlational measure. Linear cor-
relation coefficients such as r or τ (see below) usually range from −1 to +1:

 • negative values indicate a negative correlation which can be paraphrased by sentences 
of the form “the more . . . , the less . . . ” or “the less . . . , the more . . . ”;

 • values near 0 indicate a lack of a correlation between the two variables;
 • positive values indicate a positive correlation which can be paraphrased by sentences 

of the form “the more . . . , the more . . . ” or “the less . . . , the less . . . ”.

The absolute size of the correlation coefficient, on the other hand, indicates the strength 
of the correlation. Our hypotheses are therefore as follows:

H0: The lengths in syllables do not correlate with the lengths in words; r / τ = 0.

H1:  The lengths in syllables correlate positively with the lengths in words such that the 
more words the XP has, the more syllables it has; r / τ > 0.

Let us now load the data from the file <_qclwr2/_inputfiles/stat_lengths.csv> into R:

>·lengths<-read.table(file.choose(),·header=TRUE,·sep="\t",· 
comment.char="")¶

>·attach(lengths);·str(lengths)¶
'data.frame':···302·obs.·of··2·variables:
·$·LENGTH_SYLL:·int··5·1·7·1·1·4·10·1·3·1·...
·$·LENGTH_WRD·:·int··3·1·3·1·1·3·6·1·2·1·...

As usual, we begin by inspecting the data visually. Conveniently, we can again use the 
generic plot function to produce the very simple scatterplot in the top panel of Figure 4.9: 
As before, the first-named variable is used for the x-axis:

>·plot(LENGTH_SYLL,·LENGTH_WRD);·grid()¶

However, the plot in the top panel of Figure 4.9a is not particularly nice, and not only 
because of the labeling of the axes. The much bigger problem is that one cannot see in it 
that the circle shown at coordinates (1, 1), for instance, actually represents 60 (!) circles 
all plotted on top of each other, whereas the identical-looking circle at (22, 10) is just one 
circle. Thus, we create the much better plot in the lower panel of Figure 4.9b:



Figure 4.9 Scatterplots of the lengths of words in syllables and words.
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>·plot(jitter(LENGTH_WRD)·~·jitter(LENGTH_SYLL),·xlim=c(0, 
22),·ylim=c(0,22),· 
xlab="Length·in·syllables",·ylab="Length·in·words",· 
pch=16,·cex=1.25,· 
col=rgb(0,·0,·0,·50,·maxColorValue=255))¶

>·lines(lowess(LENGTH_WRD~LENGTH_SYLL),·lwd=2)¶
>·abline(0,·1,·lty=3);·grid()¶

This plot (1) jitters the data points by adding a small amount of noise to each coordi-
nate using jitter (highlighting cases where many points would otherwise be identical);  
(2) uses the rgb function to create transparent grayscale colors (with overplotting leading 
to darker colors); (3) adds a thicker, smoother (lowess) line (lines) that summarizes the 
trend we see in the data; and (4) adds a main diagonal marking the cases where the word 
length is the same as the syllabic length: abline can take an intercept and a slope so if you 
set them values as above, you get a line representing the situations where y = x.

It is immediately obvious that there is a positive correlation between the two variables: 
The larger the syllabic length, the larger the lexical length. The correlation between two 
numeric variables is referred to as Pearson’s product-moment correlation r (for regres-
sion), but its significance test, too, comes with an assumption that corpus data usually do 
not meet, namely that the population from which your samples were taken is bivariately 
normally distributed, which in practice is often approximated by testing whether each 
variable is distributed normally. Figure 4.9 clearly shows that the data are not normally 
distributed at all, but rather Zipfian: A few very small lengths (e.g., 1–4) cover the vast 
majority of all data (about 66 percent). The solution is again to use a non-parametric 
alternative to the test we originally wanted to do. Instead of r, we now compute another 
correlation coefficient, Kendall’s τ (read: tau). Fortunately for us, the function for both 
correlations is the same, cor.test. It minimally takes the two vectors to be correlated 
(the order doesn’t matter) and the method argument, in which you specify the desired cor-
relation test; in this particular case, we have a so-called directed H1: We do not just expect 
τ to be different from 0 in whatever direction, we expect it to be positive, i.e., greater than 
0 (which is called a one-tailed test); thus, we add another argument called alternative and 
set it to “greater”:

>·cor.test(LENGTH_SYLL,·LENGTH_WRD,·method="kendall", 
·alternative="greater")¶

········Kendall's·rank·correlation·tau
data:··LENGTH_SYLL·and·LENGTH_WRD
z·=·16.814,·p-value·<·2.2e-16
alternative·hypothesis:·true·tau·is·greater·than·0
sample·estimates:
······tau
0.7657678

It turns out that the correlation is rather high and highly significant so that we might 
want to be confident that the length in syllables can be reasonably well approximated by 
the length in words that is computationally easier to obtain. We can thus say: “There is a 
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highly significant positive correlation between the lengths of XPs in words and the lengths 
of XPs in syllables (Kendall’s τ = 0.766, z = 16.8139; pone-tailed < 0.001).” Just so that you 
know in case you have data that are normally distributed: The computation of r is just as 
easy because you only need to change “kendall” into “pearson”.

Recommendations for further study/exploration

 • To do simple regressions in R you can use lm or ols from the package rms. 
Caution: do not use these methods before having consulted some additional 
references! 

4.4 Reporting Results

The previous sections have introduced you to a few elementary statistical methods that are 
widely applied to corpus data. For each of the methods, I have also shown you how the 
data would be summarized both in terms of graphic representation and in terms of statis-
tical testing. However, now that you know something about each aspect of the empirical 
analysis of language using corpus data, I would also like to at least briefly mention the 
overall structure of an empirical paper that I myself find most suitable, which corresponds 
to the structure of quantitative/empirical data in many disciplines. This structure looks as 
represented in Table 4.7.4

This structure is very rigid, but given its wide distribution you will see it very often 
and, thus, get used to it, and other people will find your papers well structured. Also, the 
structure may seem excessively precise in that it requires you to specify even the retrieval 
algorithm or syntax and the software that you used. The reason for this is one I already 
mentioned a few times: Different applications incorporate different search parameters, 

Table 4.7 Structure of a quantitative corpus-linguistic paper

Part Content

Introduction What is the question?
Motivation of the question
Overview of previous work
Formulation of hypotheses

Methods Operationalization of variables
Choice of method (e.g., diachronic vs. synchronic corpus data; tagged vs. 

untagged corpora; etc.)
Source of data (which corpus/corpora?)
Retrieval algorithm or syntax
Software that was used
Data filtering/annotation (e.g., how were false hits identified? What did you do 

to guarantee objective coding procedures? How did you annotate your data? 
etc.)

Choice of statistical test(s) and how they are implemented
Results Summary statistics

Graphic representation
Significance test: test statistic, degrees of freedom (where available), and p
effect size: the difference in means, the correlation, etc.

Discussion Implications of the results for your hypotheses
Implications of the results for the research area
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and definitions of what is a word will differ across software applications. Thus, in order 
for others to be able to understand and replicate your results, you must outline your 
approach as precisely as possible.

Of course, if you use R, all of this is much less problematic because you can just provide 
your regular expression(s) or even your complete program as pseudocode. Pseudocode is 
a kind of structured English that allows you to describe what a program/script does with-
out having to pay attention to details of the programming language’s syntax (see the very 
useful page by John Dalbey at www.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html for more 
details), and Chapter 5 will make use of something very similar to pseudocode all the time. 
Here is an example of pseudocode for a script that generates a concordance of right when 
tagged as an adjective:

01 clear memory
02	 choose	corpus	files	to	be	searched
03	 for	each	corpus	file
04	 load	the	file
05	 if	the	corpus	file	is	from	the	right	register
06	 downsize	the	file	to	all	lines	with	sentence	numbers
07 retrieve all matches (i.e., lines containing right as an adjective) 

from	the	file
08	 store	all	matches	with	the	names	of	the	files	successively
09 end if
10 end for
11 insert tab stops for better output
12 delete unwanted tags and unnecessary spaces
13	 output	result	into	a	file

If you provide this information together with the actual regular expressions you used to

 • check the right register in line 5 (“<teiHeader type.*S conv</classCode>”);
 • downsize the file in line 6 (“<s·n=”);
 • retrieve the matches in line 7 (“<w·AJ0(-AV0)?>right\\b”);
 • delete unwanted tags and unnecessary spaces in line 12 (“<.*?>“ and “·*\t·*”);

then you will be more explicit than many corpus linguists are at present, and than I myself 
have been on too many occasions in the past.

Now we are at the point where we have covered nearly all the programming knowledge 
you need, we can finally get down to business and deal with the case studies.

Notes
1 I will not deal with other kinds of variables such as confounding or moderator variables; see Gries 

(2013b: 12) for a discussion.
2 As a matter of fact, five is the most widely cited threshold value. There is, however, a variety of 

studies that indicate that the chi-squared test is fairly robust even if some expected frequencies are 
smaller than five, especially when the null hypothesis is a uniform distribution (as in the present 
case). In order not to complicate matters here any further, I stick to the conservative threshold and 
advise the reader to consult statistics textbooks for more comprehensive coverage. If whatever 
threshold value adopted on the basis of the pertinent literature is not met, you should either use 
the binomial test or the multinomial test (see Gries 2013b).
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3 The same is actually true of corpus frequencies. Too many studies content themselves by reporting 
frequencies of occurrence or co-occurrence only, without also reporting a measure of corpus dis-
persion, which can sometimes hide a considerable bias in the data; see Gries (2008, 2010), Lijffijt 
and Gries (2012) for discussion, and Section 5.1 for case studies.

4 If you have more than one case study, then each case study gets its own methods, results, and dis-
cussion sequence, and then you pull together the results of all case studies in one section entitled 
“General discussion” at the end of the paper.
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5 Using R in Corpus Linguistics
Case Studies

Now that corpus linguistics is turning more and more into an integral part of mainstream 
linguistics, . . . we have to face the challenge of complementing the amazing efforts in the 
compilation, annotation and analysis of corpora with a powerful statistical toolkit and of 
making intelligent use of the quantitative methods that are available.

(Mukherjee 2007: 141)

In this chapter you will learn how the functions introduced in Chapter 3 can be applied 
to the central tasks of a corpus linguist, namely to retrieve and process linguistic data to  
produce frequency lists and concordances, to work with collocations, to compute disper-
sion statistics, and generally work with a variety of different corpora. Obviously, the 
number of different formats of corpora as well as the number of different tasks you might 
wish to perform are actually so large that we will not be able to look at all possible com-
binations. Rather, I will exemplify how to perform many different tasks on the basis of 
several frequently used corpora and corpus formats. (A few of the case studies were part 
of the additional assignments of the first edition, but you will see that there are many new 
ones and even those that were posted before have been rewritten (and are often much 
faster now) and are now heavily commented.) The tasks we will perform in the case stud-
ies below are roughly grouped according to the kind of corpus-linguistic task they involve, 
but this grouping is only a heuristic because (1) several scripts involve tasks that defy an 
easy characterization into frequency lists, dispersion, collocation, and concordancing, and 
(2) several scripts involve more than one of these aspects; they cover a wide range of things 
in the hope that you can generalize from them to your own applications. Within each 
group the tasks or case studies are ordered according to difficulty, but this, too, is only 
approximate because difficulty is hard to operationalize objectively.

In some sense, you have arrived in a ‘good news, bad news’ kind of situation. The good 
news is that you actually already know nearly all the functions we will use: You will have 
to learn only a very small number of new functions for this chapter and in fact you already 
know virtually all functions I use for my own research. The bad news is that it’s still not 
an easy chapter because it is all about putting these functions together in the right ways to 
get stuff done, and in that sense, R is like a natural language, where it’s often easy to learn 
vocabulary and their local syntax (functions and their arguments), but much less easy to 
employ them properly in sentences and paragraphs (scripts). But fear not, the chapter is 
written in a way that I hope will be useful and also in a way that will make it easy for 
you to recycle (parts of) scripts for your own work: Wherever possible I wrote the code  
such that I didn’t hardcode particular numbers of files etc. into the script but have R  
determine the lengths of vectors and lists (so that you don’t have to fiddle with details as 
you recycle the script for your own work).
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With very few exceptions, the case study sections all have the same structure: They 
begin with a short characterization of what the goal of the task/script is; sometimes, this 
will be just a prose explanation, sometimes I will also show you the results of the script –  
a results table or a plot, for instance. Then, each case study has four sections, which are 
designed to help you understand the programming process in a stepwise fashion. This 
sequence is important because it is very easy to show someone the solution to a program-
ming problem, but very hard to teach someone to see why that solution is a good one and 
even harder to teach someone to develop a way of thinking that enables them to find such 
solutions themselves, because programming requires an analytical and to some extent tax-
onomic and modular kind of thinking. In this context, a small half-humorous side-remark 
is in order: One thing that you should do right now is drop your human way of thinking 
and your human expectations, because one other important aspect of writing scripts is to 
understand that the ‘thing’ implementing your instructions is a ‘stupid computer,’ i.e., an 
entity that will cover up your gaps in scripts with well-intentioned base understandings of 
what words are, which words you might be interested in etc. – no, you must try to write 
scripts such that all eventualities are covered. That means you may think that every corpus 
file contains matches of an expression, but your script still needs to be able to handle cases 
when a corpus file does not contain a match. That also means you may think a certain 
website may be downloadable, but your script still needs to be able to handle the situation 
that it’s not. And so on.

Back to the sequencing of each section: The sequencing I am using here is designed to 
help you zoom in from a general description of the task into the more specific aspects of 
the code such as (1) the R functions you will need to use and (2) the structure of the script, 
i.e., how and in which order the functions are used. These are the four parts, or subsection 
headings:

 • What are the things we will need to do? This section explains in plain English which 
steps the relevant task involves; it uses hardly any R code but already introduces the 
kinds and names of a few data structures that the script will contain.

 • What are the functions we will need for that? This section lists all the main functions 
one will need to use to perform the things implied by the description formulated in 
the previous step.

 • Thus, this is the overall structure of the script. This section provides a skeleton of the 
R code we will use in what is called pseudocode: a description of the algorithm and 
structure of a program that performs a particular task. It is imperative that you read 
this part with the relevant script open in RStudio because in the pseudocode I will 
provide the line numbers of the relevant R script from the companion website so you 
can see exactly which lines of code in the script do which part of the pseudocode, or 
how the pseudocode is ‘translated’ into actual R code. The files with all the scripts are 
in the folder <_qclwr2/_scripts/> and all begin with “05_”; this part will greatly help 
you understand the logic of the scripts.

 • Which aspects of the script are worth additional comment? If you look at the script 
files, you will see that they are very heavily commented: Often even a single func-
tion call is broken up into several lines so that each argument can be explained, and 
sometimes I will break down regular expressions into multiple lines (remember free-
spacing from above?) to explain everything in detail. However, sometimes scripts 
involve something that I think merits additional explanation here, or they involve 
something you haven’t seen yet at all or in the form in which something is used. If 
there are such situations – and not every case study has such parts – then this section 
provides additional discussion of these aspects of the scripts.
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Note that sometimes scripts provide more than one solution to a problem, and note that 
even if scripts do not provide alternative solutions, there are usually many ways to solve a 
problem. The solutions I provide here are probably relatively good ones, but there will be 
others and probably better ones, so if, after thinking about a task or reading my solution 
you come up with a better one, great – post it on the newsgroup for the Google Group 
for this book!

Ok, let’s get started.

5.1 Dispersion

5.1.1 Dispersion 1: HIV, Keeper, and Lively in the BNC

As mentioned in Section 2.3, it is often extremely important to not just consider the fre-
quency of morphemes, words, constructions, etc. in a corpus, but also their dispersion, 
because elements may have very similar overall frequencies in a corpus but nevertheless be 
very differently dispersed in that corpus. Above, I mentioned Leech, Rayson, and Wilson 
(2001), who demonstrated this fact by showing how the words HIV, keeper, and lively 
are similarly frequent, but differently dispersed in the BNC, and in this case study we will 
try to replicate their findings while at the same time write our script such that it can be 
extended easily to more different words than just those three. In addition, we also want 
to compute Gries’s (2008; 2010) measure of dispersion DP, which is computed by com-
puting for each corpus file (1) the size of that file as a percentage of the whole corpus and  
(2) the relative frequency of occurrences of the word in question in that file as a percent-
age, and then take half of the sum of the absolute differences of these two percentages per 
file, as shown in (1):

(1) 0 5 1. % % .Σ −i
n

i iof corpus part of word occ s incorpus part=

Here’s a little made-up example of a corpus with three files: the files make up 50 percent, 
30 percent, and 20 percent of the corpus, and of all occurrences of the word in question, 
70 percent, 20 percent and 10 percent are in the corresponding files. Then, DP is com-
puted like this:

>·file.sizes.ie.exp.percs<-c(0.5,·0.3,·0.2)¶
>·word.hits.ie.obs.percs<-c(0.7,·0.2,·0.1)¶
>·0.5*sum(abs(word.hits.ie.obs.percs-file.sizes.ie.exp.percs))·#·0.2¶

Simplifying a bit, DP ranges from 0 (a word is perfectly evenly distributed in the corpus, 
i.e., in accordance with the sizes of the corpus files) to 1 (a word is completely unevenly 
distributed in the corpus). If we want to compute DP for a word w, we therefore need to 
determine (1) the frequency of w in every single corpus file (which may be 0 or higher) and 
(2) the size of every single corpus file (which will be 1 or higher). Thus, if we have three 
words for which we want to compute DPs and we have n = 4,049 corpus files, we want 
two forms of output: First, for the frequencies of each word w in each corpus file c1–n, we 
can use a list freqs.of.words that has three components (one for each word w1–3 whose 
DP value we want to compute), and each of these three components is a numeric vector of 
length 4,049 that states how frequent each word is in each corpus file c1–n. Second, for the 
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corpus file sizes, we need a numeric vector sizes.of.files.in.words of length 4,049, 
one for each corpus file c1–n.

What are the things we will need to do?

 • We need to define a vector corpus.files that contains the paths to all corpus files, 
which should all be in one directory (potentially with sub-directories).

 • We need to define a vector words that contains the words for which we want to com-
pute DP values and then also a vector search.expressions that changes words into 
regular expressions we can search for in the corpus files (using the annotation of the 
corpus). Recall from Section 3.6.3, this is a script in which we know the dimensions 
of the output in advance: If we have three words and 4,049 corpus files, we know, 
for instance, that the vector corresponding to sizes.of.files.in.words above will 
need to have 4,049 slots, and we know that the list that collects the three words’ fre-
quencies will need three components each with 4,049 slots. Thus, we make sure that 
we define data structures with these dimensions before we enter any of the loops.

 • We will access each of these files, i.e., use a first for-loop (using i as a counter) 
where on each iteration we load (with scan) one corpus file; once we have that file in 
memory, we need to determine its size in words, which we save into a slot in sizes.
of.files.in.words.

 • Also, while we have that corpus file in memory, we need a second for-loop (using 
j as a counter) that iterates over each search.expression to determine how fre-
quent each word w in words is in each corpus file c1–n, once we have the frequency of 
word wj in corpus file ci, we store its frequency in the corresponding slot of freqs.
of.words[[j]][i].

 • We complete the inner for-loop for the words and then the outer for-loop for the 
corpus files; we do that in this order so that we load every corpus file just once to look 
for the three words in it rather than loading each corpus files three times.

 • Finally, once we have the results of this loop, we can compute DP for each word along 
the lines discussed above and then generate a plot with, say, the frequencies of the 
words on the x-axis and the DP values of the same words on the y-axis.

What are the functions we will need for that? Obviously, we need to be able to define 
the corpus files we want to search, which means it will be useful to use rchoose.dir to 
define the directory containing the corpus files; also, we will need to be able to retrieve 
all the file names from that directory using dir. We will need to define vectors and a list 
(with integer and list), and we will need to use one for-loop nested into another. 
We will use scan to load each corpus file in the outer loop, use tolower to make eve-
rything case-insensitive, and we will use grep to make sure we only search for words in 
the part of the corpus file that’s not the header. To find the words we are interested in, 
we can use just.matches (which we would then define at the beginning of the script 
again) or exact.matches.2 (which we would then have to source at the beginning of 
the script).

Once we’re done with the loops, we will need to compute the file sizes in percent, which 
means we need sum to compute the overall corpus size from sizes.of.files.in.words so 
we can compute each file’s size as a fraction of that, and we will need lapply to access each 
element of freqs.of.words to do the same. Then, we loop over each word w1–3 to compute 
DP as defined in (1) above and then we plot it using plot. In order to make the plot easier 
to interpret, we might use the first letters of the three words in question as point characters 
rather than a circle, which would then have to be labeled anyway; for that we need substr.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_01_dispersion1.r>; 
read this side by side with the actual script in RStudio:
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clear memory and define and/or load all relevant packages and/or functions (18–33)

define the words to search for (and corresponding regular expressions): words and 
search.expressions (36–38)

define the corpus files to search: corpus.files (40–41)

define the data structures that will collect the results: sizes.of.files.in.words 
(43–44) and freqs.of.words (46–53)

outer for-loop (counter = i, over seq(corpus.files)) (57, −95)

output a progress report (% of files processed) (58–60)

load the i-th file from corpus.files and switch it to lower case (62–66)

discard the header/find the sentences (67–70)

inner for-loop (counter = j, over seq(search.expressions)): (72, −83)

 store in freqs.of.words[[j]][i] the frequency of the j-th word in the  
corpus file (73–76 or 77–82)

compute the corpus file size in words (85–87)

compute the corpus file sizes in percent and store it in sizes.of.files.in.words[i]  
(99–102)

compute the words’ frequencies per file in percent (104–108)

compute and show DPs (110–120)

visualize (122–126)

Which aspects of the script are worth additional comment? One aspect worth commenting 
on in more detail is the creation of search.expressions from words: We take each word 
and paste the closing angular bracket from the tag in front of it, and an optional space 
(“·?”) before the closing word tag “</w>” after it (and we use paste0 to paste without a 
separator) so that we can use each element of this as a regular expression. Creating search 
expressions like this, i.e., by including closing tags etc., makes discarding the header less 
necessary since it is extremely unlikely that the search expressions we’re pasting together 
here would match anything in the header – we’re just being extremely careful here:

>·words<-tolower(c("HIV",·"keeper",·"lively"))¶
>·search.expressions<-paste0(">",·words,·"·?</w>")¶

Another thing that’s useful to talk about is the creation of the data structures that will col-
lect the results. Creating sizes.of.files.in.words is easy: The following line (44 in the 
script) creates an integer vector that has as many slots as you have corpus files:

>·sizes.of.files.in.words<-integer(length=length(corpus.files))¶

But creating the list to collect the words’ frequencies in each corpus file is more involved. 
We proceed in two steps: First, we create a temporary vector that has as many slots as 
there are corpus files and make sure that each slot has the name of one corpus file:
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>·temp<-rep(NA,·length(corpus.files))¶
>·names(temp)<-basename(corpus.files)¶

But then we also need our list with as many elements as there are words for which to  
compute DP. Thus, we create a list with that many empty components (line 51), give each 
list element the name of a word we are computing DP for (line 52), and then use the sub-
setting function “[” to put temp into each list element:

>·freqs.of.words<-vector(mode="list",·length=length(words))¶
>·names(freqs.of.words)<-words¶
>·"["(freqs.of.words)<-list(temp)¶

The rest of the text-processing loops should be clear from the script file. But then what? 
Computing the sizes of the corpus files in percent is unproblematic, but what about com-
puting the relative frequencies of the words in the corpus files?

>·freqs.of.words.perc<-lapply(freqs.of.words,·function(x)·{·x/
sum(x)·})¶

Remember that freqs.of.words is a three-element list. We use lapply to access each 
element of the list and then apply an anonymous/inline function to it that takes the list 
element – which you know is a numeric vector – temporarily refers to it as x, and divides 
each number of that vector x (i.e., each frequency of a word in a corpus file) by the sum of 
all numbers in x (i.e., the overall frequency of a word in the whole corpus). That way, we 
now have the two vectors that at the beginning of this section were exemplified as sizes.
of.files.in.words and freqs.of.words, which means we can use a small for-loop to 
compute DP for each word and plot the results.

5.1.2 Dispersion 2: Perl in a Wikipedia Entry

Let us now consider another application of dispersion: This time around we want to 
visualize the dispersion of the string “Perl” (case-insensitively) in an older version of its 
Wikipedia entry (already cleaned and available in <_qclwr2/_inputfiles/corp_perl.txt>). 
Specifically we want to create the results shown in Figure 5.1.

The left panel is a dispersion plot whose x-axis represents all the words in the  
‘corpus’ which shows a vertical line when a word is “Perl” (case-insensitively) and no line 
otherwise. We can easily see how, for instance, there are a lot of occurrences at the very 
end – presumably that’s the section with references and links. The right panel is a similar 
plot but it bins the words in the corpus (here into ten equally large parts), and again we can 
see that there are a lot of occurrences of “Perl” in the last 10 percent slice of the corpus.

What are the things we will need to do?

 • We need to load and switch to lower case our single corpus file and split it up into 
words (say, into a character vector word.tokens); we may have to get rid of empty 
character strings resulting from the splitting.
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 • We need to check for every word token in word.tokens whether it is “perl” or not.
 • For the left panel, we plot a vertical line whenever a word token is “perl”.
 • For the right panel, we need to create a vector corpus.parts that lists for every 

element of the vector word.tokens which of ten equally sized parts it’s in and then 
count how often “perl” shows up in each of those parts; from that we can compute 
DP as above.

 • Then, since we then already have the observed percentages of how often “perl” shows 
up in each of the ten parts, we generate a bar plot that represents these ten percentages.

What are the functions we will need for that? We need scan and tolower to load 
and prepare the corpus file, and we will need strsplit to retrieve the word tokens as 
well as unlist to turn the list returned by strsplit into a vector word.tokens. We 
will discard empty character strings with nzchar and test whether each word token 
is “perl” with a simple logical expression testing for equality (i.e., ==) and then use 
plot (with type="h", for histogram) to plot the left panel (because FALSE = 0 and 
TRUE = 1). For the right panel, we will define a number of corpus parts we want (here 
ten) so that the script can easily be changed to accommodate different divisions of the 
corpus into parts. Then, we create a vector of word positions in word.tokens, which 
will run from 1 (for the first word in word.tokens) to n = 6,065 (for the last word in 
word.tokens) with seq and we then split that vector up into ten equally long parts 
using cut. The factor that cut returns will have ten levels and can be cross-tabulated 
(using table) with the TRUEs and FALSEs from the logical vector created to plot the 
left panel.

The two final steps are computing DP and plotting the bar plot. For the former, our 
table contains the frequencies of “perl” in each corpus part (in the column for TRUEs), 
which we can divide by the overall frequency of “perl” in the file to get percentages (to be 
stored in a vector called obs.percs), and we can use the function rowSums to compute 
the corpus part sizes in percentage in a vector exp.percs (which should all be really close 
to 10 percent, given how we split the corpus up into ten parts above), from which we can 
compute DP. Finally, we use the function barplot to plot the observed percentages of 
“perl” in the corpus parts and customize the plot.

The distribution of >perl< in the corpus The distribution of >perl< in the corpus

0.1
0.

0
0.

1
0.

2

R
el

at
iv

e 
fr

eq
ue

nc
ie

s 
of

 ‘p
er

l’

0.
3

0.
4

0.
5

Sections of the corpus
(Gries’s DP =0.1828)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.1 Dispersion results for perl in its Wikipedia entry.
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Thus, this is the overall structure of the script <_qclwr2/_scripts/05_02_dispersion2.r>; 
read this side by side with the actual script in RStudio:

clear memory (1), load the corpus file into a vector text.file, and switch it to lower 
case (3–4)

split text.file into words (simplistically at non-word characters) and unlist the 
result to obtain a vector word.tokens (6–10), from that, discard empty character 
strings (11)

use a logical expression to check for each element of word.tokens whether it is 
“perl”; save the logical values into a vector is.perl (13–14, note the alternative 
syntax in 16)

create the left panel by plotting the logical values (18–20)

define the number of parts you want to divide the corpus into (22–23)

define a sequence of all 6,065 positions of words and cut it up into ten parts, store 
that in a factor called corpus.parts (25–27)

cross-tabulate corpus.parts and is.perl (use addmargins to get row and  
column totals) (29–34)

compute the percentages of uses of “perl” per corpus part from the relevant column 
of that table (36–37) as well as the corpus part sizes (38) and compute DP (39)

visualize (41–50, note the suggestion in 52–53)

Which aspects of the script are worth additional comment? There shouldn’t be any here, 
the above plus the comments in the code file should make things fairly clear.

5.2 Frequencies, Frequency Lists, and Key Words

5.2.1 Character N-Grams

Sometimes, it might be useful to generate n-grams, i.e., chains of multiple elements of the 
same resolution. Typically, these would be word n-grams, but one can also find appli-
cations of character n-grams. For instance, the three-grams on the level of the word of 
the preceding sentence would be “Typically these would”, “these would be”, “would be 
word”, etc., and the three-grams on the level of the character would be “Typ”, “ypi”, 
“pic”, etc. In this section, we will write a small script that can generate character three-
grams (and will also write a new function for this in R); in the next section, we will then 
write a script that can generate word three-grams; for simplicity’s sake, both applications 
will work with a simple unannotated text file, <_qclwr2/_inputfiles/corp_gpl_long.txt>.

