
Chapter 5
Multi-word Expressions: A Novel
Computational Approach to Their
Bottom-Up Statistical Extraction

Alexander Wahl and Stefan Th. Gries

Abstract In this paper, we introduce and validate a new bottom-up approach to the
identification/extraction of multi-word expressions in corpora. This approach, called
Multi-word Expressions from the Recursive Grouping of Elements (MERGE), is
based on the successive combination of bigrams to form word sequences of various
lengths. The selection of bigrams to be “merged” is based on the use of a lexical
association measure, log likelihood (Dunning, Computational Linguistics 19:61–
74, 1993). We apply the algorithm to two corpora and test its performance both on
its own merits and against a competing algorithm from the literature, the adjusted
frequency list (O’Donnell, ICAME Journal 35:135–169, 2011). Performance of the
algorithms is evaluated via human ratings of the multi-word expression candidates
that they generate. Ultimately, MERGE is shown to offer a very competitive
approach to MWE extraction.

1 Introduction

Consider the following word sequences:

(1) a. Kick the bucket (idiom)
b. Apple pie (compound)
c. Strong coffee (habitual collocation, cf. powerful coffee is less correct)
d. To put up with (multi-word verbs)
e. You know what I mean? (speech formula)
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f. A penny saved is a penny earned (proverb)
g. Barack Obama (proper name)1

While these sequences represent a variety of syntactic structures and lexical
phenomena, they all have something in common: they are conventionalized com-
binations, taken up and reproduced by speakers who have used them – or heard
them used by others – before. In other words, they do not represent novel creations
of individual language users, assembled from scratch on the basis of regular rules
of grammar and semantics that operate on individual words. In this article, we will
use the term multi-word expressions (MWEs) to collectively refer to these various
kinds of sequences.2

MWEs have generated a great amount of interest in linguistics over the past
few decades, spurred largely by researchers who realized that earlier linguistic
approaches were generally ill-equipped to handle such sequences. While these
earlier approaches did acknowledge that highly salient MWEs with unpredictable
meanings (viz., idioms) must be stored, such non-compositionality was considered
a rather marginal linguistic feature – indeed, rule-based regularity was thought to
be the dominant motif of language. However, in what has become a foundational
paper in MWE research, Pawley and Syder (1983) point to the subtlety with which
conventionalization among sequences of words may appear. What they term “native-
like selection” describes production choices that L1 speakers make but which L2
speakers struggle with. Specifically, native speakers do not just choose words on the
basis of word-level semantics and syntax, whereby two synonyms would be equally
valid productions in a phrasal formulation. For example, while strong and powerful
are both adjectives that share at least one sense, L1 speakers produce strong coffee
but not powerful coffee. That is, although both formulations ostensibly communicate
the same meaning, only the strong coffee sequence “feels” native-like. It must be the
case, then, that L1 speakers store representations across usage events that describe
the specific combination of the word type strong with the word type coffee. And,
crucially, note that strong coffee appears decomposable into individual semantic
units and thus does not seem to be an idiom expected to be stored in memory.

Works such as Pawley and Syder’s have helped to shift linguists’ thinking that
what is stored versus assembled may actually be a much larger proportion of
discourse than originally thought. Indeed, a number of studies have now set out
to count the density of MWEs in discourse (e.g., Erman and Warren 2000; Foster
2001; Biber et al. 2004). And while results vary considerably based on how they
operationalize and count sequence formulaicity, most studies find that between one
third and a half of sequences appear to instantiate dependencies between specific
lexical types. Moreover, the types of MWEs that have been shown to make up

1The list of types of MWEs above is by no means exhaustive or clear-cut; however, this list is
inspired by a useful taxonomy in Siyanova-Chanturia, Conklin, and Schmitt (2011).
2Numerous terms, with partially overlapping definitions, have been broadly used to refer to the
same general collection of phenomena (terms including fixed expressions, formulaic expressions,
n-grams, phraseologisms, and others).
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discourse are not dominated by any one kind, ranging from the subtle collocational
preferences of native speakers to well-known lexical compounds.

With this emergent appreciation for the extent of between-word formulaicity,
various subfields have shifted attention to MWEs. These include the use of MWEs
as the basis for the differentiation between varieties of the same language (Gries
and Mukherjee 2010) and between genres within a single language (Biber et al.
2004); creating multi-word dictionary entries in lexicographic work (Sinclair 1987);
development of native-like abilities in second language acquisition (e.g., Sinclair
1987; Simpson-Vlach and Ellis 2010); exploration of the role of MWEs in child
acquisition (Bannard and Matthews 2008) and adult language processing (Bod
2009); and creating native-like speech in natural language generation (Lareau et al.
2011), among many others.