What are the things we will need to do?

 • We need to load and switch to lower case our single input file.
 • We will get rid of everything that’s not a letter from a to z and a space (for simplicity’s sake –  

this [cw]ould need to be tweaked for other kinds of input files of course) – and merge all 
lines of the input file into one long string, which we also clean up and prepare for output 
(for instance, replacing spaces with underscores so one can see word boundaries better).

 • We will then determine how many character three-grams there will be (so as to 
avoid having a vector of three-grams grow all the time, which is bad practice; 
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recall Section 3.6.3) and create a vector all.3grams1 of that length to collect the 
results.

 • We will then go through the one long character string that is now our input file with a 
loop and extract all character three-grams, storing each one of them in all.3grams1.

 • Finally, we will create a sorted frequency list of all character three-grams, explore it 
briefly statistically, and plot it – can you guess what the most frequent three-gram will be?

In addition to the above, I will present a version of this script that does not use a loop but 
a function from the family of apply functions (see ?mapply¶), and I will show how you 
can use that kind of code to write and apply a function called character.ngrams for 
your future work.

What are the functions we will need for that? We need scan and tolower to load and 
prepare the corpus file, and we will need gsub to clean up characters we do not want to 
consider, and we will need paste and gsub again to create a clean version of a character 
vector with one element that contains the whole text.

We then need nchar to determine how many three-grams we will have to create/retrieve and 
then store, and a for-loop that applies substr to the cleaned text vector to extract the three-
grams. Finally, we will use sort and table to create our frequency list of the three-grams, 
quantile to explore their distribution, and plot with type="h" again to visualize the results.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_03_char-ngrams.r>;  
read this side by side with the actual script in RStudio:

clear memory (1)

load the corpus file into a vector textfile and switch it to lower case (3–8)

delete all characters you do not want to include to obtain textfile.cleaned (10–14)

use paste to merge all the elements of textfile.cleaned into a one-element vector 
textfile.oneline.1 (16–19)

use gsub to delete excess whitespace that results from the cleaning and merging to 
create textfile.oneline.2 (21–25)

create textfile.oneline.3 by gsubbing spaces in textfile.oneline.2 with 
underscores so that three-grams involving word boundaries are easier to see in 
the output (27–31)

determine how many characters textfile.oneline.3 has with nchar, that number 
minus 3 − 1 = 2 (because you are generating three-grams) will be the number of 
three-grams; reserve a vector all.3grams1 that has that many slots (35–44)

use a for-loop (counter = i, over seq(all.3grams1)) to retrieve every three-gram 
from textfile.oneline.3 and store each in the i-th slot of all.3grams1 (46–52)

create a sorted frequency list of all.3grams1; call it sorted.ngram.table (54–56)

compute sorted.ngram.table’s deciles to see if the frequency distribution is (very) 
skewed/Zipfian or not (58–61)

visualize the sorted frequency table (63–68)

Which aspects of the script are worth additional comment? One function call that may 
be useful to mention here is the one in lines 38–44 simply because it is something you 
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have not seen before: It uses the function length to count the number of elements that an 
object has, but the interesting (space-saving) thing about it is that the argument to length 
is not just a data structure but actually an assignment of a name to a data structure:

>·length(all.3grams1<-character(length=nchar(textfile.
oneline.3)-2))¶

That is, the above is the short version of this:

>·all.3grams1<-character(length=nchar(textfile.oneline.3)-2)¶
>·length(all.3grams1)¶

Now what about the alternative solution that does not require a for-loop? This one 
is shown in lines 72–77 and is a bit more tricky and involves a function I haven’t dis-
cussed, but only recommended to you for further exploration before, mapply. As the 
help says, it’s a multivariate version of sapply that takes as its first argument a func-
tion and as additional arguments it can take arguments to the first-named function. In 
the following line, this means, use the function substr with textfile.oneline.3 as 
substr’s first argument (i.e., as the thing from which to extract substrings), with the 
positions 1, 2, . . . 17,093, 17,094 as the second argument to substr (i.e., the starting 
points of the substrings to extract), and with the positions 3, 4, . . . , 17,095, 17,096 
as the third argument to substr (i.e., the end points of the substrings to extract), and 
we do not allow mapply to name the output elements, because that makes the output 
extremely unwieldy:

>·all.3grams2<-mapply(substr,·textfile.oneline.3,·¶
+····1:(nchar(textfile.oneline.3)-2),·¶
+····3:nchar(textfile.oneline.3),·¶
+····USE.NAMES=FALSE)¶

A third alternative to create all character three-grams also avoiding a loop is shown in 
lines 81–86, which involves just using substr, but using rep to make its first argument –  
the string from which to extract substrings – as long as its arguments start and stop:

>·all.3grams3<-substr(¶
+·····rep(textfile.oneline.3,·(nchar(textfile.oneline.3)-2)),·¶
+·····1:(nchar(textfile.oneline.3)-2),·¶
+·····3:nchar(textfile.oneline.3))¶

Explore the rest of the code file, lines 90–110, to see how the second approach – the 
one using mapply – is then used to define a function character.ngrams, where  
you or any other user provides a character vector of length 1 as the first argument 
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and the desired gram length as the second to get the job done very quickly. As a  
‘homework assignment’ you may want to think about how you could create a version of 
character.ngrams that works on input vectors of length 1 or longer ones. Also, check 
out ?stringdist::qgrams¶, which is the R notation to say “the help file for the function 
qqgrams from the package stringdist”.

5.2.2 Word N-Grams

The next case study is very similar to the preceding one: we are again interested in n-grams –  
three-grams, to be precise – but this time in three-grams of words, not characters; for the 
sake of simplicity, we will work with the same input file, <_qclwr2/_inputfiles/corp_gpl_
long.txt>.

What are the things we will need to do?

 • We need to load and switch to lower case our single input file.
 • We will retrieve all words of the file by splitting on everything that’s not a letter from a 

to z and a space (again, this [cw]ould need to be tweaked for other kinds of input files).
 • We will then determine how many word three-grams there will be (so as to avoid 

having a vector of three-grams grow all the time – same as above) and create a vector 
all.3grams1 of that length to collect the results.

 • We will then go through the vector of all words that now is our input file with a loop 
and extract all word three-grams, storing each one of them in all.3grams1.

 • Finally, we will create a sorted frequency list of all word three-grams, explore it briefly 
statistically, and plot it.

As before, I will also present a version of this script that does not use a loop, but mapply, 
and I will also show how you can use that kind of code to write and apply a function 
called word.ngrams for your future work.

What are the functions we will need for that? We need scan and tolower to  
load and prepare the corpus file, and we will need strsplit and unlist to split 
up the corpus file into words (and nzchar to eliminate empty strings) and put them  
into a vector called textfile.words. We then need length to determine how  
many three-grams we will have to create/retrieve and then store, and a for-loop 
that applies paste (with collapse) to the text vector to create the three-grams.  
Finally, we will use sort and table to create our frequency list of the three-grams, 
quantile to explore their distribution, and plot with type="h" again to visualize 
the results.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_04_word-ngrams.r>;  
read this side by side with the actual script in RStudio:

clear memory (1)

load the corpus file into a vector textfile and switch it to lower case (3–8)

use strsplit to split up at every occurrence of 1+ characters you do not want 
(11–13), unlist the result into a vector textfile.words (14), and remove empty 
strings from it (16–17)

(continued)
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determine how many words textfile.words has with length, that number minus 
3 − 1 = 2 (because you are generating three-grams) will be the number of three-
grams; reserve a vector all.3grams1 that has that many slots) (21–30)

use a for-loop to retrieve every three-gram from textfile.words and store each in 
the relevant slot of all.3grams1 (32–39)

create a sorted frequency list of all.3grams1; call it sorted.ngram.table (41–43)

compute sorted.ngram.table’s deciles to see if the frequency distribution is (very) 
skewed/Zipfian or not (45–48)

visualize the sorted frequency table (50–55)

Which aspects of the script are worth additional comment? Not much really, because we’ve 
dealt with pretty much all of it in the previous section on character n-grams. However, if 
you look at lines 59–71 of the code file, you can see an alternative way of generating the 
word three-grams without a for-loop, but this time the solution is quite complicated and 
involves several nested steps:

 • We are again using mapply, but this time we do it to generate a matrix with 2,950 
columns (one for each three-gram to create) and three rows (with positions of the three 
words in each three-gram for subsetting. Here are the first six columns of this matrix:

·····[,1]·[,2]·[,3]·[,4]·[,5]·[,6]
[1,]····1····2····3····4····5····6
[2,]····2····3····4····5····6····7
[3,]····3····4····5····6····7····8

 • Then we use the function apply, which takes three arguments: First, a two-dimensional  
data structure such as the above matrix; second, a 1 or a 2 depending on whether you 
want to do something to each row (1) or column (2) of that matrix; third, a function 
that says what you want to do with these row or column elements. In this case, we 
want to process the matrix columnwise because the positions of the words of each 
three-gram are in the columns.

 • The function we pass on to apply is an application of paste with collapse="·": 
We want each vector of numbers from each column to be used in subsetting from 
textfile.words so that we can paste those three words together with spaces between 
them.

This is a pretty complicated application and it doesn’t matter if you do not fully under-
stand it right away: Some of the apply functions are difficult at first – revisit this once 
you have more practice. However, do note that lines 75–90 provide you with a func-
tion word.ngrams that uses that apply(mapply(...)) approach and that you can use 
whenever you need to create n-grams from a character vector each element of which is 
a word.

(continued)
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5.2.3 Zero-Derivation of Run and Walk in the BNC

In this example we look at how the word forms run, runs, walk, and walks are used in 
the BNC. Specifically, we explore whether the two lemmas differ with regard to how 
frequently they are used as nouns or as verbs. We will do so in the BNC but, to add a 
slight twist to things, we will write our script such that it prompts the user to interactively 
choose what annotation the files to search have (XML or SGML), and then it proceeds 
with the required search expressions; (2) and (3) remind you of the form of the two anno-
tation formats, XML and SGML, respectively:

(2) a <w·c5=”NN1”·hw=”walk”·pos=”SUBST”>walk·</w>
 b <w·c5=”VVG”·hw=”walk”·pos=”VERB”>walking·</w>
(3) a <w·NN2>runs
 b <w·VVG>running

The desired output of this script <05_05_run-walk.r> is a data frame result  
like this (shown for XML results), which lists for every occurrence of run, runs, walk, 
and walks:

 • a coarse-grained tag (the pos-value in the XML annotation and the first letter of the 
tag in the SGML annotation) and a fine-grained tag (the c5 tag in the XML annota-
tion and the full tag in the SGML annotation);

 • the form that was found and the lemma of the form that was found:

>·head(result)¶
··TAGSCOARSE·TAGSFINE·FORMS·LEMMAS
1······subst······nn1···run····run
2·······verb······vvn···run····run
3·······verb······vvn···run····run
4·······verb······vvn···run····run
5·······verb······vvb···run····run
6·······verb······vvn···run····run
>·tail(result)¶
······TAGSCOARSE·TAGSFINE·FORMS·LEMMAS
38565·······verb······vvi··walk···walk
38566·······verb······vvz·walks···walk
38567·······verb··vvz-nn2·walks···walk
38568·······verb······vvi··walk···walk
38569·······verb······vvi··walk···walk
38570·······verb······vvi··walk···walk

What are the things we will need to do?

 • We need to define a vector corpus.files that contains the paths to all corpus files, 
which should all be in one directory (potentially with sub-directories).

 • We will let the user make a choice of which kind of corpus annotation the script will 
deal with, and depending on what the user chooses, the script will define all search 
expressions accordingly. Also, the script generates empty vectors to collect search 
results for each verb.
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 • We will load each corpus file and use our search expressions to find the four forms in 
question with the right tags and store all their matches.

 • We will process the matches so as to retrieve the coarse-grained and the fine-grained 
tags as well as the lemmas of the matches and save all of the results in a data frame 
result.

 • Finally, we will split up that data frame by the lemma and determine whether, within 
each lemma, there is a significant correlation between the two forms and whether they 
are used as nouns or verbs: We will perform chi-squared tests and create some plots.

What are the functions we will need for that? Obviously, we need to be able to define the 
corpus files we want to search, which means we use rchoose.dir to define the directory 
containing the corpus files and dir to retrieve all the file names from that directory. We 
will need the functions switch and menu (which you do not know yet so you may want 
to briefly look at their help pages – they are not difficult and the script will show you how 
they are used anyway) to prompt the user to choose the annotation format that will be 
processed, and we need a conditional with if to then define regular expressions for either 
choice. We will need to define empty character vectors to collect results using character, 
and we will need to use a for-loop to load each corpus file; during each iteration, we will 
use grep to find all corpus sentences and then use exact.matches.2 to find all matches 
of run, runs, walk, and walks.

After the loop, we will again use exact.matches.2 to retrieve the tags from the 
matches, we will use gsub to retrieve the forms only (i.e., discard all annotation), and we 
will use substr to define the lemma of each match (by retrieving the first letter, which 
gives us enough information to distinguish run and walk) and using ifelse to define a 
lemma column). All those results will then be put into the data frame result using data.
frame.1 That data frame will then be split up using split and cleaned using droplevels, 
and then we use chisq.test, mosaicplot, and assocplot to explore the distributions 
of nouns and verbs for all inflectional forms of each lemma; in that process, I will also 
introduce you to the functions with.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_05_run-walk.r>; 
read this side by side with the actual script in RStudio:

clear memory and define and/or load all relevant packages and/or functions (1–3)

define the vector with corpus files to search: corpus.files (5–6)

have the user define a logical vector xml.version by choosing from a menu with 
two options which annotation the corpus files have, XML or SGML (8–16)

define the search expressions conditional on which annotation will be processed; the 
search expressions must cover the retrieval of the overall form with its tag, how 
to retrieve just the tags, and just the forms (18–30)

define empty character vectors to collect matches: all.runs and all.walks (32–33)

for-loop (counter = i, over corpus.files): (35, -61)

output a progress report: the name of the file currently being processed (36) and 
load that corpus file i (37)

discard the header/find the sentences and switch them to lower case (39–44)

find and store in all.runs the matches for run and runs when tagged as a verb 
or a noun (46–53)
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find and store in all.walks the matches for walk and walks when tagged as a 
verb or a noun (54–60)

retrieve from all.runs and all.walks all coarse-grained tags with  
exact.matches.2 (63–70)

retrieve from all.runs and all.walks all fine-grained tags with  
exact.matches.2 (71–78)

retrieve from all.runs and all.walks all forms by gsubbing away everything else  
(79–88)

combine all results in a data frame result; while doing that, retrieve the first letter 
from the forms to decide on the lemma; summarize the result (90–99)

create a list results by splitting up result by its lemma column (101–103)

clean away unused levels from all data frames in results by lapplying droplevels  
(105–107)

cross-tabulate forms and coarse tags for “runs?”, compute a chi-squared test and 
Cramer’s V, and visualize the results (111–128)

cross-tabulate forms and coarse tags for “walks?”, compute a chi-squared test and 
Cramer’s V, and visualize the results (132–149)

Which aspects of the script are worth additional comment? It is maybe useful to briefly 
comment on how the user is prompted to choose the annotation format: The function 
menu takes as its first argument a character vector of options to choose from and can be 
further customized with graphics (do you want a window pop-up or a prompt in the 
console?) and title; it returns the number of the option the user chose, i.e., in our case 
1 or 2. In the code here, this 1 or 2 is then the input to switch, which takes that number 
and picks the corresponding item from its arguments. Thus, if the user chose “XML” then 
menu made that a 1 and switch then assigns TRUE to xml.version.

A second aspect worth mentioning is the definition of the search expressions; here’s 
one example:

>·search.expression.run·<-"<w·c5=\\\"[vn][^>]+>runs?(?=·?<)"¶

This looks for the beginning of an XML tag, with the c5 tag beginning either with  
“v” or with “n”, followed by one or more characters that are not already the closing 
angular bracket of that tag till you reach that closing angular bracket, followed by “run” 
or “runs” but only if, looking to the right, you can see a space (optional) and the next 
opening angular bracket. Okay, but why are there three backslashes? To understand this, 
it’s useful to compare the difference between how R represents those strings as a vector in 
the console and how they are actually printed as a string:

>·search.expression.run¶
[1]·"<w·c5=\\\"[vn][^>]+>runs?(?=·?<)"
>·cat(search.expression.run)¶
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<w·c5=\"[vn][^>]+>runs?(?=·?<)
>·nchar(search.expression.run)¶
[1]·30

That is, the first line is how we defined it, but when R, so to speak, ‘uses’ it then  
the third backslash is one that makes R recognize the " as not being the " that  
closes the opening " of the search expression, and the first backslash is the one that 
marks the second one as an actual backslash, not a backslash of a special charac-
ter. A little confusing, but if you ever struggle with this – as I admittedly do all the  
time myself – it helps to just cat the expression to the screen to see what you have 
really defined.

Finally, a brief note on the function with as used in the following line:

>·(results.run.coarse<-with(results$run,·table(TAGSCOARSE,·FORMS)))¶

The purpose of using with as above is that R does not know the two objects that are the 
arguments of table: If you tried to retrieve TAGSCOARSE, you will get an error message:

>·TAGSCOARSE¶
Error:·object·'TAGSCOARSE'·not·found

Thus, recall from Section 3.4.3 that with tells R where TAGSCOURSE and FORMS can be 
found, namely in the data frame results.

The rest of the script should be more or less self-explanatory but why don’t you, as a 
final task, try to take the two main search expressions, the ones used in the loop in lines 
50 and 57, and devise a new one that finds all four forms at the same time? The solution 
to this little exercise is in the code file with free-spacing in lines 157–165. Also, why don’t 
you think about (for later) how this script could be changed so as to avoid growing results 
vectors in the loop.

5.2.4 Word and Sentence Lengths in the BNC

In this small case study, we will go over all files in the BNC and determine for each sen-
tence how long it is (in words) and how long the words in it are (in characters) so we can 
generate a plot that checks whether there is a correlation between the two.

What are the things we will need to do?

 • We need to define a vector corpus.files that contains the paths to all corpus files, 
which should all be in one directory (potentially with sub-directories).

 • We need to generate two lists to store for each file (1) the lengths of all sentences in it 
and (2) the lengths of all words in it. Thus, each of these lists needs to have as many 
empty elements as there are files in corpus.files; let’s call those lists all.sent.
lengths and all.word.lengths.

 • We will load each corpus file, discard the header and keep only the sentences.
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 • To determine sentence lengths, we count all the word tags we find in each sentence; 
we save the sentence lengths for a file in the relevant element of all.sent.lengths 
for this file.

 • To determine word lengths, we first use the word tags to find words, but then delete 
the tags and count the number of characters of what’s left; we save the word lengths 
for a file in the relevant element of all.word.lengths for this file.

 • After the loop, we compute the median sentence and word lengths for each file (very 
crude approach!) and summarize the distribution of these medians.

 • Finally, we generate a scatterplot with word lengths on the x-axis and (logged) sentence 
lengths on the y-axis and try to determine whether there’s a correlation between the two.

What are the functions we will need for that? As usual, we use rchoose.dir to define the 
directory containing the corpus files and dir to retrieve all the file names from that direc-
tory. We define two lists with as many empty elements as there are files using the function 
vector with mode="list". We then use the usual for-loop to load each corpus file during 
each iteration and use grep to find all corpus sentences. We then use exact.matches.2 
to find all word tags but only retain the second component of exact.matches.2, namely 
the locations of the matches, i.e., the numbers of the sentences they occur in (because we 
can tabulate those with table). After that, we use exact.matches.2 again to find all 
words and their tags as well as gsub to delete the tags and nchar to determine the num-
bers of characters of what’s left. At the end of each iteration of our for-loop, we save all 
sentence lengths of a file and all word lengths of a file into the relevant components of 
all.sent.lengths and all.word.lengths.

After the loop, we use sapply together with median and summary to compute the 
median sentence lengths and median word lengths per file and use plot to create a scat-
terplot as defined above; to avoid overplotting of many points onto the same coordinates, 
we use jitter and rgb (for grayscale and transparency effects) just as we did in Section 
4.3.3 when we discussed correlations as well as log to log the sentence lengths. Finally, we 
use abline and text to add some annotation into the plot; we use lines(lowess(...)) 
to add a trendline, and I introduce mtext to add colored axis labels.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_06_wrd-sent-
lengths.r>; read this side by side with the actual script in RStudio:

clear memory and define and/or load all relevant packages and/or functions (1–3)

define the corpus files to search: corpus.files (5–6)

define empty lists to collect matches: all.sent.lengths and all.word.lengths 
(8–9)

for-loop (counter = i, over seq(corpus.files)): (11, -45)

output a progress report: the name of the file currently being processed and the  
percentage of files covered after the current iteration (12–17)

load the i-th corpus file (19)

discard the header / find the sentences (21–25)

find the numbers of word tags for each sentence and store them all in all.sent.
lengths[[i]] (27–31)

(continued)
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find the lengths of all words (identified by their tags (33–36), but with the tags 
deleted by gsub) and store them all in all.word.lengths (38–43)

use sapply to compute median sentence and words lengths for all files and store the 
4,049 medians in average.sent.lengths and average.word.lengths (47–49)

use plot and other visualization functions to create the scatterplot described above 
(51–88)

Which aspects of the script are worth additional comment? This script has no par-
ticularly complicated components – the only thing I recommend is that you study the 
code for the plot and all its commentary in great detail because it involves many useful 
functions.

5.2.5 Approximating Syntactic Complexity: Fichtner’s C

In the context of an applied linguistics study, you want to compute for every file in the 
BNC World Edition a measure of syntactic complexity. A particularly easy one to com-
pute uses information that our last case study made us collect: Fichtner’s C, which is 
computed as shown in (4):

(4) Fichtner s 
numberof verbs

numberof sentences
numberof words

n
′ =C ×

uumberof sentences

What are the things we will need to do?

 • We need to define a vector corpus.files that contains the paths to all corpus files, 
which should all be in one directory (potentially with sub-directories): thus, as usual, 
we need rchoose.dir and dir.

 • We need to generate three vectors to store for each file (1) the number of verbs in it; 
(2) the number of words in it; and (3) the number of sentences in it. Thus, each of 
these vectors needs to have as many empty elements as there are files in corpus.files. 
Let’s call those vectors nos.of.verbs, nos.of.words, and nos.of.sentences.

 • We will load each corpus file, discard the header and keep only the sentences.
 • To determine the number of sentences, we just determine the length of the vector 

remaining after the previous step, which was precisely aiming at only keeping sen-
tences; we save the number of sentences in the relevant element of nos.of.sentences.

 • To determine the number of words, we count how many closing word tags (“</w>”)  
we find in the sentences; we save that number into the relevant element of nos.
of.words.

 • To determine the number of verbs, we count how many instances of the pos-tag 
“VERB” we find in the sentences; we save the number of verbs in the relevant element 
of nos.of.verbs.

 • After the loop, we compute Fichtner’s C values for all files as defined above in (4) and, 
just for housekeeping, give the values the names of the corpus files; also, we compile 
all the results in a data frame result that looks like this:

(continued)
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>·head(result)¶
········SENTENCES·VERBS·WORDS·VERBSperSENT·WORDSperSENT·FichtnersC
A00.xml·······423··1143··6708··········2.7·········15.9···42.85076
A01.xml·······588··1569··7898··········2.7·········13.4···35.84144
A02.xml·······223···564··3376··········2.5·········15.1···38.28881
A03.xml······1051··3277·19433··········3.1·········18.5···57.65153
A04.xml······1621··6294·39163··········3.9·········24.2···93.80731
A05.xml······1706··7733·41363··········4.5·········24.2··109.90109

 • Finally, we explore the data visually by (1) generating histograms of the first five col-
umns of that above data frame as well as their logs and (2) scatterplots of the logs of 
Fichtner’s C as a function of the first five columns (with trendlines).

What are the functions we will need for that? Obviously, we need rchoose.dir 
to define the directory containing the corpus files and dir to retrieve all the file  
names from that directory. We will need to define three vectors to collect numeric 
results using integer, and we will need to use a for-loop to load each corpus 
file. During each iteration, we will use grep to find all corpus sentences. We then  
use length to find the number of sentences, and use length applied to searches for 
closing word tags and verb tags using exact.matches.2. to find the numbers of words 
and verbs.

After the loop, we use simple arithmetic to compute Fichtner’s C values and data.frame 
to compile the results all into one data frame. We then use par(mfrow=c(rows,·columns)) 
to define the number of rows and columns we want to have in the plotting windows and 
then use apply (see above) and hist (and log) to create histograms of the data in the 
first five columns of result. Finally, we use an alternative to par, layout, to divide 
up the plotting window into five regions and then plot five scatterplots into them with 
plot, log, lines(lowess(...)), and abline; we also do a correlation test to see how 
strongly Fichtner’s C is related to the number of verbs/sentence and the number of words/
sentence.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_07a_Fichtners-C.r>;  
read this side by side with the actual script in RStudio:

clear memory and define and/or load all relevant packages and/or functions (1–3)

define the vector of corpus files to search: corpus.files (5–6)

define empty integer vectors to collect results: nos.of.verbs, nos.of.words, and 
nos.of.sentences (8–9)

for-loop (counter = i, over seq(corpus.files)): (11, −35)

output a progress report: the percentage of files covered after the current iteration 
(12–14)

load the i-th corpus file (16)

discard the header/find the sentences (18–21)

(continued)
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find the numbers of sentences and store it in nos.of.sentences[i] (23)

find the numbers of closing word tags and store it in nos.of.words[i] (25–28)

find the numbers of verb tags and store it in nos.of.verbs[i] (30–34)

compute Fichtner’s C for all files (37–39)

compile the results into one data frame (41–49), summarize each column (50), and 
save the result (52)

set up a plotting window with two rows and five columns (line 57) and use apply to 
plot histograms of the raw and the logged values of all variables but Fichtner’s 
C (add the argument breaks="FD" to hist for more fine-grained bins in the 
histrograms (lines 58–69), then reset the plotting window to its default (line 70)

(learn about the layout function and how it defines panels in the plotting window 
(74))

set up a plotting window for five plots (line 76) and plot scatterplots of Fichtner’s 
C against every other variable in isolation (77–83, 84–90, 91–97, 98–104,  
105–111), then reset the plotting window (112)

compute correlation tests for Fichtner’s C against the numbers of words/sentence 
and verbs/sentence (114–115)

Which aspects of the script are worth additional comment? This script also has no  
particularly complicated components but let me again recommend that you study the 
code for the plots in detail, in particular (1) how apply is used to do something (namely 
hist) to the first five columns of result (check Section 5.2.2 again), and (2) how  
layout works: It takes as input a matrix whose numbering shows where different plots 
go: equal numbers other than 0 cover space for one panel, and 0s reserve space that R 
doesn’t plot into.

As you probably noticed, there is a second case study script file on Fichtner’s C, namely 
<_qclwr2/_scripts/05_07b_Fichtners-C_XML.r>. This script does the exact same thing as 
the one just discussed and most of the code is in fact identical, but it does it not by essen-
tially treating the corpus file as a simple flat sequence of character strings as we did above, 
but by utilizing the hierarchical XML annotation in ways discussed in Section 3.8.2. Thus, 
most of the things discussed above do not change – the only changes occur in the loop. 
Remember that the most powerful package to handle XML data in R is XML, but also 
remember that it has a bad memory leak when used on Windows systems. The script 
therefore does the following within the loop: It checks whether it is currently running on 
a Windows computer or not (lines 18, 31, -42) and then,

 • if the script detects it is running on a Windows computer, it uses functions from 
the xml2 package to get the job done – it loads the corpus file with read_xml and 
retrieves the frequencies of elements using xml_find_all (lines 19–30);

 • if the script detects it is not running on a Windows computer, it uses functions from 
the XML package – it loads the corpus file with xmlInternalTreeParse and retrieves 
the frequencies of elements using either the summary of the parsed XML object or 
using xpathApply with xmlGetAttr (lines 32–41).

(continued)
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Thus, check out how you can query your R instance with regard to what system it’s 
running on (line 18) and, more importantly, how I use both of these XML processing 
packages to get the job done.

5.2.6 Key Words

In this section, we will discuss a script that computes different measures of keyness for 
words occurring in a target corpus by comparing their frequencies in that target corpus 
to that of a reference corpus and quantifying the relative attraction of each word to the 
target corpus by means of a keyness statistic. The most frequently used keyness statistics 
are based on a 2 × 2 occurrence table such as the one shown in Table 5.1, which represents 
a case where the target corpus of interest has 6,065 words, the reference corpus to which 
the target corpus is compared has 5,596 words, and the word w of interest is attested 257 
times in both corpora: 249 times in the target corpus and 8 times in the reference corpus.

The most widely used statistic is the log-likelihood ratio G2 (see Dunning 1993) and it 
is computed as shown in (5), where ln refers to the natural log (R’s default setting for log), 
obs refers to the observed frequencies in cells a–d (i.e., those shown in Table 5.1), and exp 
refers to the expected frequencies as one would obtain them from a chi-squared test (see 
the discussion in Section 4.2.2); according to the logic discussed there, the expected fre-
quency of cell a – i.e., the frequency with which word w should occur in the target corpus 
if its occurrences in the two corpora were random – is 257 × 6,065 / 11,661 = 133.6682.

(5) G obs
obs
expi

2
1

42= ×=Σ ln

Note that this computation can run into problems: logs of 0 return –Inf (negative infinity) 
in R, which then makes the result of the whole equation –Inf. This is commonly handled 
by changing the relevant summand from –Inf to 0.

Another useful measure one might use is the difference coefficient used by Leech and 
Fallon (1992), which is computed as in (6) and yields 241 / 257 = 0.9377 when applied to 
Table 5.1.

(6) differencecoefficient
a b
a b

=
−
+

Finally, one can use Damerau’s relative frequency ratio rfr (Damerau 1993; Manning and 
Schütze 2000: 175f.), which is computed as in (7) and yields (249 ÷ 8) / (6,065 ÷ 5,596) = 28.7181 
when applied to Table 5.1:

(7) rfr
a b

a c b d
=

+( ) +( )

Table 5.1 The frequency of w (=“perl”) and all other words in two ‘corpus files’

Target corpus Reference corpus Totals

Word w from target corpus a = 249 b = 8 a + b = 257
All other words from target corpus c = 5,816 d = 5,588 11,404
Totals 6,065 5,596 11,661

÷
÷
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In this section we will compare an older Wikipedia entry on the programming language 
Perl (the target corpus) to an older Wikipedia entry on the programming language Python 
(the reference corpus) and generate a data frame results that, in the rows, lists all the 
words from the target corpus and, in its columns, contains

 • the four observed cell frequencies a, b, c, and d;
 • the expected cell frequencies for cells a and b;
 • the three keyness statistics discussed above; and
 • a column that states which of the two corpora the word is preferred in, or key for.

What are the things we will need to do?

 • We will define a function we will call log.0, which returns the log of a number it is 
given (just like default log does), but that returns 0 when the number it is given is 0.

 • We define the paths for the two corpus files we will use (<_qclwr2/_inputfiles/corp_
perl.txt> and <_qclwr2/_inputfiles/corp_python.txt>).

 • We define two vectors: one that will collect all word tokens that are attested in both 
corpora (let’s call it all.word.tokens) and one that states for every occurrence of 
every word token which corpus it’s from (let’s call it all.sources) (recall this kind 
of approach from Exercise box 3.1).

 • We then load each corpus file, split it up into words, remove any empty character strings 
that might result from that, replace any numbers by the placeholder “_NUM_”, store the 
word tokens in all.word.tokens, and note in all.sources the corpus file of each token.

 • Then we cross-tabulate all.word.tokens and all.sources to obtain a table that 
lists for every word type how often it occurs in each corpus; from those, we compute 
the three keyness statistics for each word type.

 • We collect all results in the data frame results described above.
 • We visualize the results in a plot that plots the words at the coordinates of the 

(logged?) frequencies of the word types on the x-axis and the difference coefficients 
on the y-axis.

What are the functions we will need for that? We need function, ifelse, and log to 
define our function log.0 and, of course, rchoose.files as well as vector to choose 
the corpus files and define the vectors in which we collect word tokens and corpus names 
respectively. In a for-loop, we then use scan to load the corpus files as well as strsplit 
and unlist to identify word tokens and nzchar to discard empty character strings; also 
we use grepl and subsetting to identify and replace all numbers; finally (still within the 
loop), we use rep and basename to fill all.sources.

After the loop, we use table to cross-tabulate all.word.tokens and all.sources, 
before we use length as well as mathematical functions such as sum, rowSums, and  
colSums, and our log.0 to compute our keyness statistics. Finally, we use data.frame to 
create results and plot with log as well as text to visualize the results.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_08_keywords.r>; 
read this side by side with the actual script in RStudio:

clear memory and load all relevant packages (1–2)

define the function log.0 so that it can take a number to log and a user-defined base 
of the log (4–8)
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define the corpus files to search: text.files (10–11)

define empty vectors to collect results: all.word.tokens and all.sources (13)

for-loop (counter = i, over text.files): (15, -36)

load the corpus/text file i (16)

split it up into words at the occurrence of 1+ non-word characters and unlist 
(18–22)

remove empty character strings from the resulting vector (23)

replace all ‘words’ that only consist of numbers by “_NUM_” (24–28)

add to all.word.tokens the current word tokens (29–30)

add to all.sources the name of the current corpus file as often as that file has 
words (32–35)

to compute all keyness statistics, create a word-types-by-corpus table (word.
by.corp.table) and inspect its first 20 rows (40–41)

use the columns of that table (note that they already contain the observed frequen-
cies of the cells a and b) and its sums to compute four vectors that provide for 
each word type the frequencies shown in Table 5.1, call them obs.as, obs.bs, 
obs.cs, and obs.ds (43–47)

using the logic from Section 4.2.2 of how expected frequencies are computed, create 
four analogous vectors exp.as, exp.bs, exp.cs, and exp.ds (49–52)

then compute the relevant keyness statistics from those vectors: G2 (lines 54–60, use 
log.0), difference coefficients (62–63), and rfr (65–66)

compile all the results into the data frame results (68–77), reorder its rows by 
which corpus each word prefers and then by the difference coefficients (78–80), 
and save it (81–83)

visualize the results in a scatterplot either simply (87–90, see ?rug¶) or more nicely 
(92–102)

Which aspects of the script are worth additional comment? Most aspects of this script 
should be straightforward, given that everything happening in the loop is relatively simple 
text and data processing. In my experience, the only difficult part here may be the gen-
eration of the observed frequencies and the subsequent computations. For that you have 
to appreciate that R uses vectors even if they are very long. For instance, here’s a part of 
word.by.corp.table:

>·word.by.corp.table[1542:1547,]¶
···············all.sources
all.word.tokens·corp_perl.txt·corp_python.txt
·······performs·············1···············0
·······perhaps··············1···············0
·······period···············1···············0
·······perl···············249···············8
·······perl1················1···············0
·······perl5················1···············0
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You can see the frequencies of “perl” in both corpora, which are the numbers you know 
from Table 5.1. Since each column of word.by.corp.table covers all word types attested 
in that corpus, you can infer that the cells c and d of Table 5.1 are the sum totals of each 
column (i.e., all as and all bs) minus the a and b for “perl”, i.e., 249 and 8. And once you 
remember that in R you can do vector1 – vector2 even if the two vectors are differently 
long (the shorter element will be reused as often as necessary), you can understand how 
lines 46–47 do what they do (because sum(obs.as) gets reused as many times as there are 
word types), and lines 49–52 work in the same way. In fact, this is one aspect of R that is 
very elegant: You can perform thousands of additions, subtractions, etc. with just one line, 
where in other programming languages you might have to write a for-loop for that.

Finally, as before, do spend some time on understanding the code that creates the 
plot. The threshold value for significant results that you see highlighted in the plot is the 
minimum chi-squared value that is significant at one degree of freedom (i.e., for a 2 × 2 
table), as you could check with qchisq(0.05,·1,·lower.tail=FALSE)¶, but for the 
script per se, that’s not important. Also note how the labeling of the x-axis is done: As 
x-coordinates of each word, I am using their logs (so as to stretch the display), but I am 
then not labeling the x-axis tickmarks with their logs but with their antilogged values so 
that a reader doesn’t have to make that computation himself; thus, perl is plotted at the 
x-coordinate of log(257) ≈ 5.55, i.e., right between x = 5 and x = 6, but the tickmarks at 
5 and 6 are labeled with the actual unlogged frequencies they correspond to: 148.4 and 
403.4 respectively.

5.2.7 Frequencies of -ic and -ical Adjectives

In this case study, we are studying English adjectives ending in -ic and -ical on the basis of 
an already stored frequency list of the BNC Version 1; this frequency list was compiled by 
Adam Kilgarriff and is provided here in the file <_qclwr2/_inputfiles/corp_bnc_sgml_freql.
txt>, which looks like this:

>·head(freqs)¶
··FREQUENCY···WORD·POS·FILES
1·········1···!*?*·unc·····1
2·······602······%·nn0···113
3·········1··%/100·unc·····1
4·········3··%/day·unc·····1
5·········1···%295·unc·····1
6·········1·%5,000·unc·····1

Specifically, we want to do two things: First, we want to generate a table that states  
for every adjective that is attested at least once with either -ic (e.g., public) or -ical  
(e.g., physical) – or of course with both suffixes (e.g., electric(al)) – how often it is  
attested with either suffix (both in absolute and relative frequencies. This is supposed to 
look like this:

>·head(result,·4)¶
···············their.suffixes
both.adjectives····ic··ical
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·······politic·····80·30366
·······public···30384·····0
·······economic·23484···498
·······specific·11313·····0
>·head(result.perc,·4)¶
···············their.suffixes
both.adjectives·····ic···ical
·······politic··0.0026·0.9974
·······public···1.0000·0.0000
·······economic·0.9792·0.0208
·······specific·1.0000·0.0000

Second, we want to explore whether there is a correlation between the overall frequency 
of an adjective stem (with either suffix) and the percentage of these adjectives ending 
in -ical: Is it the case that -ical adjectives are more frequent (as has been claimed by 
Marchand 1969: 242)?
What are the things we will need to do?

 • We load the BNC frequency list file into a data frame called freqs.
 • So as to not have to deal with such a large date structure all the time (nearly 940,000 

rows), we then extract from it two data frames: one with all rows that contain adjec-
tives ending in “ic” (freqs.ic.adj), and one with all rows that contain adjectives 
ending in “ical” (freqs.ical.adj). Note that we are interested in being memory-
efficient: We will therefore first trim down all of freqs to a data frame that just 
contains adjectives (freqs.adj); we then remove freqs from memory and look for 
-ic and -ical adjectives, but only in freqs.adj.

 • Noting that some adjectives may be represented in that file with more than one tag 
(remember the existence of portmanteau tags, check out physical for instance), we 
then make sure we sum up the frequencies of all tags for each adjective in either data 
frame, which will give us one separate vector with these frequencies for each suf-
fix. Let’s call those ic.adjectives.freqs and ical.adjectives.freqs (for mild 
amusement, check out freqs.ical.adj for spelling mistakes, e.g., the different spell-
ing of hierarchical attested in the file).

 • Next, we need to, so to speak, join those vectors such that we can see for each adjec-
tive stem how often it occurs with -ic and how often with -ical. To that end, we 
apply the logic of comparing frequency lists (from the first exercise box on vectors) 
and from the previous case study: First, we create a vector with all -ic adjective 
tokens (called ic.adjectives) and another one with all -ical adjective tokens 
(called ical.adjectives). Second, we create a vector their.suffixes that lists 
“ic” and “ical” as many times as there are -ic and -ical adjectives (which we know 
from the lengths of ic.adjectives and ical.adjectives respectively). Third, we  
combine ic.adjectives with a version of ical.adjectives from which we deleted 
“al” into a vector called both.adjectives. As a result, we have one vector with only 
-ic tokens (both.adjectives), but another one that says which suffix each token was 
attested with originally (their.suffixes), which we can then tabulate for both raw 
frequencies and percentages.

 • Finally, we can then plot the row sums of the frequency table result (the overall 
frequency of an adjective stem) against the second column of results.perc (the 
relative frequency of the -ical form) to see whether there is a correlation between 
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the two, and we can explore whether the -ic adjectives differ in frequency from that  
of -ical adjectives. Let me recommend here to do that once for all the data and once 
for adjectives that occur with a certain minimum frequency (such as three) – you will 
be amazed at the difference in results!

What are the functions we will need for that? We need read.table and rchoose.files 
to load the frequency list file, and we need grepl, subsetting, and droplevels to extract 
the sub-data frames with -ic and with -ical adjectives from it; using droplevels is impor-
tant: It makes sure that all the adjectives that are not -ic and -ical adjectives don’t “stick 
around” as factor levels and in frequency tables! Next, we need tapply and sum to merge 
the frequencies of adjectives that are attested with more than one tag; after that we use 
rep and c to merge the vectors and gsub to reduce -ical adjectives to -ic forms. Finally, we 
need table to compute raw adjective frequencies, prop.table to change that table into 
one of percentages, and order to re-order the rows of that table by the combined adjective 
stem frequencies.

For the statistical and visual exploration of the correlation between stem fre-
quency and the percentage of -ical, we will need plot, log, and rowSums as well as 
lines(lowess(...)) again. For the exploration of potential differences between 
-ic and -ical adjective frequencies, we can use boxplot and wilcox.test as well as 
plot(ecdf(...)). To create a downsized version of the frequency table, use apply 
and min with subsetting.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_09_ic-ical.r>; read 
this side by side with the actual script in RStudio:

clear memory (1) and the package rChoiceDialogs (2)

load Kilgarriff’s frequency list file and check whether the loading worked (3–9)

create freqs.adj by subsetting the rows of freqs that have “aj” in the tag column 
(11–15)

remove the original large data frame to free up memory (using rm, 17)

create freqs.ic.adj and freqs.ical.adj by subsetting the rows of freqs.adj 
that end with “ic” or “ical” in the word column (19–24, 25–29) and check the 
results (31–32)

use tapply and sum to add up all frequencies of each adjective type regardless of 
how many tags it is observed with (34–39, 40–43)

from these frequencies, create vectors with rep with all -ic adjective tokens (ic.
adjectives) and all -ical adjective tokens (ical.adjectives) (49–52)

create both.adjectives by merging ic.adjectives and a version of ical.
adjectives with string-final “al” removed (with gsub) (54–57)

from ic.adjectives and ical.adjectives, use rep to create a vector with all 
suffixes of all adjectives (their.suffixes) (58–59)

create a table with the adjective stems in the rows and the suffixes in the columns; 
also, convert that into a table of percentages, and then use order to order that 
table in descending order of adjective frequency (61–66)

visualize the correlation of frequency and -ical percentage with a scatterplot and a 
trend line (70–81)
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generate a boxplot (83–87) and compute a Wilcoxon-test (88–91) to compare -ic 
and -ical frequencies

generate an ecdf plot (93–105) and compute a Kolmogorov-Smirnov-test (106–107) 
to compare -ic and -ical frequencies

create a version of the table that requires a minimum frequency threshold of three 
for any adjective form by checking whether the smallest number per row exceeds 
three and use the resulting TRUEs and FALSEs for subsetting rows (112–123)

re-run all the above statistics on this smaller table (125–161)

Which aspects of the script are worth additional comment? Most of the script should be 
clear by now, but I want to briefly revisit the trimming down of the frequency table, which 
is done in the following lines:

>·threshold.to.be.met<-3¶
result.trimmed<-result[apply(result,·1,·min)>=threshold.to.be.met,]

The apply part goes through the frequency table result row-by-row and returns the 
minimum number per row, i.e., per adjective stem. The vector with these numbers is then 
used in a logical expression to return for each of these minimum numbers whether it is 
greater than or equal to three, which returns a vector of TRUEs and FALSEs. That logical 
vector is then used to subset only the rows of result (note, it’s before the comma) where 
that condition evaluated to TRUE, i.e., the rows with large enough frequencies.

As before, go through the code for the plots: they don’t introduce much that is new –  
check ?legend¶ though – but serve to entrench what you have learned so far. For the 
statistical tests, look at the statistics chapter again and maybe at Gries (2013b) for more 
details; for more on -ic and -ical adjectives, check out Gries (2001; 2003).

5.2.8 Frequencies of All Word-Tag Combinations in the BNC

Now we’re getting serious. The next script does something seemingly elementary – we 
will create a frequency list of word-tag combinations (so as to be able to distinguish 
run as a noun from run as a verb) – but we will do it on a relatively large data set, the 
complete BNC World Edition with XML annotation, and we will use the annotation 
well by utilizing information provided by the BNC’s multi-word tags, i.e., tags that 
mark multi-word units such as because of, in spite of, on behalf of, etc. That is, this is 
output we want:

>·result.df[533:537,]¶
····TAGS······FORMS·FREQS
533··nn1·department·17464
534··nn0·······data·17463
535··prp·because·of·17440
536··nn1·······town·17424
537··nn2····minutes·17410
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To make this happen, you need to know what the multi-word tags look like; Figure 5.2 
shows an example (broken up into multiple lines for expository reasons only).

Crucially, what that means is that you need to be careful to not count things twice: 
Once even when as a subordinating conjunction (CJS) has been counted, you must not 
count even as an adverb (AV0) and when as another subordinating conjunction again – 
otherwise you imply that Figure 5.2 does not contain one, but three words.

Also, we will create and use a function called whitespace, which can clean excess 
whitespace – leading and trailing spaces, sequences of more than one space – as well as 
empty character strings. Finally, and this is maybe the biggest new thing here: Given the 
size of the data and R’s memory handling, we will most likely not be able to have two 
vectors – one for about 100 million words and multi-word units, one for all their tags –  
just grow dynamically in memory. Your computer session might not survive that and 
either take forever or even crash (each of my two computers has 16 GB of RAM and I 
stopped the scripts because they were taking forever). Therefore, we will create a sub-
directory into which we will save interim output after each corpus file, and after having 
gone through all 4,049 corpus files we will then merge the 4049 output files into the one 
data structure we want, results.df.

What are the things we will need to do?

 • We set the warnings option so that any problems will be indicated during the iteration 
in which they arise, not just later at the end (see ?options¶).

 • We define a function whitespace, which takes as a first argument a character vector, 
from which it deletes leading and trailing spaces, in which it reduces sequences of 2+ 
spaces to 1, and from which it can delete empty character strings.

 • We define a vector corpus.files with all paths to all 4,049 BNC corpus files; also, we 
create a directory <05_10_freqoutput> into which to save our 4,049 interim results.

 • We load each file, switch it to lower case, and keep only the corpus sentences.
 • Then, we retrieve the multi-word units by looking for things beginning with a “<mw·” 

and ending with “</mw>”.
 • if there are such units, we retrieve their c5 attribute and, by splitting on all tags 

within the multi-word unit, the multi-word unit itself; we paste the tags and the 
multi-word units together and, for memory management reasons, do not store all 
instances but just a frequency list of the instances. Finally, before exiting this condi-
tional expression, we delete the multi-word units from the corpus sentences so that 
their constituent words are not counted again.

 • Then, we use nearly the same approach to retrieve the tags and the words of the  
‘normal,’ meaning ‘one-word words,’ which we also paste together and tabulate.

 • Then we merge the results for the ‘normal’ words and the multi-word units and  
save them into the directory for the interim results under the name of the current 
corpus file.

Figure 5.2 The annotation of even when as a multi-word unit.
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 • After the loop, there’s the next hurdle: it is again likely that just growing all 4,049 
frequency tables together into one super-long one will be too much for a ‘normal com-
puter’. Thus, we reserve memory space in advance by creating two very long vectors, 
one for word-tag combinations (all.word.tags) and one for their frequencies (all.
word.tag.freqs), each with, say, 25 million elements (more than enough for a 100 
million word corpus). Then, we use a loop to load each of the 4,049 interim frequency 
tables and put the word-tag combinations and their frequencies into the relevant slots 
in all.word.tags and all.word.tag.freqs respectively. We do this by having a 
counter that always specifies the first position of new input and then inserting the 
next n elements, where n is the number of word-tag combinations from the current 
interim-results file – this is like having a large number of small empty containers in 
front of us and we’re filling them from left to right.

 • The last step is then to sum up all frequencies that belong to the same word-tag com-
binations so that we can save the output as a .csv file and an .Rdata file.

What are the functions we will need for that? One piece of good news is that, in terms of the 
functions this script requires, it is not challenging. We need function, several if-conditionals,  
and gsub as well as nchar to define whitespace. Next, the usual rchoose.dir and dir, 
but now also dir.create to create the folder to collect all interim-results files. Then, we 
do the usual for-loop to load each file with scan and get the sentences with grep. We then 
use exact.matches.2 to find potential multi-word units. We then use if to check, with 
is.null, whether there are any matches for multi-word units at all, and if there are, we 
use exact.matches.2 again to get the tags, and then use strsplit to split on tags, access 
the resulting list elements with sapply and use paste to glue the words together, and then 
paste again to glue them together with the tags so that we can tabulate them with table. 
Then, before proceeding with the words, we delete all multi-word units from the sentences.

We then use pretty much the same logic to extract the one-element words and paste 
them together with their tags so we can again tabulate. At the end of the loop, we use c 
to combine the multi-word unit table and the one-element word table and then save the 
result into the interim results folder.

To merge the results, we need to create long empty character and integer vectors 
all.word.tags and all.word.tag.freqs, and we define a position counter, which is 
initially set to 1 (because on the first iteration, we begin to put things into the first position 
of these two long vectors). With another for-loop, we load each interim result and add 
them into the first empty slots – the one indicated by counter of the two long collector 
vectors. Once we’re done with all 4,049 frequency list files, we use nzchar and subsetting 
to delete all empty character strings that might remain in our long collector vectors and 
use tapply to sum up all frequencies of each word-tag combination and save the results 
as a .csv file with cat and as a data frame (created by strsplitting the words and tags) 
into an .RData file with save.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_10_bncxml-freqs.r>;  
read this side by side with the actual script in RStudio:

clear memory, load the rChoiceDialogs package, and source the function exact.
matches.2 (1–3)

set options(warn) to return warnings immediately when they arise, not later (4)

(continued)
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define the function whitespace (6–18)

define the vector corpus.files and create a directory for interim results files (20–22)

for-loop (counter = i, over corpus.files): (26, −89)

output a progress report: the name of the current corpus file (27–29)

load corpus file i (31)

discard the header/find the sentences (33–37)

look for multi-word unit tags with exact.matches.2 (39–43)

if there were any . . . (use the fact that no matches would return NULL) (45, −68)

extract the tags from the multi-word unit tags (46–48)

split the multi-word units up into parts with strsplit using the tags (50–52)

merge the parts of a multi-word unit by sapplying paste to list elements (53–57)

paste together the multi-word unit tags and the units with tabstops, then 
tabulate into a frequency list (58–61)

delete the multi-word unit tags and their values from the corpus (63–67)

look for word tags with exact.matches.2 (70–72)

extract the words from the tags with exact.matches.2 (74–76)

paste together the word tags and the words with tabstops, then tabulate into a 
frequency list (78–81)

combine the frequency tables for the multi-word units and the words and save the 
combined table into a file that gets the name of the current corpus file i (83–88)

set the working directory to the interim-results folder (93)

define two large vectors all.word.tags and all.word.tag.freqs to collect word-
tag combinations and word-tag frequencies (95–97)

define a counter that provides where into these vectors new material gets inserted 
(99–100)

for-loop (counter = i, over dir()): (102, -117)

output a progress report: the name of the frequency list file (103–105)

load frequency list file i (106)

insert into all.word.tags and all.word.tag.freqs the names of the frequen-
cies and the frequencies in frequency list file i respectively (108–111, 112–115)

increment counter to the new first unfilled positions of all.word.tags and 
all.word.tag.freqs (116)

discard empty character strings and their frequencies from all.word.tags and 
all.word.tag.freqs (119–120)

use tapply to sum up the values of all.word.tag.freqs grouped by the elements 
of all.word.tags (122–126)

sort the table (127–128)

save the results into one directory higher (i) as a .csv file (133–139) and (ii) as  
an .RData file (141–146)

(continued)
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Which aspects of the script are worth additional comment? This script is quite long and 
involves multiple steps, but I think everything within the first loop is probably straightfor-
ward; make sure you understand (1) how the regexes use lookaround to find things the right 
way and not consume too much; and how (2), in lines 85–88, paste0 is used to paste together 
a path for each interim-result file that begins with the sub-directory created in line 22.

The only more difficult thing might be how we amalgamate all the frequency list files, 
specifically this part in the overall second loop of the script:

+····all.word.tags[counter:¶
+·····················(counter-1+length(current.file.freqs))¶
+··················]<-names(current.file.freqs)¶
+····all.word.tag.freqs[counter:¶
+··························(counter-1+length(current.file.freqs))¶
+·······················]<-current.file.freqs¶
+····counter<-counter+length(current.file.freqs)¶

and this part after it:

>·result<-tapply(all.word.tag.freqs,·all.word.tags,·sum)¶

As is often the case, a complex procedure like this is best understood if it is applied to a 
very small simulated case (repeating and paraphrasing some discussion from Section 3.6.3 
here simply because it’s my experience that this part is challenging to beginners). In the 
code file, you find that, beginning in line 150:

 • I define two frequency lists freqs.1 and freqs.2 (152–154), which simulate the 
interim-results files i we load from the sub-directory (106).

 • I define two collector vectors lett.coll and freq.coll (156–158), which simulate 
all.word.tags and all.word.tag.freqs respectively (96–97).

 • I define counter as 1 (line 160–161) as before (line 100).
 • Then, to simulate our for-loop (102–117), I manually go through two iterations of 

it: Lines 163 to 175 show how the data from freqs.1 are inserted into lett.coll 
and freq.coll and how counter gets incremented; lines 177 to 186 show how  
the data from freqs.1 are inserted into lett.coll and freq.coll and how  
counter gets incremented again.

 • We remove unused slots from lett.coll and freq.coll (188–190), just like we did 
before with the real data (119–120).

 • Finally, we sum up the frequencies for the letters (192–196) just like before for the 
real data (122–126).

This manual execution of a really small example and going through a simulated loop 
should clarify this way of making use of predefined results vectors, and it is generally a 
good way to understand more complex parts of scripts, which I encourage you to use 
whenever you run into problems with loops (recall the end of Section 3.6.2).

As an additional practice assignment, now that this is all done, why don’t you try to 
revise the script so that it uses the corpus files’ XML annotation, i.e., try to use the pack-
ages XML and/or xml2.
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5.3 Co-Occurrence Data: Collocation/Colligation/Collostruction

We are now turning to a variety of case studies that involve the exploration of  
co-occurrence data.

5.3.1 The Collocation Alphabetical Order in the BNC

We begin with a very simple example: We want to determine the collocation strength of 
the collocation alphabetical order in the BNC but, for now, in a very simplistic way. We 
will just count how many sentences there are with alphabetical in it, how many there 
are with order in it, how many there are with both, and how many sentences there are 
altogether. This characterization maybe already allows you to guess what we will do with 
this information, namely compile it in a 2 × 2 table like Table 5.2 (bold cells are the ones 
whose frequencies we compute with the script, the others follow from subtraction). From 
this kind of table, various association measures (of collocational or collostructional attrac-
tion) can be computed (see Church and Hanks 1990 as well as Church, Gale, Hanks, and 
Hindle 1991 and Church, Gale, Hanks, Hindle, and Mood 1994 for early classics, and see 
Evert 2004, Pecina 2009, and Gries 2013a for recent overviews), and typically one would 
make such computations for many collocations to compare them.

Once we have this table, we will compute two kinds of association measures. First, a 
very simple one – namely pointwise mutual information MI, which is computed as shown 
in (8):

(8) MI
observed freqincell a
expected freqincell a

= =log .2 6 4867

Positive values of MI reflect that the two words are more frequently observed in the same 
sentence than expected by chance, negative values reflect the opposite, and values close to 
0 reflect a random/chance distribution.

The other measure we will compute is potentially more revealing because, unlike most 
association measures, it is directional. That means while MI quantifies how much alpha-
betical and order are attracted to each other, ΔP (read “delta P”) can be computed in 
either direction to quantify (1) how much alphabetical attracts order and (2) how much 
order attracts alphabetical – as we will see, direction is not necessarily bidirectional/sym-
metric (see Gries 2013a for much discussion and the reference to Nick Ellis’s first mention 
of this measure for corpus linguistics). ΔP values range from −1 (for complete repulsion) 
to +1 (for complete attraction) via 0 (no attraction/repulsion) and are computed as follows 
(for Table 5.2):

(9) P
a

a b
c

c drow attracting colum .=
+

−
+

= 0 4219∆

Table 5.2 Frequencies of sentences with and without alphabetical and order

Sentences with order All other sentences Totals

Sentences with alphabetical a = 96 b = 129 a + b = 225
All other sentences c = 28,566 d = 5,995,568 c+d = 6,024,134
Totals a+c = 28,662 b+d = 5,995,697 a+b+c+d = 6,024,359
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(10) P
a

a c
b

b dcolumn attracting row =
+

−
+

= 0 0033.∆

The result is what one might already have expected intuitively but that is ignored in >90 
percent of all collocation studies: The association is not symmetric because alphabetical 
somewhat strongly predicts order (order is probably the most frequent collocate of alpha-
betical), but order does not predict alphabetical at all (because it can and does occur with 
so many other things).

What are the things we will need to do?

 • We need to define the corpus files and we will again define search expressions to find 
alphabetical tagged as an adjective (AJ0) and order tagged as singular noun (NN1). 
We will again play around with the fact that the BNC is available in an XML and an 
SGML version, but rather than, as in Section 5.2.3, have the user state which version 
is being used, we will have R load the file and discover it on its own and then pick the 
right search expressions. We will use the fact that the SGML version has no closing 
word tags.

 • We create four vectors that we set to 0 each: freq.both will be cell a of Table 5.2, 
freq.alph will be cell a + b, freq.ord will be cell a + c, and freq.sent will be  
a + b + c + d, the number of sentences.

 • We load each corpus file, keep only its sentences, and add the numbers of sentences 
to freq.sent. We look for alphabetical and order and add the numbers of sentences 
they occur in to freq.alph and freq.ord respectively.

 • In addition, we compute the number of sentences in which both are attested and add 
that number to freq.both.