The increasing research foci on MWEs have been accompanied by the ongoing
development of methods for the identification of such sequences in discourse.
Unsurprisingly, the traditional method for such identification is through hand
annotation. However, this method is slow, expensive, not necessarily objective, or
replicable across raters, and it does not scale up well to large corpora. One important
way of addressing these limitations is through automated computational approaches
for the extraction of MWEs from corpora. These approaches typically generate
a list of candidate multi-word structures from a corpus and then score and rank
them according to some statistical metric of co-occurrence strength. Those items
ranked highest represent the algorithm’s best hypotheses for true MWEs, and those
ranked lowest represent the algorithm’s best hypotheses for what are not MWEs.
Ultimately, these items must be hand curated to more or less of a degree, with the
removal of erroneous results.

These algorithms vary along a number of dimensions relating to how MWEs
are defined, counted, and extracted (issues that we return to in the next sections);
thus, they will yield different lists of MWEs that they hypothesize in a given text.
At the same time, they all rely on the premise that MWEs ought to be discoverable
through word co-occurrence counts. This is because, over diachronic time, linguistic
structures that are recurrently used become increasingly conventionalized in mean-
ing and form; thus, conventionalization/formulaicity tends to correlate with usage
frequency.

The current article presents an implemented algorithm that we have developed
for the extraction of MWEs, entitled MERGE (Multi-word Expressions from the
Recurrent Grouping of Elements)3. As we will discuss below, this algorithm differs
from many traditional approaches to MWE extraction in that it identifies sequences
of various sizes that may or may not include “gaps” in them. In this way, it is
designed to be sensitive to the many different structural formats that MWEs can
take in language, from sequences that are adjacent (e.g., apple pie) to discontinuous
(e.g., as . . . as), from those that are shorter to longer (e.g., that’s what she said).

3Specifically, the algorithm was first developed in the first author’s Ph.D. dissertation, which was
co-supervised by the second author.
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MERGE accomplishes this through a recurrent mechanism that builds on existing
lexical association measures from the corpus linguistic literature on the extraction of
MWEs. Furthermore, as we will demonstrate below, it offers a potentially superior
method over other existing approaches that identify MWEs of different sizes, an
issue we return to later.

In the next section, we return to the issue of defining MWEs, discussing
terminological and definitional variation in the literature, and explaining how
MWEs are operationalized in the present article; also, we discuss algorithmic
approaches to MWE extraction, covering the role that lexical association measures
have played in this research as well as how they are adapted to the current algorithm.
In Sect. 3, we report two empirical studies to validate the performance of the
algorithm using human participant ratings of model output. The first study in Sect.
3.1 compares human ratings of items extracted early by the algorithm to those
extracted at later iterations, under the premise that, if MERGE is finding MWEs
effectively, early-item ratings ought to be higher. The second study in Sect. 3.2
compares ratings assigned to output from MERGE to ratings assigned to output from
another algorithm from the literature that identifies MWEs, in order to demonstrate
that MERGE does offer competitive performance to an existing approach. Finally,
in Sect. 4, we offer conclusions and directions for future research.

2 Multi-word Expressions: Their Definition and Extraction

2.1 The Definition of Multi-word Expressions

Numerous terminologies have been used in the literature to refer to formulaic,
conventionalized word sequences: Wray (2002) identifies 60 terms, and her count is
not exhaustive. Crucially, not all of these terms have been used to refer to exactly the
same phenomena, and often the same term may be used in different works to refer
to somewhat different phenomena. Despite variability in definitions, Gries (2008)
identifies several different criteria that commonly appear across many definitions of
formulaic language. He argues that the more researchers are consistent in defining
their terms via a common set of criteria such as the ones he proposes, the easier
it will be to compare studies. Thus, we define here our use of the term multi-word
expression with reference to these criteria in an attempt to be explicit about the
kinds of sequences that MERGE learns. In this discussion, we also note how the
sequences that MERGE is tasked with identifying differ from (and are often more
realistic/complete than) the kinds of sequences that more conventional extraction
approaches are designed to identify.

Of the ways in which definitions of MWEs vary that Gries (2008) mentions,
perhaps that which is most oft-cited in MWE research is the role of semantic
(non-)compositionality. For some researcher, semantic non-compositionality (e.g.,
kick the bucket has nothing to with kicking or buckets) is a prerequisite for
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formulaicity. For others, whether or not a word sequence is compositional is a
basis for categorizing word sequences into different types (e.g., idiomatic versus
non-idiomatic formulaic language; see Conklin and Schmitt 2012). And still in
other approaches, there may be no direct accounting for semantics at all; instead,
frequency-based metrics may be the sole means for identifying MWEs. Since
most corpora are not annotated with the kind of semantic information that would
distinguish non-compositional from compositional sequences, it is this last approach
that we adopt.