 • After the loop, we generate a matrix looking like Table 5.2 and compute our associa-
tion measures.

What are the functions we will need for that? We use rchoose.dir and dir as nearly 
always. We use a for-loop with scan and grep to load each file and retain the sentences. 
Then we use if and any (see the very simple definition at ?any¶) to let R check whether 
the file has XML or SGML annotation; depending on that, search.expression.alph 
and search.expression.ord will be defined in the required way. We use length  
to count the number of sentences and grep to find our search expressions (and length 
again for the numbers of their matches); the number of sentences with both search words 
we obtain with length and intersect (on the results of the greps). After the loop, we 
create Table 5.2 with matrix and use chisq.test to compute MI and simple arithmetic 
for the ΔPs.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_11_alphabetical-
order.r>; read this side by side with the actual script in RStudio:

clear memory and load the rChoiceDialogs package (1–2)

define the vector corpus.files (4–5)

set freq.sent, freq.alph, freq.ord, and freq.both to 0 (7–8)

(continued)
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for-loop (counter = i, over corpus.files): (10, −50)

output a progress report: the name of the current corpus file (11)

load corpus file i (12)

discard the header/find the sentences (13–16)

if R finds “</w>” in the corpus sentences (18, −26)

define the search expressions to work with XML annotation (19–21)

else (22)

define the search expressions to work with SGML annotation (23–25)

determine the number of sentences and add it to freq.sent (28–31)

determine the number of sentences with alphabetical and add it to freq.alph (33–39)

determine the number of sentences with order and add it to freq.ord (41–47)

determine the number of sentences with both and add it to freq.both (49)

create Table 5.2 with matrix (58–74) and compute MI (76–82) and the ΔPs (84–89)

Which aspects of the script are worth additional comment? None, this one is simple.

5.3.2 Frequencies of Collocates of -ic and -ical Adjectives

Our next co-occurrence case study brings us back to an earlier section: In Section 5.2.7, 
we explored the frequencies of -ic and -ical adjectives to determine whether -ical forms 
are more frequent than -ic forms. This time, we will do the same with the noun collocates 
following -ic/-ical adjectives; specifically, we want to determine whether the collocates of 
-ical adjectives are more frequent than those of -ic adjectives; to keep scripting simpler this 
time, we will for now only compare the overall frequencies of all collocates of all adjec-
tives ending in -ic and all ending in -ical, not the pairwise frequencies of adjective stems 
that are attested at least once with both -ic and -ical, which of course would be a nice 
follow-up exercise for you.

What are the things we will need to do?

 • We define the functions just.matches (from Sections 3.10 and 5.1.1) and whitespace 
(from Section 5.2.8) and define the corpus files.

 • With a loop, we load and tolower each file, print a progress report to the screen, 
retain only the sentences, and delete all tags that are not word-tags (as well as what 
they annotate, so that, for instance, overlap markers don’t interfere with our retrieval 
of the adjective–noun sequence).

 • We then retrieve -ic adjectives followed by nouns, extract the noun collocates, and 
add them to a vector collecting all noun types that ever follow an -ic adjective; then 
we do the same for -ical adjectives.

 • We put the results of the loop in a list and save it into an output file.
 • Then, we load Adam Kilgarriff’s BNC frequency-list data frame again (as in Section 

5.2.7) and trim it down to a data frame containing only lexical nouns; as before, we 
make sure that, for each noun type, we add up all frequencies of all tags it occurs with 
(for instance, check how many different tags kiss comes with).

(continued)
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 • Using the names of the frequencies, from that list we then retrieve the frequencies of 
all nouns ever occurring after an -ic adjective and all nouns ever occurring after an 
-ical adjective and compare them with boxplot (and a U-test) as well as edcf plots 
(and a Kolmogorov–Smirnov test).

What are the functions we will need for that? After defining just.matches and whitespace 
as above, we of course use rchoose.dir and dir as nearly always. We use a for-loop 
with scan and grep to load each file and retain the sentences; we use gsub to delete all 
non-word tags and their values (using negative lookahead). We then find our adjectives 
with just.matches, identify the noun collocate strings with gsub, and clean the results 
with whitespace before adding them to a list of types (for which we need unique). The 
result from the loop will be a list of the two noun-collocate vectors, which we save.

We then need read.table to load the frequency list file, and we will need grepl, sub-
setting, and droplevels to extract a sub-data frame with only lexical nouns from it. Next 
and as before, we need tapply and sum to merge the frequencies of nouns that are attested 
with more than one tag. Since the result of tapply is a set of frequencies with the names 
of the counted nouns, we can then use subsetting to retrieve the frequencies of all collo-
cates of -ic adjectives, and then the same for -ical adjectives. Finally, we use boxplot and 
wilcox.test for plotting and testing the difference in medians of -ic and -ical-adjective 
collocates for significance, and plot(ecdf(...)) and ks.test to do the same for the 
empirical cumulative distributions/percentages.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_12_ic-ical-collo-
cates.r>; read this side by side with the actual script in RStudio:

clear memory, load the rChoiceDialogs package, and source exact.matches.2  
(just in case) (1–3)

define just.matches (5–16) and whitespace (18–30) as before

define the vector corpus.files (32–33)

define vectors all.ic.N.types and all.ical.N.types to collect noun collocates  
(35–36)

for-loop (counter = i, over corpus.files): (38, -95)

progress report: the name of i and the number of collocate types found so far (39–43)

load and tolower corpus file i (45)

discard the header/find the sentences (47–51)

delete all non-word annotation and their values (53–57)

find all sequences of an -ic adjective followed by a noun (59–61, or 66–70)

find all sequences of an -ical adjective followed by a noun (62–64, or 71–74)

delete the tags and clean whitespace to get just the noun collocates (76–80 and 
81–85)

store the results in vectors that collect only unique collocate types (87–90 and 
91–94)

store both collocate vectors in a list and save it into an .RData file (96–97)

(continued)
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load Kilgarriff’s frequency list file and check whether the loading worked (101–106)

downsize it to one that only contains data on lexical nouns by subsetting the rows 
whose tag column begins with “nn” (108–116)

remove the original large data frame to free up memory (using rm, 118–119)

use tapply and sum to add up all frequencies of each lexical noun regardless of how 
many tags it is observed with (121–126)

retrieve and summarize the frequencies of the -ic and -ical-adjectives collocates by 
using them to retrieve the frequencies (generated by tapply) that have those 
words as names (128–130)

create a boxplot (134–137) and compute a U-test (138–140)

create an ecdf plot (142–147) and compute a Kolmogorov–Smirnov test (149–151)

Which aspects of the script are worth additional comment? None, because this script bor-
rows heavily from the one in Section 5.2.7, but remember the potential follow-up to test 
the frequencies of collocates per adjective pair.

5.3.3 The Reduction of to be Before Verbs

In this case study, we will explore corpus data in a way inspired by Bybee and Scheibman 
(1999): We will check whether the reduction of forms of to be before gerunds in only 
those files of the BNC that contain spoken data is correlated with (1) the frequencies 
with which these gerunds appear after to be and (2) the frequencies with which these 
gerunds appear in general. For that, we will need to generate two tables of which I show 
the first three rows here, namely tables that have gerunds in the rows, whether the form 
of to be was reduced or not in the columns, and frequencies as well as row percentages 
in the cells:

>·head(reductions,·3)¶
············no··yes
··going···4888·7641
··gon·····1902·6160
··saying··1504·1356
>·head(reductions.perc,·6)¶
·················no·······yes
··going···0.3901349·0.6098651
··gon·····0.2359216·0.7640784
··saying··0.5258741·0.4741259

With these data, we can test the first hypothesis as well as generate a nice visualization, 
but to test the second hypothesis we will again use Adam Kilgarriff’s frequency list data 
frame so that we can correlate the percentages of be-reductions with the frequencies of the 
gerunds in the BNC as a whole.

(continued)
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What are the things we will need to do?

 • We define the functions just.matches and whitespace and define the corpus files.
 • After defining collector vectors, we load each corpus file within a loop, output a pro-

gress report, but then immediately check whether the corpus file contains spoken data 
or not, and if not we immediately iterate to load the next file.

 • If the file contains spoken data, we discard everything that’s not a sentence and every-
thing that’s not a word and its tag.

 • We then retrieve sequences of to be (using the BNC’s lemma annotation) followed by 
a gerund (using the BNC’s c5 tags) (note that there are a few tagging errors where 
forms of to be are tagged as the lemma was).

 • We extract the forms of to be and the gerunds and store them in separate vec-
tors; after the loop, all the results go into a data frame whose rows we order by  
row sums.

 • We then cross-tabulate the gerunds with whether their form of to be was reduced or 
not both using raw frequencies and percentages of reduction (see above).

 • We then plot reduction percentages against gerund frequencies and compute  
Kendall’s tau.

 • Then, for the second exploration, we load Kilgarriff’s data frame again, trim it down 
to only gerunds, and extract our gerunds’ overall corpus frequencies from it so that 
we can generate an analogous plot and compute an analogous Kendall’s tau for those 
frequencies, too.

What are the functions we will need for that? After defining just.matches and 
whitespace as above, we of course use rchoose.dir and dir as nearly always. We 
use a for-loop with scan to load each file and if as well as grepl to check for whether 
the corpus file contains spoken data. If it does, we use grep to retain the sentences  
and gsub to delete all non-word-tags and their values (using negative lookahead). To 
retrieve all sequences of to be plus gerund we use just.matches, and we extract forms 
of to be and the following gerunds using just.matches and gsub (plus whitespace to 
clean them up).

After the loop, we compile all data into a data frame and use table as well as prop.
table to create reductions and reductions.perc as well as order and rowSums to 
re-order their rows. Then, we use plot, text, abline, and lines(lowess(...)) for 
the scatterplot and cor.test for the correlation. For the second study, we load the data 
frame with read.table, trim it down with subsetting and grepl, and tapply with sum 
to sum up all frequencies per gerund. With those data, we can then create a new plot and 
do a new correlation test with the same code as before.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_13_reduction-be.r>;  
read this side by side with the actual script in RStudio:

clear memory, load the rChoiceDialogs package, and source exact.matches.2 (just 
in case) (1–3)

define just.matches (5–16) and whitespace (18–30) as before

(continued)
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define the vector corpus.files (32–33)

define vectors all.bes and all.verbs to collect those forms (35–36)

for-loop (counter = i, over corpus.files): (38, −104)

progress report: the name of i and the number of be’s + gerund found so far 
(39–42)

load and tolower corpus file i (44)

if R does not find “<stext” in corpus file i (47–51)

go to the next iteration (52)

discard the header/find the sentences (54–58)

delete all non-word annotation and their values (60–64)

find all sequences of to be followed by a gerund (66–68, or 70–74)

extract the forms of to be from those sequences and store them (76–83, or 85–94)

extract the verbs after to be from those sequences and store them (96–103)

compile the results of the loop into a data frame result.of.loop; include a  
column indicating whether the form of to be is reduced, and save it into  
an .RData file (106–114)

generate the frequency and proportion tables reductions and reductions.perc 
shown above (116–118) and order them by the frequencies of the verbs after to 
be (120–128)

create a scatterplot with the frequencies of the gerunds after to be on the x-axis 
and the proportion of be-reductions on the y-axis (133–137), text the gerunds 
in there (138–141), customize (142–143, 144–145), and compute Kendall’s tau 
(146–149)

load Kilgarriff’s frequency list file and check whether the loading worked (154–159)

downsize it to one that only contains data on gerunds by subsetting the rows whose 
tag column contains “vvg” (161–169)

remove the original large data frame to free up memory (using rm, 171–172)

use tapply and sum to add up all frequencies of each gerund regardless of how many 
tags it is observed with (174–177)

check whether the frequency data frame covers all your gerunds and set the frequen-
cies of missing gerunds to 1 (so that, when you log them for the plot, they become 0)  
(179–185)

create the same scatterplot as above now with the overall frequencies of the gerunds  
(179–199) and compute another Kendall’s tau on it (200–203)

Which aspects of the script are worth additional comment? Not many additional com-
ments are needed, I think, because this script borrows heavily from several previous ones, 
but I want to comment on one aspect, namely the check of whether the frequency list file 
made from the BNC Version 1 covers all gerunds in your concordance of the newer BNC 
World Edition:

(continued)
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>·(missing.vs<-setdiff(rownames(reductions),·names(freqs.vvg)))¶
>·(missing.where<-match(missing.vs,·rownames(reductions)))¶

>·freqs.vvg<-freqs.vvg[rownames(reductions.perc)]¶
>·freqs.vvg[missing.where]<-1¶
>·names(freqs.vvg[missing.where])<-missing.vs¶

The first line uses setdiff to check which of the gerunds you have in your concordance 
data are not in the frequency list and returns those verb forms; the second then uses match 
to find where in the tables reductions and reductions.perc these show up.

The third line retrieves the frequencies with which all your gerunds are attested in 
Kilgarriff’s data frame just using subsetting of names again, but of course we now know 
that two of those will not be found, which is why lines 4 and 5 set those frequencies to 1 
(for the later logging) and the names of these frequencies to the two missing verbs.

5.3.4 Verb Collexemes After Must

At the very beginning of this section, in Section 5.3.1, we dealt with computing associa-
tion measures for the collocation alphabetical order – but even then I already mentioned 
that, typically, one doesn’t just compute an association measure for one collocation – 
rather, one computes them for potentially many collocations and then ranks those by their 
strength of association. This is what we will do here: We will explore which verbs are most 
strongly attracted to the position after the modal verb must in the folder K of the BNC 
World Edition. In other words, now we need a table like Table 5.3 for every verb attested 
after must, i.e., potentially thousands of them or more.

But that raises two interesting questions: First, as you know and can see here again, this 
kind of association measure computation requires us to know not only how often, say, must 
admit occurs – we also need to know how often must occurs altogether (a + b), how often 
admit occurs altogether (a + c), and a corpus size (a + b + c + d) – and actually we need all 
that for all potentially hundreds or thousands of verb types after must. But we can’t determine 
those frequencies all in one loop: Imagine we write a loop that looks for must as a modal verb 
and then extracts all verbs v1–n after it so that it can then also determine those verbs’ frequen-
cies. Okay, but what if must admit is not attested in the first file but only in the second? Then 
we will already have missed the frequency of admit in the first file. Thus, we can’t do it like 
this – rather, we must have a second independent loop. In the first loop, we identify all cases 
of must + V so that, at the end of it, we know all verb types ever occurring after must, and 
then we can look for all occurrences of all of them in the whole corpus within the second loop.

This brings us to the second question, namely the tricky and often misunderstood ques-
tion of granularity: What level of resolution are we adopting for the counts of our table(s)? 
Above, we only had one table and since we were counting occurrences in sentences,  
the level of resolution was clear: sentences. But here we are looking at something much 

Table 5.3 Frequencies of must/other admit/other in BNC K

Verb2 = admit Verb2 ≠ admit Totals

Verb1 = must a = 164 b = 1,951 a + b = 2,115
Verb1 = other modal c = 14 d = 68,128 c + d = 68,142
Totals a + c = 178 b + d = 70,079 a + b + c + d = 70,257
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more specific: verbs after the modal verb must. The solution, which weirdly enough seems 
surprising to some, is in fact fairly obvious: We choose a level of resolution that is as simi-
lar to the phenomenon being studied as possible (see Gries 2012; 2015). Thus, we are of 
course not using sentences and also not words (and of course not characters or files), but 
something close to our question: If our study is on verbs after the modal verb must, which 
means that the left column will always be “verb2 is some verb” and the right column will 
always be “verb2 is all-other-verbs”, then one reasonable possibility is making the rows 
work the same: The upper row will always be “verb1 = modal verb must” and the lower 
row can correspondingly be “verb1 = any-other-modal-verb”, which is what Table 5.3 
already shows. There are 70,257 occurrences of modal verbs followed by infinitives in 
BNC K; 2,115 of those are cases where must is the modal verb, must admit occurs 164 
times, and admit occurs after modals 178 times.

Finally, it will turn out that there are 440 verbs occurring after must as a modal verb, 
so how do we compute all these tables and then also an association measure for each? 
Thankfully, since this kind of question was one I frequently used in works using collo-
structional analysis (Gries & Stefanowitsch 2004a; 2004b; Stefanowitsch & Gries 2003; 
2005), I wrote an interactive R script (<coll.analysis.3.r>) that you can use by sourcing 
it directly from a website of mine (http://tinyurl.com/collostructions): This script will ask 
you a few questions interactively at the console and, after you have answered them and 
provided an input file in a particular format, it will do everything for you (see <_qclwr2/_
outputfiles/14_must_out.csv>).

What are the things we will need to do?

 • We define the function just.matches, the corpus files, and two collector vectors: one 
character vector infs.after.must that will collect all infinitives of verbs occurring 
after must as a modal verb (that is, from this we can compute all cells a and a + b), the 
other is the numeric vector modals.plus.inf, which is initially set to 0 but will then 
determine the sample size a + b + c + d.

 • We load each corpus file, trim it down to just the sentences, and then look for all 
sequences of any modal verb followed by an infinitive; we store that in current.
mpis; we add the number of matches to modals.plus.inf.

 • Then we extract from current.mpis the cases where the modal is must and extract 
from those cases the lemma of the verb after must, which we add to infs.after.
must. This way, not only does infs.after.must collect those infinitives, but its 
length will ultimately determine cell a + b.

 • After this first loop, we can determine for each table the frequency of must + V (a + b)  
and corpus size (a + b + c + d), but also all must + V1, must + V2, etc., i.e., all as. Also, 
we know how many different verbs occur after must (440) and what those are, so 
after creating a collector vector for the cells a + c, we do a second loop over the corpus 
files where now we determine the frequencies of these verbs after modals in general, 
not just after must) by looking into this loop’s current.mpis.

 • We then save the results in the format that <coll.analysis.r> needs for a simple 
collexeme analysis (see readme.txt at http://tinyurl.com/collostructions) and then 
source the script from my website from within RStudio and run it, providing the 
answers listed in the script.

What are the functions we will need for that? Nothing challenging here: rchoose.files 
and dir as nearly always. A for-loop will load each corpus file with scan, we use tolower 
and grep to get lower-case sentences, and we use just.matches to find our modal verbs 
plus infinitives as well as grep and gsub to extract the infinitives after must. We then  
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tabulate the infinitives after must, create a vector freqs.overall (using rep) with a 0 for 
each infinitive, and enter into a second loop that does everything as before but now has 
another for-loop in it in which we look for each of the infinitives using a search expres-
sion created with paste0; we add the frequency of each infinitive to the relevant slot of 
freqs.overall and then, after the loop, use data.frame to save the results in the relevant 
format. After that, we start <coll.analysis.r> by sourcing it from www.linguistics.ucsb.edu/
faculty/stgries/teaching/groningen/coll.analysis.r, answer its questions, and let it do the rest.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_14_must-V.r>; 
read this side by side with the actual script in RStudio:

clear memory, load the tcltk package, and source exact.matches.2 (just in case) 
(1–3)

define just.matches as before (5–16)

define the vector corpus.files (18–19)

define vectors infs.after.must and modals.plus.inf to collect results in the 
loop (21–23)

for-loop (counter = i, over corpus.files): (25, −49)

output a progress report (26) and load the current corpus file i (28)

extract the sentences from it (29–32)

look for must (as a modal verb) plus an infinitive (34–37)

add the length of the result to modals.plus.inf (38–39)

extract the cases where the relevant modal verb is must (41)

extract the infinitives from there and add them to infs.after.must (42–48)

find all infinitive types after must and their frequencies (freqs.overall) (51–52)

compute and look at a + b and a + b + c + d from the results (54–55, 57–58)

create freqs.overall to store the a + c frequencies (62–65)

for-loop (counter = i, over corpus.files): (67, −105)

output a progress report (68) and load and prepare the current corpus file i (70–74)

look for must (as a modal verb) plus an infinitive (76–79)

for-loop (counter = j, over names(freqs.overall)): (81, −92)

paste0 together a search expression to find the current infinitive (82–83)

find that current infinitive as a lemma in the modal verb matches, add the 
number of matches to the slot for that infinitive of freqs.overall (85–91)

(check out the code alternative to the inner loop, which is not really much easier 
(94–104)

compile all results in a data frame and save it into a .csv file for the collocation/col-
lexeme analysis (107–112, 114–116)

run the <coll.analysis> script from my website and answer the questions it asks you 
according to the instructions in the script (120–134), then explore the output file

Which aspects of the script are worth additional comment? None really: This script uses 
only things we have already discussed at length.



218 Case Studies

5.3.5 Noun Collocates After Speed Adjectives in COCA (Fiction)

After having worked through so many examples using the BNC with XML annotation –  
because the BNC is such a widely used corpus and XML such a widely used form of annota-
tion – we will now explore two corpora in a different format. In this case study specifically, 
we will look at four near-synonymous speed adjectives – fast, quick, rapid, and swift – 
and the nouns they premodify in the fiction component of the Corpus of Contemporary 
American English (COCA), which is available for download from http://corpus.byu.edu/
full-text. It comes in several formats but we will use the one shown in Figure 5.3.

As you can guess, the first line contains an identifier code, but then the results is a 
tab-delimited table with a form, a lemma, and a POS-tag column (using the CLAWS7 
tag-set shown at http://ucrel.lancs.ac.uk/claws7tags.html). What we want to create is 
two things: First, we want a data frame that lists for every occurrence of any of the four 
adjectives (excluding for now comparative and superlative forms) the noun that it pre-
modifies and the year in which that co-occurrence was observed, as shown in Table 5.4.

Second, from that we want to generate a list top.10.collocates that provides for 
each year for which we have corpus data the top ten most attracted noun collocates of 
each adjective. We will then save that into a spreadsheet.

One question may arise here: What if you don’t have access to COCA (and COHA, 
which we’ll deal with in the next section)? If that’s the case, jump ahead to the end of 
this section for a moment, do the assignment mentioned there, and then come back here.  

Figure 5.3 The first few lines of <wlp_fic_1990.txt>.

Table 5.4 Desired co-occurrence results to be extracted from COC5.3A: fiction

Adjective Noun Year

Quick Success 1990
Fast Action 1990
Rapid Motion 1990
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But assuming you have COCA for now, what are the things we will need to do? This script 
is more complex than most others:

 • We define just.matches and a vector corpus.files with all paths to the 23 COCA 
fiction files; also, we establish empty vectors to collect adjective lemmas, noun lem-
mas, and years.

 • In a loop, we print a progress report, load each file (using the file connection approach 
to assign the required ISO-8859-1 encoding during the input), and discard the first 
line; then, we split up the corpus file at tabstops and extract the lemmas and their tags 
from the resulting list.

 • We then look for (1) the positions of the adjective lemmas we’re interested in and  
(2) the positions of adjective tags (jj); the desired rows – where these lemmas are 
attested as adjectives – are the intersection of these two positions.

 • However, we only want the four adjectives when they occur before nouns, so we look 
for the positions of noun tags and see whether these overlap with the positions of our 
adjective lemmas when tagged as adjectives plus 1.

 • We then retrieve the four adjective lemmas (when they precede nouns) and the noun 
lemmas (when they follow the four adjective lemmas) and store them in our collector 
vectors.

 • We then also add the year covered in the current file (as many times as there are 
matches) to the vector collecting the years.

 • After the loop, we store everything in a data frame looking like Table 5.4 and save 
that into a .csv file.

 • To compute association measures for each year, split up that data frame by its years 
column (obtaining a list); we also create a list top.10.collocates with as many 
elements as there are years in the corpus to collect collocates and their association 
strengths.

 • We loop over this list (i.e., access data from each year) and, for each year, create a 
frequency table with the nouns in the rows, the four adjectives in the columns, and 
their co-occurrence frequencies in the cells, to which we apply chisq.test to retrieve 
the Pearson residuals of that table, which we store in current.residuals.

 • In a second loop, we take each of the four columns of the current year’s current.
residuals, sort them by amount, and put the largest ten values into the adjective-
specific element of top.10.collocates for this year.

 • Finally, we convert that into a data frame and save it into a second .csv file.

What are the functions we will need for that? We use rchoose.files to define the cor-
pus files and c to create vectors collecting results. We use a for-loop to load each file 
with readLines(file(...)) and tolower, and then we use strsplit to split up the 
file by column; from the columns, we use sapply and "[" to extract lemmas and tags.  
We find adjectives and adjective tags with grep and which plus "==" and we find noun 
tags with grep; intersections of positions we find with intersect, and we use subsetting 
to retrieve the relevant words; the years are just added with c and rep (of the basename 
of the corpus file) plus length.

After the loop, we create Table 5.4 with data.frame and save it with write.table. 
We split it up by year and use vector(...,·mode="list",·length=...) to create 
an empty list with the relevant number of elements. We then for-loop over this list, creat-
ing the frequency table of nouns and adjectives with table for each year and computing 
the residuals with chisq.test(...)$residuals. In a second, inner for-loop, we then 
put the sorted top ten noun collocates for each adjective (using colnames) into the list. 
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Finally, we use unlist and data.frame to convert this into a nice data frame and save 
that with write.table.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_15a_speed-adj-in-
coca.r>; read this side by side with the actual script in RStudio:

clear memory, load the rChoiceDialogs package, and set options to show warning 
right away (1–3)

define just.matches (5–16) and the vector with the corpus files (18)

define collector vectors for adjectives, nouns, and years (20–21)

for-loop (counter = i, over seq(coca.fiction.files)): (23, −65)

output a progress report (24–27), load the file, tolower it, and discard the first 
line of the current corpus file (29–34)

split the corpus file up into a list by column, i.e., at tabstops (35)

retrieve the lemmas from the second positions of the list elements (37)

replace zero-character lemmas, if any, with “NA” (38)

retrieve the tags from the third positions of the list elements (39)

find the four adjectives but only when they are tagged as such (41–44)

find all noun tags (45)

determine where the four adjectives precede nouns (48)

determine where nouns follow the four adjectives (49)

retrieve the relevant adjectives and nouns and store them in collector vectors (51–54)

add the relevant number of occurrences of the year (which you get from the cor-
pus file name) to the collector vector for years (56–64)

compile the results into a data frame (67–71) and save it (72–74)

split up that data frame by year into a list result1.list (76–77)

create a list top.10.collocates to collect the top ten noun collocates/adjective/year  
(79–81)

for-loop (counter = i, over seq(top.10.collocates)) (83, −95)

extract the current year’s data frame from result1.list, add droplevels (84)

create a table of nouns and adjectives, compute a chi-squared test on it, and 
extract the residuals (85–88)

for-loop (counter = j, over 1:4 (90, −94)

put into top.10.collocates for the relevant year (= i) and the relevant 
adjective (for which you use colnames and j) the highest ten residuals for 
that combination of year and adjective (91–93)

take that list, convert it into a data frame (98–104) and save it into a file (105–107)

Which aspects of the script are worth additional comment? One small clarification 
may be necessary regarding line 38: The “NA” there is not the special logical constant  
NA indicating missing values but just a normal character string, just so that we avoid 
empty strings; I made it “NA” so that (1) it’s similar to NA and (2) because the mere  
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fact that it’s two capital letters in an otherwise tolower-ed corpus will indicate that  
it’s not a real word.

The trickiest part here is probably the two loops that compute and then collect as well 
as sort the residuals of the adjective–noun co-occurrences in lines 83–95. One important 
thing to note is again the use of droplevels to make R not show zero frequencies for 
all sorts of words that are not even attested in the data. Lines 85 to 88 are then just 
a compact representation where a table of nouns and adjectives is created, but never 
stored or used other than as immediate input to chisq.test, and even the result of that 
main significance test is never used but we immediately jump to the residuals part of that 
test’s output, which we essentially use as an association measure – this may strike you as 
strange, but recall (1) from Section 5.3.1 that, for instance, an association measure such 
as MI is based on the ratio of observed and expected frequencies, and (2) from Section 
4.2.2 that the residuals of a chi-squared test are, too – a simulation with 1,000 random 
2 × 2 tables shows that MI values and the residuals are in fact very highly correlated 
with each other (adj. R2 of a polynomial regression (second degree) of residuals against 
MIs was 0.87).

Now, what if you don’t have COCA and COHA? These corpora are ‘available’ but  
not ‘freely available’ so not everyone will have them. If you do in fact not have them, 
here’s a very nice solution to the problem in the form of an extra assignment: Write a 
corpus-conversion script that changes the whole BNC into the COCA format exemplified 
in Figure 5.3 so that you can then run nearly all of the script I discuss here for COCA on 
the transformed version of the BNC. To make it more interesting, write that corpus-con-
version script in such a way that it handles multi-word units properly where by properly I 
mean that the multi-word unit in Figure 5.2 gets represented as in Figure 5.4.

(In the above script for COCA, we also use the information of which year corpus data 
are from – feel free to ignore that or, alternatively, use the creation date of the BNC file for 
that; I would recommend that you then conflate the years into decades and find a way to 
handle rare decades or other little problems.) Once you’re done with your script, (1) run 
it of course and compare it to my version in <_qclwr2/_scripts/05_15b_BNCasCOCA.r> 
and (2) tweak the above script so that it can run on the BNC-like-COCA corpus.

5.3.6 Collocates of Will and Shall in COHA (1810–90)

In this case study we will again look at collocates, this time at collocates in a window 
of three words to the left and three words to the right of the verbs will and shall in the 
nineteenth-century data from the Corpus of Historical American English (COHA). Like 
COCA, COHA is available for download from http://corpus.byu.edu/full-text, in the same 
format as COCA shown above. Again, if you don’t have COHA yourself, use the script  
<_qclwr2/_scripts/05_15b_BNCasCOCA.r> or, better, your own script, to convert the 
BNC into the tabular COCA/COHA format we are working with here and then, after read-
ing this section, tweak the script minimally so that it works on the BNC-as-COHA corpus.

Given this similarity in format, several aspects of the code will be quite similar to the 
previous case study. However, this time we want two kinds of different output. The first 
one is essentially just a small concordance display and looks like this:

Figure 5.4 Desired result of transforming Figure 5.2 into the COCA format of Figure 5.3.
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>·head(results)¶

··YEAR·DECADE·······L3·········L2···········L1·NODE·······R1····R2··R3

1·1810···181_·dramatic·literature············,·will·perceive··that·the

2·1810···181_·····lord·········'s·merry-making·will······sit·sadly··on

3·1810···181_········;········but···········he·will····never····be·the

4·1810···181_······one··········,············i·will····swear·····,·for

5·1810···181_···madona··········,············i·will·····tell···you·now

6·1810···181_·····lady··········.············i·will······but··read·and

For this, we will retrieve positions of matches, i.e., where will and shall will occur tagged 
as modal verbs, which will be numbers such as 6, 29, etc., and that means we will need to 
retrieve the words in positions 3, 4, 5, 6 (the match), 7, 8, 9 for the first match, and 26, 
27, 28, 29 (the match), 30, 31, 32 for the second match, etc. That could be achieved using 
something like (matchposition-3):(matchposition+3) – but what if the match is the 
first or second word in the corpus, or the penultimate or the last, meaning the subtraction 
and addition of 3 will result in nonsensical position values? In order to handle such cases, 
it is useful to define a function that I will here call ranger and that is provided in the code 
file, which you should explore (in general and for its use of lapply with an anonymous 
function). This function takes as input:

 • a vector of numbers called positions, which typically will be positions of matches in 
a vector of words (i.e., in the above example 6, 29, etc.);

 • an argument before.and.after, which says how many collocate, i.e., slots,  
to the left and right of the matches one wants (the default is set to five but we want 
only three here). As a programming exercise, you might want to tweak the function 
such that it can have different numbers of collocates on the left and on the right;

 • an argument desired.min, which indicates the earliest vector position you might want 
as collocate slots (the default is of course 1, the first word slot in the corpus (file));

 • an argument desired.max, which indicates the last vector position you might want 
as collocate slots (the default is the maximum of positions, but you should set it 
to the length of the vector of words that you will subset so that the last word in the 
corpus (file) could be shown as a collocate));

 • two more arguments padded and with.center, which you usually shouldn’t need to 
change from their default setting of TRUE, which is why I will not explain them here – 
play around with them if you want to get to know them.

Check out the small example in the code file to see how ranger gives you all possible col-
locate positions for a corpus vector of a certain length (and pads the remaining positions 
with NAs so all output is reliably equally long).

The other display we want is that exemplified in Table 2.2 or Table 2.3, i.e., one where 
for every time period and modal verb (i.e., will vs. shall), we can see the, say, 15 most 
frequent collocates per slot as shown in Figure 5.5.

What are the things we will need to do?

 • We define ranger and a vector coha.files with all paths to the 10,000 or so COHA 
files from the nineteenth century (or your BNC surrogate); also, we define the search 
terms and the window span.
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 • We create a matrix with seven columns (see Figure 5.5) for the results.
 • We go through an outer loop to load each corpus file (in the same way as in the previ-

ous section); we split it up into columns, from which we access the word lemmas and 
the tags; also, we determine where the modal verb tags are.

 • We go through an inner loop to search for each search word by looking for the inter-
sections of the positions of the word in the lemmas and the positions of the modal 
verb tags (this wouldn’t have to be a loop – you could just use the same code twice, 
once for will, once for shall – but putting in a loop there right away makes the script 
easy to reuse if you have more than two search expressions: You just change the vec-
tor with the search terms and all else stays the same).

 • For the positions of each search word, we use ranger to recover the relevant 3L to 
3R collocate slots around the matches and put them into a matrix, which we add to 
all collocates from the previous search words and files.

 • We then change the results into a data frame that we can nicely save and, to get results 
like Figure 5.5, we split it up by decade–verb combination and generate a summary 
output for each decade–verb combination.

What are the functions we will need for that? We use the function ranger, which uses 
lapply to apply seq to all numbers in its first argument positions, with seq’s starting 
point being the maximum of desired.min and the smallest starting point of collocates 
and its end point the minimum of desired.max and the end point of the input vector. 
We use rchoose.dir and dir as nearly always but, since the COHA files are in separate 
directories, may have to use sapply and dir to look into all user-specified directories to 
retrieve the files. We use matrix to create the beginning of the matrix results into which 
we will dump all collocates.

We for-loop over the files, which we load with readLines(file(...)) and process 
with tolower and then strsplit (as in the previous section); thus, we can use sapply 
and "[" to extract lemmas and tags. We determine modal-verb positions with grep and, 
in a second for-loop, find the intersections of the search words’ positions with those of 
the modal tags. Once we have the position of the intersecting matches, it’s time for ranger 

Figure 5.5 A 3L-3R collocate display of shall as a modal verb (1810–1819 in COHA).



224 Case Studies

to return collocate slots 3L to 3R around them. The collocate slots are then unlisted 
and used with subsetting on the vector with all lemmas in the file, which is in turn passed 
on to matrix, which generates a representation of the type of Figure 5.5. (This wouldn’t 
have to happen in the loop, but it seems to make little difference in processing time.) 
After the loop, we use data.frame to compile all info in a data frame, which we save 
into an .RData file. Finally, we split up the data frame by decade (which we obtained 
by using sub to delete the last character of the four-digit year) and search word, and we 
use lapply as well as summary(...,·maxsum=15) to get the 15 most frequent collocates 
for each slot.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_16_modals-in-
coha.r>; read this side by side with the actual script in RStudio:

clear memory and load the rChoiceDialogs package (1–2)

define the function ranger (4–25)

define the vector coha.files (assuming you have to pick the folder with all of COHA 
installed in it (41–48)

define the search terms (50) and the window span (51)

set up a matrix for the results (53–58)

for-loop (counter = i, over seq(coha.files)): (62, −105)

output a progress report (63–66), load, and trim the current corpus file (68–72)

split the corpus file up into a list by column, i.e., at tabstops (73)

retrieve the lemmas from the second positions of the list elements (75)

replace zero-character lemmas, if any, with “NA” (76)

retrieve the tags from the third positions of the list elements (77)

find modal verb tags (79–81)

for-loop (counter = j, over search.terms (83, −104)

look for the current search word (84) and determine where the matches  
intersect with the modal verb tags (85–86)

retrieve the 3L–3R collocate slots around the matches (88–91)

retrieve the lemmas in those collocate slots, organize them into a matrix (93–102)

add these results to the previously collected ones (103)

delete the first row of the matrix (107), change it into a data frame (108–114), and 
save it (115)

split the results up by decade (recall line 103 above) and verb (117–121), lapply 
summary to each vector of collocates (122–123), and explore the top 15 collo-
cates (125–129)

Which aspects of the script are worth additional comment? The most difficult part of 
this script, I think, is the retrieval of the collocates: first the slots, then the actual words. 
The slots are retrieved in lines 88–91 with ranger and they return an object collocate.
slots, which, if one interrupted or simulated the loops, would look like this:
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>·collocate.slots[1:3]¶
$`26554`
[1]·26551·26552·26553·26554·26555·26556·26557

$`26777`
[1]·26774·26775·26776·26777·26778·26779·26780

$`33148`
[1]·33145·33146·33147·33148·33149·33150·33151

That means there are matches (here of shall) in positions 26,554, 26,777, and 33,148 
of the file, and the list elements have these position indices as names (see these  
numbers after the $ signs), and then each list element is a vector with the position  
indices beginning three words earlier and ending three words later. But how is  
that used in the subsequent lines 93–101, which are compact, to put it mildly?  
If you used just lines 93–95, the matrix that these lines generate would look like 
this: The positions in collocate.slots are unlisted and then used to subset  
current.lemmas, i.e., retrieve the lemmas from those positions, which are then 
organized into a matrix that has twice the window span plus the match, which makes 
seven columns:

·····[,1]··[,2]········[,3]······[,4]····[,5]·····[,6]·····[,7]
[1,]·"and"·"beautiful"·"cecilia"·"shall"·"appear"·"in"·····"the"
[2,]·"."···"the"·······"picture"·"shall"·"be"·····"return"·"to"
[3,]·"and"·"land"······"we"······"shall"·"have"···"see"····"by"

The remaining lines, 96–101, just create nice dimension names: The name of the corpus 
file is repeated as many times as there are matches (with collocates around them). From 
that, everything till the first underscore is deleted with sub, which makes the remainder of 
the string begin with the four-digit year of the file name. That year is then extracted using 
substr(...,·1,·4), and those become the row names of the matrix. The column names 
are just numbers from –3 to +3, which represent 3L, 2L, 1L, 0 (for the match, here shall), 
1R, 2R, and 3R. The final result:

·····-3····-2··········-1········0·······1········2········3
1899·"and"·"beautiful"·"cecilia"·"shall"·"appear"·"in"·····"the"
1899·"."···"the"·······"picture"·"shall"·"be"·····"return"·"to"
1899·"and"·"land"······"we"······"shall"·"have"···"see"····"by"

5.3.7 Split Infinitives

The final case study in this section on co-occurrence deals with split infinitives,  
i.e., examples such as to boldly go, which contrast with to go boldly. We will return  
to the BNC XML (just folder A this time) to answer the following questions:
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 • Which adverbs and which verbs are most often observed in the split construction 
compared to the overall frequency of split vs. non-split constructions?

 • Which combinations of adverbs and verbs are most often used in the split construction?
 • To get an idea of how frequent both constructions are, we’d like to know which 

words are about as frequent as split and non-split infinitives in the same corpus? 
Saying that a certain construction occurs x many times per million words is not intui-
tive to understand, whereas saying that a construction is as frequent as words a, b, c 
is more straightforward.

What are the things we will need to do?

 • We define the function whitespace and a vector corpus.files; also, we define two 
search expressions – one to find split infinitives, the other to find non-split ones.

 • We create two collector vectors for split (all.splits) and non-split infinitives (all.
nonsplits) as well as an interim-results directory (<_qclwr2/_outputfiles/05_17_
freqoutput>) in which to store frequency lists of all words per file (which we later will 
amalgamate into one frequency list as in Section 5.2.8).

 • We load each corpus file, trim it down to what we need, and look for split and non-
split infinitives and add them to their respective collector vectors.

 • We also create a frequency list of each file and save it as an .RData into the interim-
results folder.

 • After the loop, we extract all adverbs and verbs from both the split and the non-split 
infinitives, which means we can look at the most frequent adverbs and verbs in either 
construction and also count the numbers of split and non-split infinitives.

 • We then identify the adverbs that are attested in both constructions, how often they 
are attested in each construction (raw frequencies), how often in percent they are 
used in the split construction, and how much higher that number is than the overall 
(baseline) percentage of split infinitives out of split and non-split infinitives (e.g., if 
split infinitives made up 10 percent of all infinitives and actually is attested in split 
constructions 25 percent of the time, we’d get 15 percent as a result); we then plot 
these ‘split-preference’ values.

 • Then, we do the same for the verbs.
 • We also create a frequency table of all split constructions to see which combinations 

of adverbs and verbs are most frequent in split infinitives.
 • Finally, we amalgamate all frequency lists from <05_17_freqoutput> and list all words 

that are as frequent as both kinds of infinitives plus/minus 5 percent.

What are the functions we will need for that? We use whitespace, which mostly uses 
gsub, and as always we use rchoose.dir and dir. We use the usual for-loop with scan 
and grep to choose and process the files, and then we use exact.matches.2 to retrieve 
all the infinitives as well as all lemmas for the overall frequency list. After the loop, we 
use strsplit as well as sapply with whitespace to extract adverbs and verbs; we use 
length to count how many of each infinitive construction there are, and we use inter-
sect to determine which adverbs are used in both constructions. We summarize those in a 
matrix, to which we apply prop.table to get the percentages of split infinitives, and then 
plot with text and abline to visualize the adverbs’ preference for the split construction. 
Then we do the same for the verbs. For the frequencies of verb–adverb combinations, we 
use paste and then table.

The last step consists of merging the frequency list files: We generate an empty table 
first, and then use another for-loop to load each frequency list file and merge them 
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into one long table (with c). Then we group the frequencies by the lemmas with tapply  
and sum up all frequencies of each lemma (we don’t do the insertion into a long vec-
tor with counter here because, since we’re only looking at BNC folder A, the data set is 
small enough for this to work even on a computer that’s not state-of-the-art). Finally, 
we compute the absolute difference of all frequencies from the construction frequencies  
and sort and display those that do not differ from the construction frequencies by  
5 percent or more.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_17_split-infs.r>; 
read this side by side with the actual script in RStudio:

clear memory, load the rChoiceDialogs package, and source exact.matches.2 (1–3)

define the function whitespace (5–17)

define the vector corpus.files (19–20)

define two search expressions (22–24), the collector vectors all.splits and all.
nonsplits (27), and create the interim-results output directory (28)

for-loop (counter = i, over corpus.files): (30, −70)

output a progress report: the name of i (31–33)

load and tolower corpus file i (35)

retrieve only sentences (37–41) and delete all non-word annotation and its values 
(43–47)

retrieve and collect all split (50–53) and non-split infinitives (54–57)

retrieve all lemmas in the file (59–62), tabulate them (63), and save them in the 
dedicated temporary folder (64–68)

split up the matches of both constructions and extract the verbs and adverbs (72–74, 
75–77)

count verbs and adverbs per construction and display the most frequent ones  
(79–81, 82–84)

identify the adverbs attested with both constructions (88–92)

generate a frequency table/matrix of the shared adverbs and their frequencies in 
both constructions (94–100, alternative: 102–106)

from that, compute the percentages of split constructions for each adverb (108–113)

visualize those percentages for each adverb (115–124)

identify the verbs attested with both constructions (128–132)

generate a frequency table/matrix of the shared verbs and their frequencies in both 
constructions (134–140, alternative: 142–146)

from that, compute the percentages of split constructions for each verb (148–153)

visualize those percentages for each adverb (155–164)

create a co-occurrence table of verbs and adverbs in the split construction with 
the most frequent adverbs on the left and the most frequent verbs on the right 
(168–175, useless)

create a sorted frequency table of adverb–verb combinations (177–178)

(continued)
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go into the interim-results directory and create an empty frequency table called 
all.lemma.freqs for amalgamating all frequency tables (182–184)

for-loop (counter = i, over dir()): (186, −194)

output a progress report (187–189) and load each frequency list file (190)

add the current frequency list to all.lemma.freqs (191–193)

use tapply to sum up all frequencies grouped by lemma (196–200) and sort the 
result (201)

output lemmas whose observed frequency does not differ more from the frequency 
of the split construction by more than 5 percent (203–209)

output lemmas whose observed frequency does not differ more from the frequency 
of the non-split construction by more than 5 percent (211–217)

Which aspects of the script are worth additional comment? The only part of this script 
that differs from what we’ve already done before is the very last step. We have a fre-
quency table of all lemmas (about 176,000 elements long) and we have a frequency of the  
split constructions, say 414. We first compute the absolute differences of the former  
and the latter:

abs(all.lemma.freqs-length(all.splits))

This vector of numbers is then compared to 5 percent of the number of split constructions 
(414, of which 5 percent is 20.7) with a logical expression, which will return TRUEs if the 
absolute difference between the lemma frequency and 414 is <20.7:

abs(all.lemma.freqs-length(all.nonsplits))·<·(length(all.
nonsplits)*0.05)

That logical vector is used to subset all.lemma.freqs, the result of which is then sorted.

5.4 Other Applications

We are now turning to a variety of case studies that involve applications that are not so 
easily grouped into (just one of) the previous sections on dispersion, frequencies, and 
concordancing or co-occurrence; thus, the following scripts are, I hope, good examples to 
showcase the variety and potential of corpus-linguistic methods and the different kinds of 
data you can use and/or explore.

5.4.1 Corpus Conversion: the ICE-GB

You may have already engaged in some corpus conversion activities above – if you didn’t 
have COCA and COHA that is. Here’s another one: In this tiny assignment, we are going 

(continued)
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Figure 5.6 Three sentences from ICE-GB Release 2.

to process the files from the one-million-word British Component of the International 
Corpus of English (Release 2), a POS-tagged and syntactically parsed corpus, of which a 
very small section is exemplified in Figure 5.6.

The task is simple: We want to strip the file of all its annotation and obtain a one- 
sentence-per-line format as exemplified in Figure 5.7; we do that by recognizing two 
things: (1) sentences are tagged with “<sent>”, and words are between curly brackets.

What are the things we will need to do?

 • We load the rChoiceDialogs package, exact.matches.2, and set options so that we 
get warnings as soon as they arise (e.g., when we load a file whose encoding differs 
from what we expect to handle).

 • We define a vector corpus.files; and an output directory (<_qclwr2/_output-
files/05_18_icegb-output>) for the output files, which will look like Figure 5.7.

 • In a for-loop, we load each file, paste it together into one long string with line break 
characters “\n” between vector elements, and split it up again at every occurrence of 
“<sent>” (discarding anything that strsplit might leave before the first “<sent>”) 
into a vector current.sentences.
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Figure 5.7 The same three sentences after processing.

Figure 5.8 Problematic (for us) uses of brackets in the ICE-GB Release 2

 • We then create current.words, which contains the first two components of exact.
matches.2 when looking for all words in current.sentences, where words are 
defined as sequences of characters that have a “{” to their left, do not contain another 
opening curly bracket or a line break in them, and have a “}\n” to their right. You 
may wonder why we can’t just define a word as something that has a curly bracket to 
the left and is not the closing curly bracket as in “(?<={)[^}]+”. That’s because there 
are things in the corpus like that shown in Figure 5.8.

 • It of course all depends on how exactly you paste all lines together in the third step 
above and how exactly you define the regex to find all words, but such cases of open-
ing angular brackets (not even closed in the same line) caused problems in my own 
first draft of the script. Once you’re done findings words though, current.words[1] 
contains the words, current.words[2] their locations in current.sentences.

 • We paste all words coming from the same sentence together with spaces in between 
them and output them into a file in the output directory that has the same name as 
the input corpus file.

What are the functions we will need for that? We use rchoose.dir and dir to define 
the corpus files and dir.create to create an output directory. We for-loop to load 
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each file with scan, paste it together with collapse=”\n”, and unlist the result of  
stringsplitting it on the occurrence of sentence tags. We then use exact.matches.2 
to find the words and their locations, and then we tapply paste to all the words in the 
same sentence (now with collapse="·"). Then we cat the results into a file in the output 
directory named with paste0, done.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_18_icegb.r>; read 
this side by side with the actual script in RStudio:

clear memory, load the rChoiceDialogs and dplyr packages, and source exact.
matches.2 (1–4)

set the warnings option to immediate warning (5) for the reason discussed in lines 
6–9

define the vector corpus.files (11–12) and create the output directory (14–15)

for-loop (counter = i, over corpus.files): (17, −42)

output a progress report: the name of i (18)

load the corpus file i (20) and paste it together into one string (21–22)

split the file up into sentences and discard stuff before the first sentence tag (24–27)

find the words between curly brackets and their sentence locations (29–32)

paste the sentences back together from the words and their (sentence) locations 
(34–37)

output the sentences into an output file in the output directory (39–41)

Which aspects of the script are worth additional comment? None, because this script 
is very short and simple, but do check out the several excurses at the end: The first one 
shows how we could change part of the loop by using the argument vectorize=FALSE 
in exact.matches.2; the second one proposes an alternative to parts of the loop using 
dplyr’s %>%; the third combines those two approaches to replace everything in the loop by 
some nicer-looking %>% syntax.

5.4.2 Three Indexing Applications

In this section we will play around with something that doesn’t really have much corpus-
linguistic value per se, but it has a lot of practical value and, more importantly, is a good 
programming exercise: We will use R for indexing. Two applications will involve a small 
part of the first edition of QCLWR, the third will involve a paper of mine. Specifically, the 
first case study consists of (1) finding function names in a text version of a few pages of 
the proofs of QCLWR (first edition) and (2) creating and outputting an index for them.

What are the things we will need to do?

 • We source exact.matches.2 and load a text file (that is essentially just a few pages 
copied from the PDF proofs of the first edition of QCLWR and pasted into a text file).

 • We paste them together in one long string, but then split that up again into a char-
acter vector at each occurrence of a page marker that’s repeated on every page of the 
PDF proofs; this way, that character vector has as many elements as the (part of the) 
proofs had pages.
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 • Then we find lines with code in that character vector, namely lines that contain the R 
prompts “>” or “+” followed later by the line break indicator “¶”.

 • From those lines with code, we extract strings that are likely to be function names, 
namely sequences of letters, periods, and/or underscores before opening parentheses.

 • Then we look for all the potential function names in the character vector with the man-
uscript text and collect their locations as the page numbers (of this manuscript excerpt).

 • Finally, we output each function name followed by a tabstop followed by the page 
numbers (separated with “,·”).

What are the functions we will need for that? We use source to load exact.matches.2 
and scan to load the text file <_qclwr2/_inputfiles/corp_indexing-1.txt> into R. We use 
paste to merge all elements into one long character vector and unlist plus strsplit to 
break it up into a character vector of pages. We then use exact.matches.2 to retrieve 
lines with code and again to extract strings that might be function names. We then for-
loop over the list of function names and use grep to find them in the character vector with 
the book pages and store them in a list – note how it helps here that grep only returns one 
position even if a function name is attested on one page multiple times (because an index 
entry lists each page on which a word occurs just once, too). In a separate second for-loop 
we then use paste to put page numbers together (separated by commas and spaces) and 
cat to output all results.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_19a_indexing.r>; 
read this side by side with the actual script in RStudio:

clear memory and source exact.matches.2 (1–2)

load the text file with the part of the manuscript (5–8)

paste it together into one string (10–11 and then break it up again at the occurrence 
of the page marker (deleting things before the first page marker (13–17)

extract lines with R code (19–21) and extract strings that could be functions (23–29)

create a list to collect index entries (34)

for-loop (counter = current.function, over function.candidates): (35, −46)

grep for the current function candidate (surrounded by word boundaries) in the 
pages of the book and store the locations of matches (i.e., page numbers) (36–45)

for-loop (counter = i, over seq(index1)): (48, −58)

paste together the name of the index entry with a tabstop before the page numbers,  
which are in turn pasted together with commas and spaces between them and 
print them with line breaks between index entries (50–57)

Which aspects of the script are worth additional comment? The script as discussed so 
far is pretty simple, so no additional comments are required. However, in lines 62–72 
and 76–84, I provide alternative solutions to what above is done very R-unlike with for-
loops in lines 33–46 and 48–58: These alternatives use faster and more elegant functions 
from the apply family and don’t require loops at all. These alternatives are heavily com-
mented so check them out to better understand how one does things ‘the R way’ and to 
prepare for the next case study. Also, note that the above way of finding function names  
(stuff before opening parentheses) is not perfect because: it wouldn’t find head in 
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sapply(some.list,·head) or sum in tapply(x,·y,·sum)), so before checking out my 
first attempt at how to do this in lines 89–103, why don’t you try your hand at this?

The second case study is very similar to the previous one – the only differences are that 
(1) we now don’t just index function names but essentially all word types in the manu-
script, and (2) we now use the loopless ways to create and output the index. I therefore do 
not discuss this script – <_qclwr2/_scripts/05_19b_indexing.r> – here in much detail but 
only draw your attention to how the word types we use in the index are defined: A word 
type for the purposes of this script is defined as one or more characters of the following: 
hyphens, letters from a to z (small and capital), digits from 0 to 9, underscores, and peri-
ods (lines 22–26). These word types are then cleaned/pruned such that word types that do 
not begin with letters or numbers are deleted (lines 27–30). In addition, any word types 
that are integers or decimals are replaced by “NUM” to avoid index entries for many 
different numbers (lines 31–34). Finally, all unique non-empty character strings remain-
ing are used for indexing (line 35), and the rest is as in the previous case study; check the 
detailed comments for how lapply and sapply are used to prepare the index and ready 
it for output (lines 40–49 and 51–54) respectively. Also, note a small excursus at the end 
where I show you some code to quickly do somewhat interactive index queries.

The third case study is again similar to the previous ones, but adds two little twists. 
One is that we’re now loading a file with Windows’s version of Unicode UCS-2LE and 
so it is particularly useful to load this file with readLines(file(...)) and the encoding 
argument set to “UCS-2LE”.

The other twist is more complex and addresses the fact that if an index term is men-
tioned on several successive pages, say 1, 2, 3, and 4, then indices usually don’t print all of 
those but sum them up as “1–4”. Thus, what we want to do this time is not output index 
entries like this: “1, 2, 3, 4, 6, 7, 9, 11”, but like this: “1–4, 6–7, 9, 11”.

Much of this script works pretty much as before, which is why I again abbreviate the 
discussion here. We use a different page marker now (namely the name of the publisher 
that shows up on every page) (lines 13–17), we change the paper to lower case (line 18) 
and get rid of the header and the footer of the paper (lines 19–22), and we define a few 
index terms manually (lines 24–27). We then create the index in the same way as before 
(with lapply), but now the second twist: merging successive page numbers.

Let’s approach this by looking at the index term “(association measure|\\bam\\b)”. We 
assign that to qwe to keep code shorter as I am discussing lines 40–53 – noting that of 
course (sigh) Linux and Windows use different alphabetical sorting so that index term is 
the first list element on Windows but the second on Linux . . . :

>·(qwe<-index[[ifelse(.Platform$OS.type=="windows",·1,·2)]])¶
·[1]··2··3··4··6··8··9·10·12·13·14·16·18·20·21·22·24·25· 

26·28·30·32

We want to change that to this:

2-4,·6,·8-10,·12-14,·16,·18,·20-22,·24-26,·28,·30,·32

But how? The first step uses the function diff, which computes the differences between 
neighboring values in a vector:
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>·diff(qwe)¶
·[1]·1·1·2·2·1·1·2·1·1·2·2·2·1·1·2·1·1·2·2·2

That is, 3 – 2 = 1, 4 – 3 = 1, 6 – 4 = 2, etc., which is already a nice first step given how this 
indicates occurrences of adjacent page numbers (with the 1s). The next step is to define 
an object called ranges, which contains hyphens when the difference between two page 
numbers was 1, and commas otherwise:

>·(ranges<-ifelse(diff(qwe)==1,·"-",·","))¶
·[1]·"-"·"-"·","·","·"-"·"-"·","·"-"·"-"·","·","·","·"-"·"-

"·","·"-"·"-"·","·","·","

We then paste the numbers from qwe and the characters from ranges together into  
a character vector all.in.one of only one string, of which we then delete the final char-
acter:

>·(all.in.one<-paste(qwe,·ranges,·sep="",·collapse="·"))¶
[1]··"2-·3-·4,·6,·8-·9-·10,·12-·13-·14,·16,·18,·20-·21-·22,·24-

·25-·26,·28,·30,·32-"
>·(all.in.one<-substr(all.in.one,·1,·nchar(all.in.one)-1))¶
[1]··"2-·3-·4,·6,·8-·9-·10,·12-·13-·14,·16,·18,·20-·21-·22,·24-

·25-·26,·28,·30,·32"

Last step: We look for numbers (memorized as \\1) that are followed by a hyphen and a 
space followed by, and this is the crucial point, potentially more numbers or more num-
bers followed by hyphens (memorized as \\2) till the last sequence of numbers (memorizes 
as \\3) – i.e., we’re looking for sequences of numbers with hyphens – and we replace them 
only by the starting and the end point of the sequence:

>·gsub("(\\d+)-·(\\d+-·)*(\\d+)",·"\\1-\\3",·all.in.one,· 
perl=TRUE)¶

[1]·"2-4,·6,·8-10,·12-14,·16,·18,·20-22,·24-26,·28,·30,·32"

How does this work? It finds the “2-·” (with the “2” memorized as \\1), followed 
by “3-·” (memorized as \\2), followed by the “4” (memorized as \\3), but then it 
takes all that out and puts \\1 (the “2”) back in followed by a hyphen, followed by \\3  
(the “4”), effectively conflating all intermediate ranges by retaining only the starting 
and the end point of a range. This logic is the applied within a loop to all index entries 
(lines 57–70).

If you are now thinking “How the h . . . would I ever figure that out myself?”, then 
you’re in good company: It took me quite a bit of time and playing around with stuff 
before I came up with this, where the main recognition of how to do it started with the 
realization that diff would make it possible to find adjacent numbers. But you’re really 
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not expected to immediately be able to come up with such exotic solutions and I don’t 
dare claim that my solution is good, elegant, or anything other than functional.