Gries (2008) also notes that definitions of formulaic language vary in terms of the
types of units that can make up a co-occurrence and the lexical and syntactic flexibil-
ity among these units. The most prototypical type of MWE comprises two or more
words that do not admit any variation or only admit variation at the level of differing
inflections (though often researchers may work with lemmatized corpora to avoid
such inflectional variation). Exceptions include, for example, Gries’ (2008) defini-
tion of phraseologism, which includes co-occurrences between words and paradig-
matic slots that accept any number of word types representing a lexical class (e.g.,
as tall as versus as red as, he spilled the beans versus she spilled the beans, etc.).

Sag et al. (2002) taxonomize such lexico-syntactic flexibility, distinguishing
between fixed expressions, semifixed expressions, and flexible expressions. Fixed
expressions include sequences such as by and large, ad hoc, and Palo Alto, and often
exhibit lexico-syntactic irregularities. Semifixed expressions allow some inflectional
variations and include many non-decomposable idioms, compound nominals, and
proper names. Finally, syntactically flexible MWEs include verb-particle con-
structions, decomposable idioms, and light verb constructions. Admittedly, the
theoretical inclusion of flexible slots offers a more complete picture of MWEs as
elements that interact with and are embedded within larger syntactic phrasal and
clausal structures. However, computationally accounting for paradigmatic flexibility
within MWEs quickly becomes a much more complex grammar induction problem,
which is beyond the scope of most collocation studies. Accordingly, the MWEs that
MERGE is tasked with identifying for now comprise strict co-occurrences of word
forms.

The remaining three criteria that Gries (2008) identifies are where extraction
algorithms tend to vary the most. Two of these are the number of units in the
MWE and the syntagmatic distance between units. Regarding the first of these, often
corpus linguists just focus on bigrams, as they are easy to extract computationally
and handle statistically. Regarding the second criterion, researchers tend to focus
on sequences whose elements are strictly adjacent. However, real MWEs may in
principle be of any length, and they may involve discontinuous sequences, and
thus an ideal algorithm ought to be able to extract such variable-length, possibly
discontinuous MWEs. Indeed, some existing research has developed techniques
for extracting adjacent MWEs of variable lengths (e.g., Nagao and Mori 1994;
Daudaraviĉius and Murcinkeviĉiené 2004; Gries and Mukherjee 2010; O’Donnell
2011), as well as MWEs of variable lengths containing gaps (e.g., Ikehara et al.
1996; Da Silva et al. 1999; Wible et al. 2006). Similarly, the MERGE algorithm
is designed to extract variable-length sequences that are both continuous and
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discontinuous, and it is designed to do so in a way that improves upon existing
approaches. It is important to note that MERGE’s ability to include gaps in MWEs
allows for spaces in which different lexical items of particular paradigms might be
located, as discussed with regard to the lexical and syntactic flexibility criterion.
However, MERGE does not directly learn anything about these paradigms.

Gries’ (2008) final criterion is the role of unit co-occurrence frequency in
defining a particular notion of formulaic language. Again, this is one of the
criteria for which there is great variation among automated extraction techniques.
As mentioned above, usage frequency is correlated with formulaicity. As such,
direct corpus counts of sequence frequency may serve as a measure of MWE
status (e.g., Biber et al. 2004), and some automatic extraction approaches are
based on frequency counts (e.g., O’Donnell 2011). However, not all MWEs can
be captured via frequency: idioms, for example, are typically low frequency yet
clearly memorized; for example, an expression such as blithering idiot(s) occurs
approximately once per 50 m words (in the Corpus of Contemporary American
English) and yet is known to most native speakers of American English.

2.2 The Extraction of Multi-word Expressions

The identification of MWEs of different sizes and the use of lexical association
measures present a paradox. On the one hand, most lexical association measures
are designed for bigrams and do not scale to larger co-occurrences in obvious or
uncontroversial manners. For this reason, the work that draws on these measures
has tended to focus on such bigrams, neglecting interesting larger co-occurrences.
One possibility of circumventing this problem is to use a simpler measure such
as frequency, which is counted in the same way regardless of sequence length.
However and as mentioned above, frequency counts alone may miss interesting
co-occurrences that are low-frequency yet high-saliency, such as idioms. Still,
assuming a particular algorithm were to manage a solution to this contradiction and
could assign strength values to MWEs of different sizes, there is still the quandary of
how to identify the correct size of a particular MWE. In other words, a high-scoring
bigram such as in spite may simply be a part of a larger “true” MWE such as in
spite of. Or, two adjacent high-scoring trigrams such as be that as and as it may may
exhibit a one-word overlap such that the true MWE is the five-gram that spans them
both. Simply extracting all 2- through n-grams and then scoring and ranking them
will result in a list of many such cases. Thus, it would be desirable to develop an
extraction approach whose ultimate output does not include such fragmentary cases.