5.4.3 Playing With CELEX

One very useful database for many research purposes is the CELEX database (Baayen, 
Piepenbrock, & Gulikers 1995; https://catalog.ldc.upenn.edu/LDC96L14), which pro-
vides phonological, morphological, syntactic information on many words in Dutch, 
English, and German. Figures 5.9 and 5.10 show you three lines for three different lemmas 
in English (here highlighted in bold); as you can see, the two files are aligned: row 26,198 
refers to the same lemma both in the file containing phonological information (<EPL.
CD>) and the file containing syntactic information (<ESL.CD>):

In this section we will load samples of these two files (<_qclwr2/_inputfiles/EPL_
qclwr2.CD> and <_qclwr2/_inputfiles/ESL_qclwr2.CD>) into two text vectors epl and 
esl (lines 4–5 and 17–18 respectively) and split them up with strsplit at backslashes. 
Specifically, we will create a vector words with all word lemmas and a vector pronuns 
with all their pronunciations from epl (lines 12–14 and 15 respectively); then we create 
a logical vector adjectives that states for each lemma whether it is an adjective or not 
(lines 20–27). Note that strsplit requires four backslashes to split on one backslash: 
the third one says the fourth one is a literal backslash, the first one says the second one 
is a literal backslash (try cat("\\\\")¶), so that, of those two literal ones, the first 
one escapes the escape meaning of the second . . . (don’t get me started!). Note also 
that the use of CELEX files in this section requires you to know which column in these 
files contains what kind of information; thus, look at the lines with sapply in the code 
file (14, 15, and 27), which tell you where you find words (column 2 of <EPL.CD>), 
their pronunciations in a format where every phoneme is represented by one and only 
one character (column 6 of <EPL.CD>), and parts of speech (column 4 of <ESL.CD>); 
for that as well as for the phonemic transcription or any other info, you would need 

Figure 5.9 Three lines from CELEX, <EPL.CD>.

Figure 5.10 Three lines from CELEX, <ESL.CD>.
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to consult the CELEX documentation, the phonemic transcription I make available in 
<_qclwr2/_inputfiles/CELEX_pronuncode.pdf>.

With these vectors in place, we now do some small searches just to explore the kinds 
of things that one can now do (in the code file, I also always provide the results you get if 
you run this code on the real CELEX database, not just the tiny excerpts here). To make 
this section worth your time, though, most code in this particular code file, <_qclwr2/_
scripts/05_20_celex.r>, will not use the traditional R syntax with nesting of functions, but 
the %>% operator from the package dplyr (which we then obviously need to load). Here in 
the book, I will discuss just a few of them, but study the code file to see what else there is 
for you to explore.

The first example to be discussed involves the number of adjectives that have four syl-
lables (lines 38–47). The traditional nested code is shown in line 40 as well as here, and 
is ugly and counterintuitive to read because you have to go from the inside out (starting 
with pronuns[adjectives]):

>·table(sapply(strsplit(pronuns[adjectives],·"-"),·length))["4"]¶

The nicer way using %>% can be read as “take the pronunciations of the adjectives,  
strsplit them up at the syllabification code (see Figure 5.9), to the result of that  
sapply length, count the resulting elements of that with table, and from that table 
extract the frequency of 4 (for 4 syllables)” – much nicer. The next two examples use 
similar approaches: One uses just a very simple grep to find pronunciations of adjec-
tives beginning (“^”) with schwa (“@”); the other also adds a gsub before that to delete  
syllabification markers first.

For the last example, we will pretend for a moment that the CELEX database doesn’t 
have segmental information for its lemmas (which it does, in column 7 of <EPL.CD>). 
We want to find out how frequent different consonant cluster lengths are in English 
adjectives (ignoring syllabification for now). Since we pretend to not have segmental 
information, we need to create it ourselves: We create a vector with all consonant pho-
nemes (C.codes) and one with all vowel phonemes (V.codes) and then create equally 
long (in number of characters) vectors with Cs and Vs, so that we can use chartr for 
transliteration like here:

>·chartr(V.codes,·Vs,·chartr(C.codes,·Cs,·"dIsplizIN"))¶
[1]·"CVCCCVCVC"

If we want to have lengths of consonant clusters, then all we need to do is strsplit 
on one or more occurrences of “V” (because that will leave only the sequences of “C”s, 
measure the lengths of each of the remaining list elements (by sapplying nchar to them), 
and then unlist the consonant cluster length and count them (with table), and that is 
what lines 83–90 do. Two follow-ups on this: First, lines 98–104 and 106–110 then show 
you how you find the adjectives with the maximal cluster lengths. Second, recall that 
the CELEX database has segmental information and we just ignored it: therefore, lines 
120–122, 124–127, and 129–132 give you the more elegant and more realistic results; 
side-remark: I call the result of lines 120–122 seggies and not segments not to be cute 
but because segments is a function in R.
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5.4.4 Match All Numbers

This section is another one of the very few that doesn’t have the same structure. This is 
because this exercise is really only one (complicated) regular expression: The goal is to 
match all kinds of formats of numbers, which is something that can easily come up when 
you generate frequency lists of (large) corpora and want to avoid having potentially tens 
of thousands of frequency list entries that are really just different numbers – in such a situ-
ation, you would probably want just one entry “_NUM_” or something similar; thus, this 
is a realistic situation. Figure 5.11 gives you 40 character strings, of which 39 are different 
(versions of) numbers as character strings that you are supposed to be able to define with 
a single regular expression, and one character string that you must not match (obviously, 
that would be “not this”).

Thus, I encourage you to not immediately look at the solution but go to a website such 
as http://regexr.com, enter all the strings above as test cases, and then try to craft your 
regular expression and see how well you can match all numbers. Bear in mind that such 
regex-testing websites usually do not require double backslashes, so if in R you’d write 
\\d, then there \d will be enough. Also think about all you need to cover: positive num-
bers (with and without a +) and negative numbers, numbers with and without decimal 
points, numbers with (multiple?) and without grouping separators, positive and nega-
tive exponentiation, values between 0 and nearly 1 that begin with a leading 0 or with a  
decimal point right away, and combinations of these things with different lengths, etc. 
When you think you have a good (enough) solution, or if you really hit a roadblock, then 
check out the answer key in <_qclwr2/_scripts/05_21_numbers.r>.

5.4.5 Retrieving Adjective Sequences From Untagged Corpora

In this section we want to do something that may sound trivial given the previous sections: 
We want to retrieve sequences of two adjectives in the base form, which may not seem 
like a big deal given, for instance, that we already retrieved sequences of more than two 
words when we looked for split and non-split infinitives. However, this section adds an 
additional challenge: The corpus from which we want to retrieve sequences of two adjec-
tives is not tagged. We will do two case studies; one will be based on the Chinese-Hong 
Kong data from the International Corpus of Learner English (ICLE), the other on the 
Brown corpus of the ICAME CD-ROM version 2 (as before, see the end of this section 
if you do not have access to either corpus). Thus, we will pursue the following three-step 
strategy: We will first retrieve all adjective tokens from the BNC World Edition; because 

Figure 5.11 Thirty-nine character strings representing numbers to match and one not to match.
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this number is going to be very high, we do not collect them in a vector that’s growing in 
the iterations but use the logic from Section 5.2.8: We insert them into a very large vector 
defined before the loop using a counter.

After the loop, we’ll pick the most frequent n adjectives (something like n = 2,000 for 
the learner data case study and n = 5,000 for the Brown corpus case study) occurring in 
it and tag all occurrences of these forms in the untagged corpus files, and then we will 
retrieve sequences of two adjective tags and whatever they tag from these corpus files; 
with the ICLE corpus, we will actually save the tagged corpus files before we search 
them, with the Brown corpus example, we’ll tag the files and immediately search them 
while they are still in memory. One comment here: We could just use Adam Kilgarriff’s 
frequency list file or the results from the word-tag combination exercise in Section 5.2.8 
to get adjectives to tag, and one could just use a tagged version of the ICLE or Brown 
corpus, but we will pretend we don’t have access to any such resources and write a script 
from scratch just so you get some more practice that’ll help you do these things when 
those additional resources are really not available; unlike several scripts above, we will 
write this one again such that it uses the BNC’s XML annotation and, thus, the packages 
XML and xml2.

What are the things we will need to do?

 • We load all required packages (rChoiceDialogs, XML, xml2), source exact.
matches.2, and define whitespace.

 • Following Section 5.2.8, we define a vector with corpus files as well as a long charac-
ter vector for all adjective tokens with ten million slots (called all.adjectives), and 
we set a vector counter to 1.

 • Within the usual kind of for-loop, we use the logic from Section 5.2.5 and let R detect 
whether it’s running on a Windows system or not; depending on that, we load (and 
process) the file with functions from the package XML (if not on Windows) or xml2 
(if on Windows).

 • Either way, we retrieve all adjective lemmas and insert them into the relevant slots of 
all.adjectives; note that, while we are only interested in adjective types, we still 
need their frequencies because we want to pick the n most frequent types – that’s why 
we won’t already get the unique types (although we could save a (growing) frequency 
table).

 • After the loop, we clean up that vector and create as well as save a sorted frequency 
list of all adjective lemmas.

 • We then find the n = 2,000th highest frequency of all adjective frequencies and retain 
all adjectives with at least that frequency (to tag them in CH-HK ICLE).

 • We define the CN-HK ICLE corpus files to be tagged and use an outer for-loop to 
load them, paste them into one string, and, if necessary, clean them up.

 • With each file, we then use an inner loop over the ≈2,000 adjectives to look for each 
of them (surrounded by word boundaries and parenthesized for back-referencing) and 
put them back in with an adjective tag in front of them.

 • After every one of our ≈2,000 adjectives has been tagged, we save the file in the same 
directory from which it was loaded (but with a different name!).

 • We then define those annotated files as the new corpus files and load each of them 
within a loop.

 • We look for sequences of two words tagged as adjectives; if we find any, we paste 
the file name in front of them and save them with 100 characters on each side into a 
vector.

 • We output that vector into a .csv file.
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What are the functions we will need for that? The script is one of our longest, but the 
good thing is most of it is familiar. The function whitespace still uses gsub, and we of 
course use rchoose.dir and dir to define the corpus files as well as character to define 
our long results vector all.adjectives. Our test for which operating system R is run-
ning on is done with if on .Platform$OS.type, and for Windows we use read_xml, 
xml_find_all, tolower, and exact.matches.2, whereas for other operating systems 
we use xmlInternalTreeParse and xpathSApply, and again tolower. We check 
whether there are any matches with if and use subsetting and length to insert adjec-
tive tokens into all.adjectives. We create our sorted frequency list of all adjectives  
with sort(table(...)) and save it into an .RData file; we also then remove all.
adjectives from memory with rm and, since that’s a pretty large object, we then also 
initiate a process called garbage collection with gc, which can make R return unused 
memory back to the operating system.

We use rchoose.files to define the to-be-tagged corpus files, and for-loop over them 
with scan; each file gets pasted into one long string and cleaned, and in a second for-
loop we paste word boundaries around the adjectives to tag, and replace any occurrences 
of them by them with a tag (using of course gsub) so that we can cat them with a different 
file name (using gsub).

Finally, we define the new tagged corpus files again with rchoose.files and for-loop 
over them again with scan, so that we can use exact.matches.2 to look for adjective 
doubles. We check whether there are any matches with is.null and if there are matches, 
we paste the file name in front of them (with sep="\t") and collect them. Once we’re 
done with all corpus files, we add case numbers using paste to add a sequence from 1 to 
n to each case, and then we cat that into our final overall output file.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_22a_adjorder.r>; 
read this side by side with the actual script in RStudio:

clear memory, load the rChoiceDialogs, XML, and xml2 packages, and source 
exact.matches.2 (1–5)

define whitespace as before (7–19)

define a vector corpus.files (21–22) and define a long collector vector all. 
adjectives to be filled and set its first position counter to 1 (24–26)

for-loop (counter = i, over corpus.files): (28, −65)

output a progress report (29)

if R is running on Windows (31, −44)

use functions from xml2 to load the file and find all adjective tokens (32–43)

if R is running elsewhere (44, −52)

use functions from XML to load the file and find all adjective tokens (45–51)

keep only adjectives consisting of letters and hyphens only and clean whitespace 
(54–57)

if there were no matches, go do the next loop (59), otherwise insert the matches 
into all.adjectives (60–63) and set counter to the new position for new 
tokens to be added (64)

(continued)



240 Case Studies

clean out the unused slots of all.adjectives (67), create a sorted frequency list of 
the adjective tokens (all.advectives.freq) (68), and save it (69)

put all adjectives as frequent or more frequent than the 2,000th most frequent adjec-
tive into a vector adj.2.annotate (71–72) and free up your workspace a bit 
with rm and gc (74–75)

define the to-be-tagged CNHK-ICLE files, which ideally would all be in one folder 
(79–80)

for-loop (counter = i, over corpus.files): (82, −109)

output a progress report (83), load the file (85), paste it into one long string (86)

clean the string up by replacing tabs, trimming whitespace (87–93)

for-loop (counter = j, over adj.2.annotate): (95, −101)

create a search expression by pasting word boundaries around each of the 
approx. 2,000 adjectives to annotate (96)

replace all occurrences of that search expression by itself with a tag (97–100)

after all replacements, cat the tagged corpus files into a new results .txt file (with 
a different name) (103–108)

delete the old corpus files (probably in a file explorer, but you can actually also  
(1) use unlink for that from within R or (2) in fact ignore them for now because 
we will know to look for tags and the regular corpus files don’t have them so, 
while it would be inelegant and slow your script down (loading twice as many 
files as necessary), it would not affect the returned results (113)

define the to-be-tagged annotated CNHK-ICLE files (114–115) and prepare a collec-
tor vector all.adj.doubles for all adjective doubles (117–118)

for-loop (counter = i, over corpus.files): (120, −134)

output a progress report (121), load and tolower the file (123), and look for 
sequences of two adjectives using the just inserted tags (124–126)

if there are no matches, go to the next file . . . (128)

otherwise paste the basename of the corpus file in front of the matches (129–131)  
and store the results of the current file with all others (132–133)

paste a sequence number in front of all matches to number them (135–137)

cat the results into a .csv file (139–142)

Which aspects of the script are worth additional comment? Not much, because, as men-
tioned above, this script is long but recycles so many things we’ve done before that it’s not 
that hard. I do want to emphasize one seemingly small thing, however: Maybe you wondered 
in the final loop, when we were looking for adjective doubles, why there would be an if-con-
ditional to test whether there are any results (in line 128). The reason is something I pointed 
out at the beginning of this chapter: Your script must be prepared to handle any outcome. 
Sure, if there are matches, you want to paste the file name in front of them (line 129–131), 
and sure, it’s likely there will be matches in most files – but what if there are none and, worse 
even, what if you were looking for something really rare? Then, without this if-conditional, 
your output file would contain tons of rows with just the file names but no matches after 

(continued)
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them. Yes, you would still get all the matches – recall would be perfect – but precision would 
be bad because your few matches would be buried in many useless rows with file names. So, 
it is important to think through every step of the process: “What can happen here? A, B, and 
C. What do I want the script to do when A, what if B, what if C?”, etc.

Let us now turn to the second case study in this section, in which we modify this script 
such that

 • the corpus from which adjective doubles are extracted is the Brown corpus of written 
American English from the 1960s (using the folder BROWN1 from the ICAME2 CD);

 • the adjectives we are looking for are now many more, namely approximately 5,000 
rather than the 2,000 for the learner data;

 • we are not going to save the tagged Brown corpus files, but perform the search right 
after the tagging – i.e., immediately in the same loop;

 • we will add the sentence numbers to the matches and delete all tags before saving the 
final results file.

The Brown corpus files look like the example shown in Figure 5.12.
The good news is that the first part of the script doesn’t change at all: With a single 

exception, lines 1–75 of <_qclwr2/_scripts/05_22a_adjorder.r> stay the same (so you can 
actually recycle the output file <_qclwr2/_outputfiles/05_22_adjorder1.RData> rather than 
generate the list of adjectives from the BNC from scratch again!). That one exception is that 
we increase the number of adjectives to annotate in line 72 – only after that do we have to 
make some other changes (to be found in <_qclwr2/_scripts/05_22b_adjorder_brown.r>:

define the to-be-tagged Brown corpus files, which ideally would all be in one folder 
(79–80)

since now we tag and immediately retrieve adjective doubles, we already define a 
collector vector all.adj.doubles for all adjective doubles (82–83)

for-loop (counter = i, over corpus.files): (85, −125)

output a progress report (86), load the file (88), delete line initial annotation  
(89–92), paste it together into one long string (94–95), strsplit it again at 
three spaces, and clean it with whitespace (97–100)

Figure 5.12 The first six lines of <BROWN1_A.txt>.

(continued)
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retain only non-empty character strings (102)

for-loop (counter = j, over adj.2.annotate): (104, −110)

create a search expression by pasting word boundaries around each of the 
approx. 5,000 adjectives to annotate (105)

replace all occurrences of that search expression by itself with a tag (106–109)

after all replacements, we use exact.matches.2 to find sequences of two adjec-
tives using the just inserted tags (112–115) – note, for once we store not 
just [[4]] (or [[1]]) but everything because we will need the locations of the 
matches later

if there are no matches, go to the next file – otherwise . . . (117)

paste the basename of the corpus file and the line numbers of the matches in 
front of the matches (118–121) and store the results of the current file with all 
others (122–123)

paste a sequence number in front of all matches to number them and delete the tags  
(127–129)

cat the results into a .csv file (131–134); pay attention to how the heading is defined

I provide two output files: the regular .csv file that you can open with LibreOffice Calc 
or even a text editor (<_qclwr2/_outputfiles/22b_adjorder3_brown.csv>), but also a more 
nicely formatted OpenDocument spreadsheet (<_qclwr2/_outputfiles/22b_adjorder3_
brown.ods>), in which I use some formatting that I find useful for subsequent annotation: 
font and color highlighting, frozen rows and columns (at C2), and I added the column F 
in which one can enter whether a match is really a match of two adjectives; for that, I use 
LibreOffice Calc’s Validation tool: You can only enter “no”, “yes”, and “?” there, which 
is great if you have collaborators that do part of the annotation.

Now what if you don’t have access to either the CNHK-files of ICLE or the version of 
the Brown corpus we used here? You may already guess the answer is another assignment 
for you: Write a corpus-conversion script that reads in the BNC file <HHV.XML> and 
makes it look like a file of the Brown corpus, i.e., as exemplified in Figure 5.12, and then  
(1) check your script against my relatively crude suggestion in <_qclwr2/_outputfiles/05_22c_
BNC-HHVasBROWN.r> and (2) tweak the above script so that it would run on that 
HHV-as-Brown corpus file.

5.4.6 Type-Token Ratios/Vocabulary Growth: Hamlet vs. Macbeth

The next application is concerned with type-token ratios (as a crude measure of lexical 
richness/repetitiveness) and vocabulary growth (see Youmans 1990; 1991), and we will 
use an example from literary linguistics to play with. Specifically, we will compare two 
plays by William Shakespeare – Hamlet and Macbeth – with regard to their type-token 
ratios. This section is relatively simple, which is why we will make it worth your time by 
(1) writing a function ttr that helps us compute type-token ratios and vocabulary-growth 
curves in the future, and (2) we will again explore a bit how we can change code from the 
traditional approach to the chaining approach with dplyr’s great %>%.

(continued)
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Let us begin by discussing how we compute type-token ratios and vocabulary-growth 
curves using a small vector tokens as a ‘corpus’, something that I always recommend to 
get started on a new project: Create a data set realistic enough in its make-up but small 
enough to be seen on one screen, and start developing your code with that. Here we’ll do 
that together, but that means you should already follow along with the script now. With 
the functions you already know well, it’s very easy to compute a type-token ratio:

>·(tokens<-c("a",·"b",·"c",·"a",·"d",·"e",·"f",·"a",·"c",·"g"))¶
>·length(unique(tokens))·/·length(tokens)¶
[1]·0.7

But what is a vocabulary-growth curve and how do we compute it? It is a line plot that 
shows positions of all tokens of a vector on the x-axis (as in Section 5.1.2) and all type fre-
quencies on the y-axis; in other words, each point’s y-coordinate divided by each point’s 
x-coordinate provides the point’s type token ratio. For the above tokens, it would look 
like Figure 5.13.

The x-coordinates of each point are obvious: It’s just the numbers from 1 to 10, one for 
every element of tokens, which means that, given what we said above, the y-coordinates 
are then the type-token ratios of each token slot multiplied by the number of tokens of 
each slot. Alternatively, the y-coordinates of all ten points are the number of unique types 
you have seen at each position if you’ve read all tokens from slot 1 to that position, i.e., 
what is here called type.freqs:

Figure 5.13 The vocabulary-growth curve of tokens.



244 Case Studies

(type.freqs_y.coords<-c(1,·2,·3,·3,·4,·5,·6,·6,·6,·7))¶

For instance, note how the rightmost value is 7, i.e., the type-token ratio of the whole vec-
tor (0.7) times the length of the vector (10). But how do we get that info? One approach 
that does the trick is this:

>·ttrs<-type.freqs_y.coords<-rep(0,·length(tokens))¶
>·for·(i·in·seq(tokens))·{¶
+····type.freqs_y.coords[i]<-length(unique(tokens[1:i]))¶
+····ttrs[i]<-y.coords[i]·/·i¶
+·}¶
>·type.freqs_y.coords¶
·[1]·1·2·3·3·4·5·6·6·6·7
>·round(ttrs,·3)¶
·[1]·1.000·1.000·1.000·0.750·0.800·0.833·0.857·0.750·0.667·0.700

For each position i in tokens, you essentially create a vector that includes all ele-
ments of tokens from 1 to i, then store the number of types (in y.coords[i]) and 
then divide by the length of this part of tokens and store that in ttrs[1]. It works, 
yes, but it is terribly slow: When I tried this approach with a vector tokens that 
contains 50,000 randomly sampled occurrences of the letters a–z on my laptop, it 
took 58 seconds – when I did the same with the function ttr we will write below, it 
took less than one second. Thus, as you have already seen above, it often pays off to 
find approaches that do things better when applied to large(r) data, i.e., approaches 
that scale. When I dealt with this problem the first time, I think I came up with five 
different solutions, but of the ones I tested, this one’s the fastest. This is what we’ll 
do: We first reserve a vector type.freqs that will change into the one we manually 
defined above:

>·(type.freqs<-rep(0,·length(tokens)))¶
·[1]·0·0·0·0·0·0·0·0·0·0

Then we determine all unique types . . . 

>·(types<-unique(tokens))¶
[1]·"a"·"b"·"c"·"d"·"e"·"f"·"g"

as well as their first occurrences in the vector tokens using match:

>·(first.occs<-match(types,·tokens))¶
[1]··1··2··3··5··6··7·10
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That is, “f” shows up in tokens for the first time in the seventh position. So far so good, 
but now the two lines that do the magic of creating the vector type.freqs we want: 
Remember that type.freqs only contains 0s so far; the first line now inserts a 1 into each 
slot that belongs to a new type in tokens, as you can see in the output. Second, if now 
every new type is represented with a 1 while every re-used, or duplicated type is repre-
sented with a 0, we can use cumsum to create a vector that contains, for each position, the 
cumulative sum of all 1s (i.e., all types that are new till there) and all earlier vector values:

>·type.freqs[first.occs]<-1¶
>·type.freqs¶
·[1]·1·1·1·0·1·1·1·0·0·1
>·(type.freqs<-cumsum(type.freqs))¶
·[1]·1·2·3·3·4·5·6·6·6·7

Why, then, is this approach so much faster when applied to a vector tokens with 50,000 
sampled (with replacement) letters? Because this approach doesn’t have to create 50,000 
character vectors and check each of them for the number of unique types – it only deter-
mines the number of types (26), does a simple match for them, and assigns and then sums 
up a bunch of 1s. (I admit that the speed benefit will vary as a function of the length 
and the type frequency of tokens, but it should never be slower than the loop-based 
approach.)

If you check out the script now, you will see how, after a small excursus, the above 
code is integrated into a function ttr (defined and heavily commented in lines 67–92); 
note that its most important output component is the fifth one called TypesCounts, which 
corresponds to the y-coordinates of a vocabulary-growth curve. This function minimally 
requires a vector of (word) tokens as its first argument, but if you want a plot such as 
Figure 5.13, too, you can set the additional argument plot to TRUE as well as provide 
plot with further arguments (in place of the ellipsis): lines 94–99 provide you with exam-
ples of that.

The remainder of the discussion below uses this function. But we want to add one lit-
tle twist to the discussion: A vocabulary-growth curve is dependent – to some degree at 
least – on the exact order of the words in the corpus. This is unproblematic if you compute 
vocabulary-growth values on a play or a novel because what other orders of the words 
that are still the same play or novel would there be?! But if you compute vocabulary-
growth values on a corpus consisting of many files, then the order of the files is typically 
arbitrary and makes the vocabulary-growth curve you plot a bit dependent on the usually 
unmotivated order of files that the corpus comes in. Thus an interesting approach to deal 
with this is to plot not just one vocabulary-growth curve for the corpus one is interested 
in but, say, 100 vocabulary-growth curves, one for each of 100 versions of the corpus in 
which the words have been randomly reshuffled, which is what we will add here.

What are the things we will need to do? With the function ttr now already defined, 
this script is relatively straightforward:

 • We load the text file containing a Hamlet version from Project Gutenberg  
(<_qclwr2/_inputfiles/corp_hamlet.txt>); crucially, we need to load it with blank 
lines left intact (to make sure we can use them to find character names – then we 
discard them, check out the input file!); after cleaning Hamlet, we split it up into 
words.
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 • Then we do the exact same things with Macbeth (<_qclwr2/_inputfiles/corp_macbeth.
txt>).

 • After that, we apply our new function ttr to the vector of all words from Hamlet 
and add to it the points from the fifth component of the output of ttr applied to the 
words from Macbeth.

 • For the resampling approach, create a list collector that has two components – one 
called collector$HAMLET, the other called collector$MACBETH – each of which 
is itself a list with 100 elements; each of these 100 elements in both HAMLET and 
MACBETH will collect the y-axis coordinates for one of the 100 randomly sampled 
word orders (i.e., what above was called type.freqs).

 • We then do a for-loop in which we (1) randomly reshuffle the words of the original 
play Hamlet, (2) apply ttr to it, and (3) save the fifth component of the output into 
the i-th list element of collector$HAMLET; on each iteration, we do the same with 
Macbeth.

 • We obtain the y-axis values for our plot from the elements of collector.
 • We generate the x-axis values for our plot by repeating, for each play separately, the 

number sequence from 1 to the length of the play in words 100 times.
 • Then we plot all resampled vocabulary-growth curves into one coordinate system, 

using different colors (and transparency effects) for the two plays.

What are the functions we will need for that? We use rchoose.files together with 
tolower and scan (note the argument blank.lines.skip=FALSE) to load each play. 
We then identify empty lines to delete with which and nchar as well as the immediately 
following lines with speaker names; also, we use grep to find lines with stage directions. 
Then, we apply negative subsetting to discard those lines from each play, before we use 
unlist(strsplit(...)) to split each play up into words. After that, all we need to do 
is input the vectors of words into ttr to get our plot (we begin with the plot for Hamlet, 
then use points to add the one for Macbeth).

For the resampling, we use the functions list and vector(...,·mode="list") to 
create our list collector. In a for-loop, we randomly reorder each play with sample, 
apply ttr to it, and collect the y-coordinates from its fifth component. We then unlist 
the y-coordinates from the two parts of collector, and we use rep(seq(...),·...) to 
create x-coordinates. Finally, we plot the vocabulary-growth curves using periods as point 
characters (to minimize overplotting), define the color with rgb(...), and add a grid 
and a main diagonal abline.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_23_ttrs-vg.r>; read 
this side by side with the actual script in RStudio. (I am skipping (1) the part of the code 
that I used above to explain the basics of how to compute vocabulary-growth curves and 
(2) the definition of ttr because it basically just recycles that code in a function definition 
and is explained in detail in the code file; we therefore begin around line 100.)

load Hamlet (103–104)

identify empty lines in Hamlet (107)

identify character names in Hamlet (108)

identify lines with stage directions (110–112)

delete all those lines from the play (114–120) and split it up into words (122–125)
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do the same sequence of steps for Macbeth (127–133)

excursus in lines 137–156: note how you can proceed from the loaded file to the 
words using the much simpler notation with %>%; note in particular how opera-
tors such as “==” and “-” are used as functions: run 4·%>%·"-"(0,·.)¶, which 
is the same as 0-4¶ (i.e., -4) to understand how I create the negative indices

apply ttr to the words of Hamlet with plot=TRUE (160–163); then apply ttr to 
the words of Macbeth, too, and plot the points of the fifth component as well 
(164–166)

create the list collector for all the results from the 100 cases of resampling  
(171–177)

for-loop (counter = i, over seq(no.of.resamples)): (179, −185)

reorder the words of Hamlet randomly (182), apply ttr to them (181–183), and 
save the resulting y-coordinates into the i-th slot of collector$HAMLET (183)

do the same for Macbeth (184)

retrieve all y-coordinates (i.e., type frequencies) from collector with unlist  
(187–189)

generate all x-coordinates (i.e., token indices) (191–193)

open a graphics device for outputting .png graphs (195, −205)

plot the vocabulary-growth curves into the plot (196–204)

close the graphics device (205)

As you can see, Hamlet is much longer than Macbeth, but the vocabulary-growth curves 
overlap considerably for as long as Macbeth has words, suggesting that in terms of lexical 
diversity, the two plays are not that different.

Which aspects of the script are worth additional comment? Most of this is not particularly 
challenging programming-wise, so the only thing maybe worth mentioning is lines 164–166:

>·points(seq(mac.words),¶
+····(mac.ttr<-ttr(mac.words))[[5]],¶
+····col="blue")¶

You may wonder about the second line above: Why am I not just writing this?

>·points(seq(mac.words),¶
+····ttr(mac.words)[[5]],¶
+····col="blue")¶

And sure enough, this will create the same plot. The reason I use the first variant is essen-
tially pedantry: In line 160, we did not just apply ttr to ham.words to plot; no, we also 
assigned the result of ttr to an object because we might do more with those results for 
Hamlet later. In line 165 I just make sure that we have a corresponding object mac.ttr 
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with the results for Macbeth. Thus, I apply ttr to mac.words, but make that an assign-
ment. However, I want to put all of the results of ttr into mac.ttr, but plot only the fifth 
component, which is why I parenthesize the assignment (so as to not make mac.ttr just 
the fifth component).

5.4.7 Hyphenated Forms and Their Alternative Spellings

This assignment was inspired by Kuperman and Bertram (2013): We will explore spelling 
alternations of forms that are hyphenated (e.g., part-time) with their potential alternants 
that involve separation by spaces (part time) or concatenated forms (parttime). Somewhat 
tongue-in-cheek: We’re exploring the different frequency distributions of what in R could 
be paraphrased as in the following three lines:

>·paste("word1",·"word2",·sep="-")¶
>·paste("word1",·"word2",·sep="·")¶
>·paste("word1",·"word2",·sep="")¶

Specifically, we will want to determine how frequently the most frequent hyphenated 
forms in the BNC World Edition are also used in the other two spelling variants; in addi-
tion, we will make heavy use of dplyr’s %>% operator to make parts of the script easier to 
parse. Overall, this script involves similar steps to the ones in Sections 5.3.4 and 5.2.8: In 
Section 5.3.4 we did a first pass through the BNC to find instance of must + V, and then 
we did a second pass to find all instances/frequencies of all the verbs after must. Here, we 
will do a first pass through the BNC to find all hyphenated forms, then we’ll identify the 
most frequent ones (using the arbitrary and relatively high threshold of 1,000 occurrences 
in the corpus), and then we will do a second pass through the corpus looking for the spell-
ing alternants of these frequent hyphenated forms. In Section 5.2.8, our going through the 
data involved creating a directory to collect frequency tables that then got merged in a 
second loop; here we will do the same.

What are the things we will need to do?

 • We load packages dplyr and rChoiceDialogs and define a vector with the paths of the 
corpus files.

 • We create a directory for interim-results files, namely the frequencies of all hyphen-
ated forms.

 • We load each corpus file, tolower it, trim it down to just the sentences, and look for 
words that contain hyphenated forms (but only forms with one hyphen such as co-
operation, but not ones with two, such as day-to-day); we generate a frequency table 
of all the words we find and save it into the interim-results directory.

 • Following Section 5.2.8, we define two long vectors for hyphenated forms and their 
frequencies (with one million slots) and we set a vector counter to 1.

 • We then loop over all frequency tables in the interim-results directory and insert the 
words and their frequencies into the long vectors created in the previous step.

 • We then discard all unused elements of the long collector vectors and tapply over 
them to sum up all frequencies of all hyphenated forms; we then pick all those forms 
with a frequency of 1,000 or more and their frequencies (in a vector freq.hyphens).

 • We then create two frequency vectors freq.spaces and freq.nothings (1) whose 
contents are as many zeros as freq.hyphens has elements and (2) whose names are 
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the hyphenated forms with (a) spaces instead of hyphens and with (b) nothing instead 
of hyphens respectively.

 • We then load each corpus file again, tolower it, trim it down to just the sentences, 
and then look for all alternate spellings of the hyphenated forms and add their fre-
quencies to freq.spaces and freq.nothings.

 • We compile the results in a data frame, save it, and explore a table of percentages of 
the spelling variants.

What are the functions we will need for that? Not much new here: We use rchoose.dir 
and dir as nearly always and dir.create to create the interim-results folder. We use a 
for-loop to scan and tolower the corpus files, and grep to get the sentences. We use 
exact.matches.2 to find hyphenated forms and sub to clean away the tags and spaces; 
then we apply table to create a frequency list and then save it.

In the second part, we use character and numeric to create empty collector vectors to 
merge the hyphenated forms and their frequencies from all over the corpus, a for-loop to 
load each frequency list file, and, if there are hyphenated forms in the file, we merge them 
with subsetting, incrementing the vector counter on each iteration (as in Section 5.2.8).  
We use nzchar to discard all unused slots of the collector vectors and use tapply and 
sum up all forms’ frequencies so we can use subsetting to pick all those with frequencies of 
1,000 and more. We create collector vectors for the frequencies of non-hyphenated forms 
with rep and length and set them all to 0. Then we do a second for-loop over the cor-
pus files, this time using lapply with exact.matches.2 to look for all non-hyphenated 
equivalents to the most frequent hyphenated forms – see how nicely that avoids another 
loop? Then, we count their frequencies (with sapply, “[”, and length) and add up their 
frequencies. Finally, we compile all results in a data frame and generate a table of pro-
portions that lists for each form which spelling variant it prefers.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_24_hyphenation.r>;  
read this side by side with the actual script in RStudio:

clear memory and load the packages rChoiceDialogs and dplyr; also, source exact.
matches.2 (1–4)

define the vector corpus.files (6–7)

create a directory for interim-results files (9–10)

for-loop (counter = i, over corpus.files): (12, −30)

output a progress report (13)

load the current corpus file i (16), set it tolower case (17), extract the sentences 
from it (18), find hyphenated words in them (19–21), but just the exact matches 
(22), delete the opening tag (23) as well as any final spaces (24), and tabulate (25)

save that table into an interim results file (26–29)

move into the interim-results directory (34–35) and define long collector vectors 
all.hyphs and all.hyphs.freqs for all forms and their frequencies respec-
tively; set a vector counter to 1 (37–41)

for-loop (counter = i, over dir()): (43, −55)

(continued)
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output a progress report (44) and load the i-th frequency list file (45)

if there were no hyphenated forms in that file, go to the next one (47–49)

otherwise, insert the observed forms and their frequencies into the next available 
slots of all.hyphs and all.hyphs.freqs (50–51, 52–53)

increment the value of counter accordingly (54)

discard the unused slots in all.hyphs and all.hyphs.freqs (57–59)

sum up all forms’ frequencies with tapply(...,·...,·sum) and make sure the 
result is a table (61–65)

sort that table and move up one directory into <_qclwr2/_outputfiles> (67–69)

store the forms that occur 1,000 times or more and their frequencies as freq.
hyphens (73) and create analogous vectors for forms with spaces (freq.spaces) 
and with nothing between the parts (freqs.nothings) (74–81)

create search expressions that make sure you only find the relevant forms when they 
are words (and, for instance, not part of corr-tags (83–84)

for-loop (counter = i, over corpus.files): (86, −128)

output a progress report (87)

put into current.sentences (89) the result of scanning i (90), setting it to 
lower case (91), and extracting the sentences from it (92)

add to the values of freq.nothings the frequencies of search.expressions.
nothings in file i (94–101)

add to the values of freq.spaces the frequencies of search.expressions.
spaces in file i (103–110)

excursus in lines 112–126: compare the traditional code to the one using %>%

compile all the results into a data frame, explore its top, and save it into an .RData 
file (130–136)

generate a table of percentages of the three spelling variants (138–140)

Which aspects of the script are worth additional comment? The only part of the code that 
may be worth a brief explanation is how we look for, say, all non-hyphenated forms with 
no spaces in lines 94–101:

>·freq.nothings<-freq.nothings·+¶
+····lapply(search.expressions.nothings,·exact.matches.2,·¶
+···········corpus.vector=current.sentences,·¶
+···········gen.conc.output=FALSE)·%>%·¶
+····sapply("[",·1)·%>%·sapply(length)¶

First, remind yourself that freq.nothings is a vector that already has many values (ini-
tially 0s) as there are forms to look for. We then use lapply to avoid a loop by taking 

(continued)
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the search expressions for the forms without spaces or hyphens and make each one of 
them the first argument of exact.matches.2 one time, while the next arguments that 
exact.matches.2 receives are always the same ones: current.sentences becomes 
the vector to be searched, and the concordance output always gets suppressed. The 
result of that lapply execution is a list with as many elements as search.expression.
nothings has elements. But we are not interested in all the info that exact.matches.2 
provides – we are only interested in knowing how many instances were found of each 
search expression, which is retrievable from the output components 1 and 4, which is 
why we pass that list on to (%>%) sapply, which extracts ("[") from each element of that 
list the first component (1). But as before, then we don’t need the exact matches per se – 
we just need to know how many there are, which is why we pass that output on to (%>%) 
another sapply, which measures the length of each of these vectors containing exact 
matches. This returns a vector with as many elements as we looked for and, crucially, in 
the same order as in freq.nothings, which means we can just add the new vector to 
the current values of freq.nothings and use the fact that R will do pairwise additions 
of vector elements.

Apart from that, everything else should be clear because the main points of this script 
were dealt with in separate examples above and because the code file provides a detailed 
comparison of the use of %>% versus the nested-functions approach. There is one natural 
extension of this script I do want to tempt you with, though: If you look at the results, you 
will see that the spelling variants with spaces are, let’s say, rare. That is for two reasons: 
First, because we picked only those hyphenated forms that occurred very frequently and so 
their spellings with hyphens may not exhibit much variation (anymore). The more impor-
tant reason is the second: We constructed our search expression such that the versions with 
spaces still needed to be tagged as one word (check line 84 again), which is of course pos-
sible – after all, in spite of is tagged as a multi-word unit – but it really wasn’t very likely 
to begin with that the kind of words we’re looking for here would simply be tagged as one 
word. Thus, the natural extension that you might consider doing as an exercise (because 
it requires very few changes) would be to change the script such that it finds versions of 
hyphenated words written with spaces when these are tagged as two separate words. That 
is, we found long-term as a hyphenated form and we looked for something like this (not a 
regular expression “<w . . . >long term</w>” and didn’t really find much, so now we try 
again, but this time looking for something like this “<w . . . >long</w><w . . . >term</w>”.  
Why don’t you see what happens when you change things like this?

5.4.8 Lexical Frequency Profiles

As we are approaching the end of this chapter, it is only fitting that this case study is one 
of the most complex ones. It involves the notion of lexical frequency profiles, which is a 
corpus-based approach in applied linguistics concerned with the amount and the kind  
of vocabulary second/foreign-language learners use in their speaking and writing  
(see Laufer & Nation 1995 for an introduction; Meara 2005 for a critique; and Laufer 
2005 for a response). It involves retrieving all words from one or more texts produced 
by learners and classifying all words as belonging to one of several word families and 
word frequency bins. The bins that have frequently been used come in the form of base 
word files that establish word families as well as frequency-based groupings of these word 
families; consider Figure 5.14, which represents the beginning of the first base word list 
(where the small arrow represents a tabstop and “·” and “¶”, as usual, are a space and a 
line break).



252 Case Studies

Nation’s Range program (see www.victoria.ac.nz/lals/about/staff/paul-nation) is a 
Windows program, one packaging of which comes with currently 16 bins and can be 
used to identify vocabulary that is shared across texts, vocabulary that is used in a text 
but that is not part of a vocabulary list, etc.; see the instructions that come with Range 
and Paul Nation’s website, and check out <_qclwr2/_inputfiles/dat_range-perl.txt>,  
which is the result of applying Range to the file <_qclwr2/_inputfiles/corp_perl.txt> 
(using only five base word lists). For instance, lines 14–22 provide the absolute and 
relative frequencies of types and tokens of the Perl file in each of the frequency bins, 
and lines 43–1,262 provide the word types found in each base word list (types found 
in base list 1, 2, . . . , 5): their range (in how many input files do they occur? Since 
we only have one input file, this is always 1) and the frequency with which they 
occur in the input file(s). In this case study we will write a script that provides some 
of the functionality of Range; first, we will load and process the base word lists to 
convert them into a format that is more R-like (we will use the version from www.
victoria.ac.nz/lals/about/staff/publications/paul-nation/BNC-14000-and-programs-
and-instructions.zip); second, we will compute lexical frequency profiles for the two 
Wikipedia entry files on Perl and Python so that we can determine whether the Perl 
file is different from the Python file in terms of its lexical difficulty (as operational-
ized by the proportions of words in the different bins); third, we will compute two 
(related) measures of lexical richness for each file, Yule’s K and Yule’s I, which are 
computed as shown in (11) and (12), where M1 is the number of all word tokens a 
text consists of and M2 is the sum of the products of (1) each observed frequency to 
the power of two and (2) the number of word types observed with that frequency  
(see Oakes 1998: 204): If one word occurs three times and four words occur five times, 
M2 = 32 + 52 + 52 +52 + 52 = 109.

(11) Yule sK
M M

M
′ = ×

−
,10 000 2 1

1
2

(12) Yule sI
M

M M
′ =

−
1

2

2 1

Figure 5.14 The first ten lines of <baseword1.txt>.
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What are the things we will need to do?

 • We load the package rChoiceDialogs, and we define our function just.matches as 
well as a function yules.measures, which takes as input a vector of word tokens and 
returns as output Yule’s K and Yule’s I.

 • We define the paths to all 16 base word list files and create four vectors BASWEWORDLIST 
(for the bin), WORD, FAMILY, and NUMBER, which will later be merged into a data frame.

 • In a loop, we load each base word list file (note: their encoding is ISO-8859-1), strip 
the empty lines that some of them have, and output a progress report.

 • We add to BASEWORDLIST the number of the current file as many times as it has words.
 • We add to WORD the current words.
 • We add to FAMILY the current family words in several steps; this is easy for the cases 

where the word is also the family word: We determine which words are at the begin-
nings of lines and insert them into a temporary vector FAMILY.curr.

 • For the words nested into a family word (that is not provided in the same line), it’s not 
that easy: After the step above for the first file, this is what we have, and we need to 
make FAMILY.curr[2] “A” and FAMILY.curr[4:10] “ABLE” etc.:

>·head(FAMILY.curr,·12)¶
·[1]·"A"········NA·········"ABLE"·····NA·········NA········· 

NA·········NA
·[8]·NA·········NA·········NA·········"ABOUT"····"ABSOLUTE"

 • Thus, we compute a matrix position.differences with every position of a word 
that is not a family word minus the position of a word that is. In the following excerpt, 
the family words are in the rows, the positions of words that are not family words 
(and for which we still need a family word are in the columns, and the cells give the 
differences. The circled 1 says that the fourth word (“ABILITY”) is 1 row away from 
the last mentioned word that is also a family word, namely (“ABLE”):

>·position.differences[1:12,·1:12]¶
···········2···4···5···6···7···8···9··10··13··14··15··17
A··········1···3···4···5···6···7···8···9··12··13··14··16
ABLE······-1···1···2···3···4···5···6···7··10··11··12··14
ABOUT·····-9··-7··-6··-5··-4··-3··-2··-1···2···3···4···6
ABSOLUTE·-10··-8··-7··-6··-5··-4··-3··-2···1···2···3···5
ACCEPT···-14·-12·-11·-10··-9··-8··-7··-6··-3··-2··-1···1
ACCOUNT··-24·-22·-21·-20·-19·-18·-17·-16·-13·-12·-11··-9
ACHIEVE··-28·-26·-25·-24·-23·-22·-21·-20·-17·-16·-15·-13
ACROSS···-38·-36·-35·-34·-33·-32·-31·-30·-27·-26·-25·-23
ACT······-39·-37·-36·-35·-34·-33·-32·-31·-28·-27·-26·-24
ACTIVE···-51·-49·-48·-47·-46·-45·-44·-43·-40·-39·-38·-36
ACTUAL···-60·-58·-57·-56·-55·-54·-53·-52·-49·-48·-47·-45
ADD······-63·-61·-60·-59·-58·-57·-56·-55·-52·-51·-50·-48

 • That means we now only need to find the smallest non-negative number per column 
to get the position of the family word for the word in the column. For instance,  
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column 9 represents “UNABLE” (check <_qclwr2/_inputfiles/dat_basewrd1.txt>), 
the smallest non-negative number in that column is 6, which points to “ABLE” as 
the family word; similarly, column 13 represents “ABSOLUTELY” and the small-
est non-negative number in that column is 1, which points to “ABSOLUTE” as the 
family word, etc. With these, we can now extract the rownames of this matrix to get 
the missing family words, which we insert into FAMILY.curr, which we then add 
to FAMILY.

 • We extract the numbers from each line and add them to NUMBERS.
 • After our loop, we compile all this into a data frame that now has a structure that 

allows us to process things more nicely (which is a technical term meaning ‘more 
R-like’).

 • We define the paths to the two Wikipedia entry text files and create a list lists.
of.tables to collect results for each file.

 • In a loop, load each file, split it up into words, and create a sorted frequency list of 
the words so that you have all types and all their frequencies; from that you already 
compute Yule’s lexical richness measures.

 • For each word type, find its base word list file number; for instance, the word “an” is 
in base word list 1.

 • For each word type, finds its family word; for example, the word “an” has as its  
family word the word “a”.

 • For the family word of each word token in the file, we sum up the frequencies of all 
its members; for instance, the word “an” is a member of the family ‘headed’ by “a” 
that comprises only “a” and “an”. The words “a” and “an” occur 151 and 21 times 
respectively, which means we need to get 172 here for the family frequency of both 
“a” and “an”.

 • While we’re still in the loop, we compile the results into a data frame that we save 
into an output file that has the name of the programming language studied and part 
of which looks like this; note rows 5 and 33:

>·result[c(1:5,·33),]¶

···WORDTYPE·WORDTYPEFREQ·WORDTYPEFAMILY·WORDTYPEFAMILYFREQ·WORDTYPELIST

1·······THE··········346············THE················346············1

2······PERL··········249···········<NA>·················NA···········NA

3········OF··········166·············OF················166············1

4·······AND··········159············AND················159············1

5·········A··········151··············A················172············1

33·······AN···········21··············A················172············1

 • Also, we store in lists.of.tables for each programming language the frequen-
cies with which types from different base word lists are attested (for easier plotting 
later).

 • Finally, we generate and save in a file for each programming language a bar plot 
that provides the percentage of types in each Wikipedia entry that are in each base 
word list file; also, afterwards, we compute a chi-squared test to see whether the 
lexical frequency profile of the article on Perl is significantly different from the one 
on Python.
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What are the functions we will need for that? The definition of just.matches is the 
same as multiple times above, and our function yules.measures requires sum, 
table(table(...)), “*”, and list. After that we use rchoose.files to define the base 
word list files (and later the Wikipedia entries), which we read in with the right encoding. 
We use gsub, grep, and just.matches to define the list file numbers, words, and num-
bers, whereas, to define the family words, we use grep (to see which lines contain family 
words and which don’t) and then sapply and "-" (yes, the regular minus) as well as max 
and which.min to compute the matrix position.differences excerpted above; at the 
end, we use data.frame and write.table to merge all results and save them.

As we turn to the Wikipedia entries, we scan them, strsplit them into words, and 
create a sorted frequency list. We then use match to assign base word list numbers and 
family words to each word type of each Wikipedia entry; the more challenging part of 
summing the family frequencies and assigning them to each relevant type is done with 
tapply(...,·...,·sum) as so often before, and then we again use match and subsetting 
for the assignment part. We use strsplit and unlist to paste together file names for 
results, save all results per programming language into a data frame with write.table and 
then generate a barplot, which we annotate with text and save into a file with png and 
dev.off. At the very end, we use chisq.test for a chi-squared test for goodness of fit.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_25_lfp.r>; read this 
side by side with the actual script in RStudio:

clear memory, load the package rChoiceDialogs (1–2)

define just.matches (4–15)

define a function yules.measures that takes as input a vector of words and returns 
Yule’s K and I as defined above (17–34)

define the vector baseword.files (36) and create collector vectors (38)

for-loop (counter = i, over seq(baseword.files)): (40, −103)

output a progress report (41)

load the current base word list file and discard empty lines (42–43)

add the number of the base word list file to the required collector vector (45–47)

add the words (which are either at the beginning of the line or after a tabstop) to 
the required collector vector (49–53)

define a vector to collect family words (57–58)

find the lines in the base word file that start with a family word and insert those 
into the collector vector (60–65)

find the lines in the base word file that do not start with a family word and use them 
with sapply(...,·"-",·...) to subtract from them the lines that do start with 
a family word because you will always need the last family word for the current 
non-family word); this will create the matrix position.differences (67–84)

set all values smaller than 1 in position.differences to the largest value in  
the matrix (86–88) so that it can never be the smallest value, and then collect 

(continued)
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the smallest value per column and its corresponding row name (90–96), which 
we then insert into the collector vector (97–98)

use just.matches to find the line-final numbers per line (100–101) and store 
them in the relevant collector vector (102)

compile all collector vectors in a data frame and save it into a .csv file (105–108)

define a vector with the paths to the Wikipedia entry text files (112–113)

create a list to store the lexical frequency profiles, the frequencies of types per base 
word list (115–116)

for-loop (counter = i, over text.files): (118, −205)

load the current Wikipedia entry and toupper it (like the base word lists) (119)

split it up into words, discard empty elements, and create a sorted frequency list 
(121–127); for readability’s sake, create short telling names for all word types 
and their frequencies (129–131)

compute measures of lexical richness (133–134)

for each word in the entry, look up its position in WORD and retrieve the number 
of its base word list file (which is in the same position in BASEWORDLIST as the 
word is in WORD) (136–139)

for each word in the entry, look up its position in WORD and retrieve its family word 
(which is in the same position in FAMILY as the word is in WORD) (141–144)

use tapply to sum up all words’ frequencies by their family word (146–151), 
then order the summed frequencies by the order of occurrences in the vector of  
family words with match (153–157, read this carefully!)

put everything into a data frame result (159–164)

extract the name of the programming language from the file name (166–168), 
paste together an output file name (169), and save the data frame into a .csv 
file withthat name (170–173)

store the lexical frequency profile in the list element for the current programming 
language (175–179)

paste together an output file name for a barplot (182) and a table list.percent-
ages stating how many word types are from which base word list (183–185), and 
generate as well as annotate that bar plot and save it into a png file (186–204)

compute a chi-squared test for goodness of fit to test whether the lexical frequency  
profile for the entry on Perl is significantly different from that on Python  
(209–214); explore how the observed frequencies compare to the expected ones 
and the residuals (215–218)

Which aspects of the script are worth additional comment? This script has some complex 
parts but most of them were already dealt with in detail – make sure you understand the 
explanation of lines 72–97 above (on how to identify family words) and the explanation 
in lines 155–157 on how we obtain and order the summed family frequencies for each 
word in the family. However, I do want to mention two small things in the plotting and 

(continued)
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the statistical analysis. First, note how in the generation of the plots the function call 
par("usr") is helpful (lines 196, 200): That function call provides us with the actu-
ally plotted x- and y-axis limits in the order xmin, xmax, ymin, and ymax, which, as you  
see, allows you, for instance, to center plotting elements regardless of how the limits of 
axes change.

Second, I want to make it very clear what the chi-squared test tests. It does not test 
whether the frequency distributions of the words in the Perl and Python entries differ from 
each other (i.e., bidirectionally) – it tests whether the frequency distribution of the words 
in the Perl entry is different from the one in the Python entry (i.e., unidirectionally). In 
classes, students at first often do not differentiate between the following two analogous 
scenarios:

 • the frequencies of words in corpus A and corpus B do not differ from each other;
 • the frequencies of words in corpus A differ from those in corpus B.

But these two things are not the same! Here’s the example I use to teach that difference: 
made-up frequencies of the words horrible, horrifying, and horrid in the Brown and the 
LOB corpus (lines 222–230 in the code file):

>·Brown<-c(13,·3,·1);·LOB<-c(9,·4,·6)¶
>·names(Brown)<-names(LOB)<-c("horrible",·"horrifying",·"horrid")¶
>·chisq.test(rbind(Brown,·LOB),·correct=TRUE)¶
#·X-squared·=·4.3439,·df·=·2,·p-value·=·0.114
>·chisq.test(Brown,·p=LOB/sum(LOB),·correct=TRUE)¶
#·X-squared·=·6.6879,·df·=·2,·p-value·=·0.0353

The first chi-squared test tests the first scenario, the second chi-squared test tests the 
second, because it determines whether the frequencies in the Brown corpus differ from 
those expected from LOB, but not also vice versa. Note how the two tests return very 
different p-values so it’s important you understand that these two are different hypoth-
esis tests.

5.4.9 CHAT Files 1: Eve’s MLUs and ttrs

In this assignment and the next, we turn to a completely different corpus format. After 
dealing with unannotated files, lots of XML examples, a bit of SGML, tabular versions 
of the COCA/COHA corpora, the Brown and the ICE-GB formats, we are now turn-
ing to the CHAT format that is widely used in language acquisition corpora, but also  
others. These case studies are interesting because they showcase once more how R 
allows you to handle data and perform analyses that most normal software cannot 
handle or do.

Most widespread corpus-linguistic software applications require that all information 
concerning, say, one particular sentence is on one line. In its most trivial form, this is 
reflected in the BNC by the fact that an expression such as “Wanted me to.” would be 
annotated in one line as in (13) and not in, say, three as in (14). The latter format can be 
just as informative, but you may already guess that if you wanted to add further annota-
tion to the expression “Wanted me to.”, reading and processing all the information in the 
different lines may quickly become unwieldy.
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(13) <w c5=“VVD” hw=“want” pos=“VERB”>wanted </w> <w c5=“PNP” hw=“i” 
pos=“PRON”>me </w>· <w c5=“TO0” hw=“to” pos=“PREP”>To </w>  
<c c5=“PUN”>.</c>

(14) Wanted·me·to.

 VVD PNP TO0 PUN

 want me to.

The following is an excerpt from the file <eve01.cha> from the Brown data of the 
CHILDES database (Brown 1973; http://childes.psy.cmu.edu/data/Eng-NA-MOR/
Brown.zip). I only give a few lines of the header as well as the first two and one later 
utterance. The lines with header information begin with “@”. The lines with utter-
ances – the so-called utterance tier – begin with “*” followed by a three-character 
person identifier (“CHI” for the target child, “MOT” for the mother of the target 
child, etc.) plus a colon and a space. Finally, the lines with annotation begin with 
“%” and a three-character annotation identifier (“mor” for “morphosyntax/lemmati-
zation”, “spa” for “speech act”, “int” for “interaction”, etc.). Words and annotations 
are separated by spaces, and the annotation for one word on the mor tier consists of 

Figure 5.15 Excerpt of a file from the CHILDES database annotated in the CHAT format.

Craige
Line
<Is the bottom border missing from this?>
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a POS tag, followed by “|”, the lemma of the word and, if applicable, morphological 
annotation; see Figure 5.15.

Not only is the analysis of such corpora more complicated because the information 
concerning one utterance is distributed across several lines/tiers, but in this case it is also 
more complex to load the file. If you look at the above excerpt, you will see that the com-
pilers/annotators did not complete every utterance/annotation within only one line: The 
morphological annotation of the utterance “you have another cookie right on the table”. 
stretches across two lines with the second line being indented with tabstops, so if we just 
read in the file as usual, we cannot be sure that each element of the resulting vector is a 
complete utterance. Also, we cannot scan the file and specify a regular expression as a 
separator character (e.g., “[@%\\*]”): sep only allows single-byte separators. Thus, we 
have to be a little more creative this time and will proceed in a way inspired by our treat-
ment of the ICE-GB corpus in Section 5.4.1.

What is the current task? We want to explore data of one of the most widely studied 
children acquiring English, Eve from the Brown (1973) corpus. In particular, we want to 
do two things: (1) compute MLU values (mean lengths of utterance values) for each file in 
Eve’s data, and (2) compute type-token ratios of every utterance of each file in Eve’s data 
and then determine whether, as one would expect, both increase over time. That in turn 
raises another issue: Developmental data often get plotted such that the variable represent-
ing time goes on the x-axis, but the way in which ages in these corpus files are represented 
is as follows: “1;6.” (see the @ID row in Figure 5.15) means “1 year, 6 months, and 0 
days” and “2;3.4” would mean “2 years, 3 months, and 4 days”. That means we would 
ideally have some kind of function that can take the corpus data format as input and turn 
it into a decimal that we can then easily plot. That is, “1;6.” or “1;6.0” should return 1.5, 
and “2;3.4” should return something very close to 2.25. Thus, we begin this assignment 
with a function called age.converter, which takes a CHILDES date string as an argu-
ment and then:

 • splits the argument up at anything that’s not a digit, unlists the result, and turns it into 
a numeric vector;

 • if that numeric vector has only two parts, it adds a 0 as a third one; and
 • returns the first part plus the second part divided by 12, plus the third part divided 

by 365.

>·age.converter("1;6.")¶
[1]·1.5
>·age.converter("2;3.4")¶
[1]·2.260959

It works – in fact, the function age.converter I provide for you in the script can do 
more: It can also do the reverse, i.e., take a number as an argument and then compute 
a CHILDES date from it, and the function decides what to do automatically. If it gets a 
character string, it does the above, but if it gets a number, it does the reverse:

>·age.converter(1.5)¶
·Year·Month···Day
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····1·····6·····0
>·age.converter(2.260959)¶
·Year·Month···Day
····2·····3·····4

So, look at the definition of the function and see how it does it. Armed with just.matches 
and age.converter, let’s get started. What are the things we will need to do?

 • We load the packages dplyr and rChoiceDialogs, and we define the functions just.
matches and age.converter.

 • We define the paths to all 20 files for Eve and we create (1) two lists lus and ttrs for 
utterance lengths and type-token ratios for every utterance for every file; and (2) two vec-
tors mlus and mttrs for mean lengths of utterances and mean type-token ratios per file.

 • We load each CHAT file and, to handle the fact that utterances and/or their annota-
tion tiers may use up more than one line, paste it together into one long string (with 
a collapse argument that is not attested in the file so it marks where there were line 
breaks before the merging), delete whitespace after these previous line breaks, and 
then split the file up again at the collapse argument.

 • Then we retrieve only the child’s utterances, delete the line-initial annotation (check 
Figure 5.15 again), and replace annotation between square brackets with a space.

 • We delete everything else that’s not a letter or a space and then split the remaining 
vector up at any occurrence of 1+ spaces (obtaining a list), and retain only those utter-
ances that have at least one word character in them.

 • We then determine the lengths of all utterances and save them into the relevant slot of 
lus, plus we determine the type-token ratios of all utterances and save them into the 
relevant slot of ttrs.

 • We compute the mean length of all utterances per file and store it in the relevant slot 
of mlus, plus we compute the mean type-token ratio of all utterances per file and store 
it in the relevant slot of mttrs.

 • We then extract the name of the child and her age from the header and use it as the 
name for the current parts of lus, ttrs, mlus, and mttrs (so that we have it when 
we need it).

 • After the loop, we inspect summaries of our collector lists and vectors.
 • We compute a shapiro.test on each element of lus to determine whether the utter-

ance lengths are normally distributed because that could affect our choice of statistical 
tests (even though it is beyond obvious a priori that they won’t be normally distributed).

 • We then compare each file’s utterance lengths to every other file’s utterance lengths 
using a U-test; since this involves making 20 × 20 – 20 = 380 tests, we do that with 
two nested loops and store the resulting p-values in a matrix (we take the negative log 
of the p-values for ease of representation).

 • Finally, some visualization: First, we plot both mean lengths of utterances and mean 
type-token ratios against time (here we need age.converter!) into one plot; note 
first that it is really only going to be a nice plot if we have two y-axes: a left one for 
mlus, which ranges, say, from 1 to 5, and a right one for mttrs which ranges from 
0 to 1. Note, second, that R will only use the y-axis values from the left y-axis for 
plotting, which means you must rescale the values you want to display with regard to 
the right y-axis to the range of the left y-axis (and a real nerd would of course write a 
function for that for later applications).
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 • As a second plot, one might be interested in exploring the finer resolution of lus and 
ttrs; for instance, we can plot type-token ratios against utterance lengths in Eve’s 
first and last recording (to see whether things changed), or we could plot ecdf curves 
of the lengths of utterances.

What are the functions we will need for that? The definition of just.matches is the 
same as above, and the only new function we need to define age.converter is the very 
simple function floor: ?floor¶ (plus, at this point, we only need one of the two capa-
bilities of age.converter, from string to number). After that we use rchoose.files 
to define Eve’s corpus files and the function vector (with and without mode="list") 
to define collector structures. We then load each corpus file with scan, merge it with 
paste(...,·collapse=...), gsub line-initial spaces away and replace them by spaces, 
strsplit the file apart again, unlist, and do further cleaning with multiple gsubs, 
before we strsplit up all utterances into words and retain (with grep) only those with 
at least one word character.

After that we store the results we obtain by sapplying functions to the list to count 
lengths and compute type-token ratios (with an anonymous/inline function); we com-
pute a mean type-token ratio using all types and tokens, and a mean of all lengths of 
utterances with mean, but to avoid the effect that outliers might have we use the argu-
ment trim=0.05 to discard both the smallest and the largest 5 percent of the data. We 
use just.matches to extract from the file’s header the name of the child and her age and 
paste together names for all vector and list elements. We summarize our collector vectors 
with sapply and summary.

We then sapply the function shapiro.test to all utterance lengths of each file and 
subset their p-values to see that, surprise, surprise . . . none are normally distributed. We 
then use two nested for-loops to compute wilcox.tests on every combination of ele-
ments of lus, and store their negative log10 p-values in a large 20 × 20 matrix called 
tests (20 because we have 20 corpus files).

Finally, we visualize the data. We apply age.converter to Eve’s age strings, use 
par(mar=...) to make more room for our right y-axis label, and use plot to create a 
scatterplot of mlus against ages. We define each axis manually and use mtext to create  
axis labels. We use lines to add the type-token ratio plot and add smoothers with 
lines(lowess(...)). For the comparison of the first and last recording, we just generate 
regular scatterplots of type-token ratios against mlus, but we jitter the points to avoid over-
plotting and add the usual grid. Finally, we use plot(ecdf) for the ecdf comparison plot.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_26_CHILDES-
mlus.r>; read this side by side with the actual script in RStudio:

clear memory, load the packages dplyr and rChoiceDialogs (1–3)

define just.matches (5–16) and age.converter (18–33)

define a vector chat.files with the corpus files (35–36)

create collector lists (38–39) and vectors (41–42)

for-loop (counter = i, over seq(chat.files)): (44, −122)

output a progress report (45) and scan the current chat file (47)

(continued)
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paste it together in one string with a collapse argument unattested in the string 
(49–50)

replace whitespace before that collapse argument (i.e., after line breaks) with 
a single space (52–54), then split the string apart again at the collapse argu-
ment and unlist (56–57)

find the child’s utterances (59–62), delete its line-initial annotation (64–66), and 
replace its square-bracketed annotation with spaces (68–70); also delete every-
thing that’s not letters or spaces (72–74)

split the file up at 1 or more spaces (76–78), and from that list retain only  
elements that contain at least one word character/letter (80–84)

excursus: how to do all this more elegantly with dplyr’s %>% (86–97)

compute all utterance lengths by sapplying length to each element of current.
chat.file.10 (99–100)

compute all utterances type-token ratios by sapplying an anonymous function 
(recall the example in Section 3.10) to each element of current.chat.file.10 
(101–104)

compute the trimmed mean of the utterance lengths and one overall type-token 
ratio for the whole file (106–109)

extract the name of the child (111–112) and her age (113–114, 115–117) and 
make the concatenation of the two names of all current elements of collector 
structures (119–121)

inspect the results (124–125, 127–128)

compute separate Shapiro–Wilk tests on all utterance lengths of each file  
(134–135) and check how many are significant (by extracting the p-values that 
are always in the second of four slots of the list that shapiro.test returns, check 
str(shapiro.test(1:5))¶) (136–141)

generate a matrix called tests with NAs that will collect all p-values from all pair-
wise tests of files’ utterance lengths (143–148)

for-loop (counter = i, over seq(lus)): (149, −161)

for-loop (counter = j, over seq(lus)): (150, −160)

if a file would be compared to itself (151), iterate immediately (152–153)

otherwise store in slot tests[i,j] the –log10 (154) of the p-value of a U-test

comparing file i to j (155–158)

inspect the results (162–165)

generate the scatterplot of MLUs and type-token ratios as a function of time: com-
pute numeric age values from the age strings (167) and tweak the margins of the 
plotting area by increasing the right margin (168)

plot ms to represent the MLUs (169–171), define the bottom x-axis (172–173), the 
left y-axis (174–175), and the right y-axis, where the tickmarks’ numbers are 
rescaled (176–177)

add plotted ts to represent the type-token ratios but rescale them to the values of 
the left y-axis that was used to create the coordinate system in the first place: we 

(continued)
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don’t plot mttrs, but 1 + 4 × mttrs (178–180), then we add smoothers and a 
grid (181–183)

restore the normal plotting margins (184)

set up a plotting window with one row and three columns (189)

into the first panel, plot a scatterplot of jittered type-token ratios against jittered 
MLU values of the first recording (190–195)

into the second panel, plot a scatterplot of jittered type-token ratios against  
jittered MLU values of the last recording (196–201)

into the third panel, plot ecdf curves of utterance lengths in the first and last 
recording reusing the colors from the first two panels to facilitate interpreta-
tion (202–205)

restore the standard plotting window arrangement (206)

Which aspects of the script are worth additional comment? Most aspects of this script 
in terms of loops and text processing were not particularly difficult – there were many 
operations in the loop, but simple ones. The position of this script here at the end is 
largely due to the more complex statistical and visualization issues such as the 380 sig-
nificance tests (lines 146–162) and the code for some of the plots, which involves many 
different tweaks; make sure you go over all this thoroughly line-by-line so you see what 
each one does.

Two suggestions at the end: First, you should try to write a function right.y.axis; it 
might take as arguments the tickmarks of the left y-axis (because you want to have corre-
sponding tickmarks on the right side) and the minimum and maximum right y-axis values 
(because that will determine the range of values you might want to label on the right), and 
it might then return the right y-axis tickmarks and/or y-axis values that are rescaled from 
the right y-axis to the left for plotting. Second, we have proceeded in a slightly simplistic 
manner here because the only way we tried to make sure that 24-word utterances in which 
Eve repeated two words 3 and 21 times do not distort our data too much is by using a 
trimmed mean. One way of being more careful about such things could be to include a 
check in the right place that would either flag or omit such cases – why don’t you make 
that a practice assignment?

5.4.10 CHAT Files 2: Merging Multiple Files

The final case study is again on CHAT files, but this one involves more of a data man-
agement task, which then makes it possible to do linguistically interesting searches. 
Specifically, in order to deal with multiple files at the same time, we want to write a script 
that reads in multiple CHAT files and outputs a list or a data frame with all utterances 
in the rows and all annotation tiers in the columns; this will allow us to perform nice 
searches with regular expressions on multiple tiers to identify the rows where different 

Figure 5.16 Intended output of the case study.
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search results intersect. In other words, the input will be CHAT files, the output will be 
what is shown (with some nicer formatting) in Figure 5.16.

We will use three excerpts from files from an early version of a part of the CORAL-ROM 
corpus, which are not in Unicode format (so we’ll have to make sure we import them cor-
rectly); in addition, these files can have multiple instances of the same tier all of which we 
need the script to recognize and retain (note that the second row of the data in Figure 5.16 
has two EXP entries and, thus, needs to have two EXP columns); finally, these files do not 
have an @ID line with an age in them, so we will use the @Date line instead as an identifier.

What are the things we will need to do?

 • We load the package rChoiceDialogs, and we define the paths to the three example 
files; also, we set up a list, chat.files.list, that will collect all data from the files (in 
different parts that will later become columns of the data frame in Figure 5.16), and 
we set a counter utt.counter to 0, which will increase with each corpus line that 
contains a new utterance.

 • We load each chat file (using readLines to set the encoding to “ISO-8559-1”) and, 
to handle the fact that utterances may use up more than one line, paste it together 
into one long string (with a collapse argument that is not attested in the file so it 
marks previous line breaks), delete whitespace after these previous line breaks, and 
then split the file up again at the collapse argument (you will recognize this part from 
the previous case study).

 • We then extract from the corpus file all lines with utterances (those beginning with an 
asterisk) or annotation (those beginning with a percent character); also, we extract the 
recording date from the header.

 • With a loop, we then access each of these lines of the corpus file and extract its first 
character (“*” or “%”) as well as the three characters after that (which will either 
contain the code for the speaker or the name of the annotation tier), and the rest of the 
line, which will be the speaker’s utterance or one aspect of its annotation.

 • If the current line is a new utterance, then we increment utt.counter by 1 and set 
a vector tier.counter to 1, which will help us distinguish columns with the same 
names (like EXP in the output above); also, we store in parts of chat.files.list the 
file name, the name of the speaker, the date retrieved above, and the utterance itself.

 • If the current line is not a new utterance, then it is annotation of an utterance that has 
already been dealt as discussed above, so we check whether there has already been some 
annotation of this type for this utterance – if not, we just add the current line content to 
the component of chat.files.list that collects the kind of annotation we found here. 
If this type of annotation has already been processed for this utterance, then we have a 
situation like the one with EXP in Figure 5.16 so we increment the tier counter by 1 and 
paste that new number together with the annotation name so that it can become a new 
element of chat.files.list, where we now store that second (or third, etc.) instance 
of this annotation for this utterance – hence the “EXP_2” in Figure 5.16.

 • After the loop, we reorder the elements of chat.files.list alphabetically (so that 
all cases with numbered annotations are listed adjacently, but we still make sure that 
the components with the file name, the date, the speaker, and the utterance come first.

 • We convert chat.files.list into a data frame that we then save into a .csv file.

What are the functions we will need for that? We use rchoose.files to define the 
three corpus files and the function list to define the one collector structure. We 
then load each corpus file in a for-loop with readLines(file(...)), merge it with 
paste(...,·collapse=...), gsub line-initial spaces away and replace them by spaces, 



Case Studies 265

strsplit the file apart again, unlist, and retain (with grep) only those with utterances 
or their annotation.

In a second for-loop for each line, we use substr to extract speaker/annotation names 
etc. and then use an if-conditional to distinguish utterances from annotation. If we have 
an utterance, we just fill relevant slots of our collector list, but if we have annotation, we 
use a second if-conditional with length to check whether that annotation has already 
been used – if not, we store the annotation; if it has, we paste together a newly numbered 
annotation name and then store the annotation.

After both loops, we use order to re-order the components of chat.files.list and 
as.data.frame to convert it into a data frame; to make sure all columns have the same 
length, we apply max to the results of checking all columns’ lengths with sapply. Finally, 
we store the data frame with write.table.

Thus, this is the overall structure of the script <_qclwr2/_scripts/05_27_merging-chat.r>;  
read this side by side with the actual script in RStudio:

clear memory, load rChoiceDialogs (1–2)

define a vector chat.files with the corpus files (4–5)

create a collector list and set the utterance counter to 0 (7–9)

for-loop (counter = i, over seq(chat.files)): (11, -68)

output a progress report (12) and read the lines of the current chat file (14–15)

paste it together in one string with a collapse argument unattested in the string 
(17–18)

replace whitespace before that collapse argument (i.e., after line breaks) with 
a single space (20–22), then split the string apart again at the collapse argu-
ment and unlist (24–25)

find utterances and annotation lines and store them in a vector current.chat.
file.05 to be processed (27–30) and extract the date from the header (32–37)

for-loop (counter = j, over seq(current.chat.file.05)): (40, -67)

extract the line type (utterance or annotation) from the current line (42), the 
identifier (speaker name of annotation type) (43), and the line content (44–45)

if the line type is “utterance” (47), increment the utterance counter by 1 (48) 
and set the tier counter to 1

also, store the file name, the speaker name, the date, and the line content (51–54)

if the line type is “annotation” (56), check whether that kind of annotation has not 
been found yet for this utterance (this is where we handle the two EXPs) (57)

if there isn’t, save this line’s annotation into chat.files.list (58–59)

if there is already that kind of annotation (60), increment the tier counter by 1 
(61) and paste the new value of tier.counter together with the annota-
tion name and insert the annotation into the utt.counter’s part of a thusly 
named component of chat.files.list (62–64)

order all but the first four component names of chat.files.list alphabetically 
(70–71)

(continued)
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create a data frame from the list by using sapply to extract from every list compo-
nent all elements from 1 till that largest number of elements that any component 
of chat.files.list has (most likely the utterance tier) (73–79) and save it into 
a .csv file (81–83)

Which aspects of the script are worth additional comment? The only part that might 
be challenging is lines 57–65, but the difficulty of this part is not so much understand-
ing the code, which I hope I explain in enough detail (especially in the code file), but 
being able to come up with some such approach. The key is to realize that annotation 
is saved in slots of the relevant list component that are tied to the utterance coun-
ter. Thus, if you’re in utterance 20 and encounter EXP annotation, but chat.files.
list$exp already has a twentieth element, then you know there has already been a 
first instance of an exp tier and you need to create another one. That in turn makes you 
realize you need a tier counter so that different exp (or other) tiers can be distinguished 
(rather than overwrite each other), but since the annotation is utterance-specific, you 
also realize that the tier counter has to be reset to 1 whenever you encounter a new 
utterance, and so on. Try to go through this stepwise and don’t hesitate, for instance, 
to create versions of the corpus files that have more repeated tiers so you can go 
through the loop manually and check every step (recall p. 69), which will make things 
much clearer.

This concludes the long case study chapter. As with the first edition, I will make addi-
tional case studies or assignments available on the companion website as time goes by, 
so check it regularly for new stuff and/or look out for announcements on the newsgroup. 
However, there are already also some exercises for you in an exercises code file <_qclwr2/_
scripts/exerciseboxes/05_exercises.r>.

Note
1 We could have done this already on each iteration – i.e., within the loop – but that would have 

meant we have many more vectors that dynamically grow in the loop than necessary, which 
puts a considerable strain on memory. The version of the script you see here took a bit more 
than 11 minutes to run on my desktop, but the version which let the vectors for the forms and 
the tags grow in the loop took more than 71 minutes. Thus, these considerations – where/when 
do we create data structures, in or after a loop? – are not just nerdy technicalities but make a 
real difference in how fast scripts can run or, if the data set is really large, whether they can run 
at all.
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6 Next Steps  . . . 

I think computer searching of corpora is the most useful tool that has been provided to the 
grammarian since the invention of writing.

(Pullum 2006: 39)

As you will have inferred from this book so far, I am very much in favor of the idea that 
corpus linguists should not be dependent on a limited set of tools such as ready-made 
corpus software, which, by definition, comes with limitations: Not everything a (corpus) 
linguist may want to do can be readily implemented in them. But my reluctance against 
being dependent on ‘things’ goes further than that, which is why this book has only used 
freely available software and in fact mostly open-source software: All the code was pri-
marily developed on Linux (though tested on Windows as well), the spreadsheet software 
used was from the LibreOffice suite etc. A final implication of this worth mentioning here 
briefly is that, with very few exceptions, this book has taught you how to do things relying 
as much as possible on just base R, i.e., relying on extra packages as little as possible – the 
exceptions are the packages for processing XML data and dplyr for the %>% operator, but 
even there I often show how things can be done without them. This is, again, just so that 
researchers don’t become overly reliant on a particular package’s functionality, which 
may change, be discontinued, etc. – I prefer researchers in the driving seat, as when they 
are when they are able to develop the functionality they need with the functions in ‘base 
R’ because then they, as do we all, know best what they’re doing.

That being said, at the very end of this book I would like nevertheless to point out a 
few packages that may be useful for your research. The list is very brief and very selective, 
and new functions or even packages are being developed all the time, so I encourage you 
to regularly check the website of the CRAN Task View on Natural Language Processing 
(https://cran.r-project.org/web/views/NaturalLanguageProcessing.html), where many 
interesting packages are listed; some of these are more computational-linguistic than  
corpus-linguistic (at least to my mind), but not only is that definition subjective (see Gries 
2011 for my take on this), but in practice may also not be a necessary one to make. Here 
are packages I recommend you check out (I do not provide code here, but you will find 
some examples of functions and their uses in the code file):

 • stringi (https://cran.r-project.org/web/packages/stringi/index.html and www.rexamine.
com/resources/stringi), which not only provides a unified set of string-processing func-
tions with homogeneous and informative function names, but also encoding detection 
and conversion capabilities that can be very useful if your work involves frequently 
handling different encodings.
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 • stringr (https://cran.r-project.org/web/packages/stringr/index.html), which is a set of 
convenient functions that facilitate using stringi, which it in fact imports.

 • gsubfn (https://cran.r-project.org/web/packages/gsubfn/index.html and https://code.
google.com/archive/p/gsubfn), which played an important role in the first edition of 
this book and which allows you to find matches in a string and apply functions to 
them (strapply) and/or even insert the result of the function back into the original 
input vector (gsubfn).

 • stringdist (https://cran.r-project.org/web/packages/stringdist/index.html), which pro-
vides a variety of approximate string matching functions that complement R’s %in% 
and match; also, it offers many different measures of similarity between strings and 
even a function from which you can obtain character n-grams (recall Section 5.2.1).

In addition to these packages, I think the following ones may also be useful to learn 
about: tm, RcmdrPlugin.temis, openNLP, koRpus, hunspell, and wordnet – but again, 
explore the Task View for other useful tools that may help you in your research. A not so 
much corpus-linguistically interesting package, but one that provides a lot of useful func-
tionality, is readr (https://cran.r-project.org/web/packages/readr/index.html), which offers 
functions to read large flat and tabular data files from connections. Finally, let me recom-
mend this website for many new updates and ideas (e.g., on how to use R for webscraping, 
downloading Twitter feeds, etc.): www.r-bloggers.com

This concludes this book. I hope you have made it till here both in the book and in the 
code file; I hope you have learned a lot about all the possibilities R offers to linguistics in 
general and corpus linguistics in particular, and that the book has whetted your appetite 
to pursue your research with this amazing tool. In that spirit, run this:

>·rm(list=ls(all=TRUE));·set.seed(1)¶
>·paste(paste0(sample(letters)[c(17,·24,·19,·19,·13)],· 

collapse=""),¶
+·······"R",¶
+·······paste0(sample(letters)[c(20,·26,·9,·25,·26,·1,·6,·6,·19,·1

7,·25)],¶
+·······collapse=""),¶
+·······"!",·collapse="")¶
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Appendix

Websites

The companion website for this book: http://tinyurl.com/QuantCorpLingWithR
The newsgroup on corpus linguistics with R: http://groups.google.com/group/corpling-

with-r

R and R Add-ons (Open Source)

R Project: www.r-project.org
R Project download page CRAN: https://cran.r-project.org
Microsoft R Open: https://mran.revolutionanalytics.com/open
RStudio: www.rstudio.com

Statistics for Linguistics With R

The companion website for this book: http://tinyurl.com/StatForLingWithR
The newsgroup on statistics for linguistics with R: http://groups.google.com/group/ 

statforling-with-r
R-lang: https://ling.ucsd.edu/mailman/listinfo.cgi/r-lang

Office Software and Other Useful Software (Mostly Open Source)

Libreoffice: www.libreoffice.org
Unicode consortium: http://unicode.org

Regular Expression Testers and Websites

www.regular-expressions.info
http://regexr.com
https://regexper.com
http://regexlib.com
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107, 113, 115, 180, 190, 193, 
195, 205, 209, 211, 213, 216, 
219, 223, 226, 232, 236, 246, 
249, 255, 261, 265

grepl 82, 85, 198, 202, 211, 213
grid	164,	166,	168–9,	171,	173,	
246, 261, 263

gsub	88–90,	92–5,	99–108,	185,	190,	
193–4,	202,	205,	211,	213,	216,	
226, 234, 236, 239, 255, 261, 264

gsubfn 27
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head	40–1,	107,	112,	114,	133,	189,	
195,	200–1,	212,	222,	232–3,	253

hist	166,	195–6

if	65–6,	68–70,	136
ifelse	66,	190,	198,	233–4
integer	28,	180–1,	195,	205
intersect 46, 147, 209, 219, 226, 
263

IQR 164, 169
is.na 55, 140
is.null 205, 239
is.numeric 17, 84
is.vector 3

jitter 173, 193, 261
just.matches	86,	135–7,	139,	180,	
210–11,	213,	216–17,	219–20,	
253,	255–6,	260–1

kruskal.test 170
ks.test 166, 211

lapply	72–3,	180,	182,	222–4,	233,	
249–51

layout	22,	195–6
legend 20
length	28,	31–2,	44,	71–2,	75,	
84–6,	125,	137–8,	163,	181–2,	
186,	207,	228,	236,	243–4

levels 50
library	24,	118,	128–9,	138
lines 166, 169, 173, 193, 195, 
202, 213, 261

list	60–1,	64,	71,	73,	160,	182
load 132
log	26–7
log.0	26,	198–9,	261–2
log10	26,	261–2
logical 32
lowess 173, 193, 195, 202, 213, 261
ls	27–8,	52,	54–5,	60,	111,	132–3,	
270

mapply	75,	185–8
match	44–5,	81–2,	134–5,	215
matrix 160
max	71,	164,	222–3,	255,	265
mean	24,	71,	161–3
median 161
menu	53,	190–1
min	71,	157–8,	164,	202–3,	222–3,	255
mosaicplot 155, 190
mtext 193, 261

names	34,	41,	61,	119–21,	126,	134–5,	
152, 182, 207, 215, 217, 257

nchar	76,	90,	123,	139,	185–6,	
192–3,	205,	234,	236,	246

ncol 16
numeric	32,	71,	74–5
nzchar	77,	112–14,	183,	187,	198,	
205, 249

options 205
order	48,	57–9,	134–5

par	151,	194–5,	257,	261
paste	78–9,	234,	248,	261,	264,	
270

paste0	105,	113,	115–17,	181,	207,	
217, 231, 270

plot 133, 166, 169, 171, 173, 202, 
211, 261

png	133,	247,	255–6
points 247
prop.table 47, 58, 202, 226

q 30, 93, 128
qgrams 18
quantile 164, 185, 187

ranger	222–4
rank 59, 161
rbind 59, 257
rchoose.dir	130–1,	180,	190,	193–5,	
205, 209, 211, 213, 223, 226, 
230, 239, 249

rchoose.files 129, 198, 202, 216, 
219, 239, 246, 255, 261, 264

read_xml 128, 196, 239
read.table	53–5,	60,	155,	167,	
171, 202, 211, 213

readLines 39, 111, 219, 223, 233, 
264

regmatches	86–7,	136,	138–9
rep	9,	34–6,	86,	98,	117,	182,	
186, 198, 202, 217, 219, 244, 
246, 249

return	135–7
rgb 173, 193, 246
rm	28,	52,	54–5,	60,	111,	133,	
202,	212,	214,	239–40,	270

round 24
rownames 215, 254
rowsum 7
rowSums 183, 198, 202, 213
rug 19

sample	28–31,	58–9,	75,	133,	270
sapply	71–3,	85–6,	137–8,	186,	
193–4,	205,	219,	223,	226,	233,	
235–6,	249–51,	255,	261,	265–6

save	30,	132,	205,	211,	224,	226–7,	
239,	249–50

save.image 132
scan	36–40,	49,	118,	129,	180,	
183, 185, 187, 198, 205, 209, 
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211,	213,	216,	226,	231–2,	239,	
246, 249, 255, 259, 261

sd	71,	162–3,	169
seq	34–6,	67,	71,	181,	183,	185,	
193,	195,	220,	223–4,	232,	244,	
246–7,	255,	261–2,	265

set.seed 31, 133, 270
setdiff 46, 215
setwd 13
sort 48, 80, 112, 114, 133, 161, 
239

source 86
split 64
sqrt	25–8,	31,	158,	163–4
str	34,	52–3,	60,	153,	155,	167,	
171, 262

strapply 27
strsplit	79–80,	82,	107–14,	137,	
183,	187,	198,	205–6,	219,	223,	
226,	229,	232,	235–6,	241,	246,	
255, 261, 265

sub 77, 88, 180, 182, 189, 192, 
194,	202,	204,	207,	211,	224–5,	
249, 267

substr	77,	86–7,	96–8,	180,	185–6,	
190, 225, 234, 265

sum	8,	42,	44,	70–1,	153,	158–9,	
161,	163,	170,	179–80,	182,	 
198,	200–2,	205–7,	211–14,	 
227–8,	233,	245,	248–50,	252,	
254–7

summary 52, 119, 193, 196, 224, 
261

switch	3,	66,	181–2,	184–5,	187,	
190–1,	204

t.test	166,	169–70
table	3,	12,	28,	42,	46–7,	49,	51,	
53–5,	58,	60,	74,	79–80,	110,	
112,	114,	132–5,	139,	142,	152–3,	
155–8,	160,	167,	171,	178,	183–5,	
187–8,	192–3,	197–203,	205–6,	
208,	211,	213,	215–16,	218–21,	
226–8,	236,	238–9,	248–50,	255–6,	
259, 265

table.1stocc 135, 139
tail	40–1,	111,	189

tapply	71,	73–5,	169,	202,	205–7,	
211–14,	227–28,	231,	233,	248–50,	
255–6

tk_choose.dir	130–1
tk_choose.files 129
tolower	77–8,	112–14,	180–1,	183,	
185,	187,	210–11,	214,	216,	 
219–21,	223,	227,	239–40,	246,	
248–9

toupper	77–8,	112,	256
ttr	242,	244–8

union 46
unique	46,	49–50,	137–8,	211,	243–5
unlist	79–80,	84–7,	108–10,	112–13,	
136,	138–9,	183–4,	187,	198–9,	
220,	231–2,	236,	246–7,	255,	
261–2,	265

var.test 16
vector 72, 182, 219, 246

which	43–4,	56–7,	65,	219,	246
whitespace 204
wilcox.test 166, 170, 202, 211
word.ngrams	187–8
write.table	49,	54–5,	132,	219–20,	
255, 265

xml_children 12
xml_find_all 129, 196, 239
xml_name 12
xml_structure 12
xml_text 12
xmlAttrs	119,	121–2,	124–6
xmlGetAttr	122,	124–8,	196
xmlInternalTreeParse	118,	121–2,	
196, 239

xmlName	119–21,	123
xmlRoot 119
xmlSApply	121–2
xmlSize	119–21,	123–4
xmlValue	120–8
xpathApply 19
xpathSApply	121–8,	239

yules.measures 253, 255
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