In the next subsection, we provide a brief discussion of lexical association
measures, given the central role they have played in MWE research in general and
the role one measure plays in MERGE in particular. Then, in Sect. 2.2.1, we turn to
the description of recent extraction techniques that address the issues that we have
just raised in different ways.
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Table 5.1 Schematic 2 × 2 table for co-occurrence statistics/association measures

Word2 = present Word2 = absent Totals

Word1 = present obs: a obs: a a + b
exp: (a + b) × (a + c)/n exp: (a + b) × (b + d)/n

Word1 = absent obs: a obs: a c + d
exp.: (c + d) × (a + c)/n obs: a

Totals a + c b + d a + b + c + d = n

2.2.1 Traditional Lexical Association Measures

Numerous lexical association measures have been developed by corpus linguists to
quantify the amount of statistical attraction between words in bigram relationships
(Pecina (2009) reviews 80 separate measures). Most of these measures are based on
contingency tables, such as the one in Table 5.1, which represents schematically the
observed and expected frequencies of occurrence of the constituents of a bigram (or
any bipartite collocation, for that matter) and their co-occurrence.

Generally, lexical association measures are based on various mathematical
formulae that compare observed frequency cell value(s) to expected frequency cell
value(s). Using an association measure’s formula, one can calculate an association
score for each bigram type; these scores may then be used to rank the bigrams in
a corpus by strength. While each measure’s scores represent different units, often
a positive value will indicate statistical association between two words: that is, that
the two words co-occur more often than might be expected by chance. Conversely,
a negative value will indicate statistical repulsion, or that two words occur less
frequently than might be expected by chance.

Of the measures that have been developed, some have emerged as more popular
than others. For example, mutual information (MI) is among the most well-
known association measure. However, MI and transitional probability – which
is not usually considered a lexical association measure but nonetheless measures
sequence strength – exhibit a similar problem. They rank very low-frequency, high-
contingency bigrams too highly (e.g., a bigram in which both component words are
hapaxes; see Daudaraviĉius and Murcinkeviĉiené 2004); alternatives such as MIk

fare somewhat better in this respect (see McEnery 2006, Evert 2009:1225). Another,
and maybe the most popular, lexical association measure that has yielded quite good
results (e.g., Wahl 2015) and does not appear oversensitive to very low frequencies
is log likelihood (Dunning 1993), whose formula is given in (2).

(2) log likelihood = 2
∑d

i=aobs × log obs
exp

Unlike other measures, log likelihood takes into account observed and expected
values from all four frequency cells (a, b, c, and d) of the contingency table.
It also provides a close approximation to Fisher’s exact test (Evert 2009:1235),
considered on mathematical grounds to be the best method for quantifying statistical
association (yet its computational cost to implement makes it prohibitive for iterative
applications like MERGE). Due to these strong credentials, log likelihood is the
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measure we use in the present implementation of MERGE4. One final point that
should be made is that (2) will always result in positive values. Thus, in order for
log likelihood scores to correspond to the convention in which positive values denote
statistical attraction between words and negative values repulsion, the product of eq.
1 must be multiplied by −1 when the observed frequency of a bigram is less than
the expected (following Evert 2009:1227).

2.2.2 Some Newer Developments

In this section, we discuss some newer developments in MWE extraction research.
First, we discuss two studies that use a so-called lexical gravity approach; then,
we turn to O’Donnell’s (2011) adjusted frequency list; finally, we discuss work on
discontinuous MWEs, focusing in particular on the recursive bigram approach by
Wible et al. (2006).

Daudaraviĉius and Murcinkeviĉiené (2004) develop a new lexical association
measure known as lexical gravity (LG). The distinctive feature of this measure is
that, unlike all other measures used with at least some frequency, it takes the type
frequency of the token frequencies (in particular in cell b) into account; see Gries
(2012) for detailed exemplification. At its heart, LG is based on the sum of the
forward and backward transitional probabilities (TPs) of a two-way co-occurrence.
However, each TP is weighted by the type frequency (i.e., the number of different
word types) that can occupy its outcome slot, given its cue. Thus, for a given
(forward or backward) TP, there is a reward for promiscuity in possible outcomes
and a punishment for faithfulness (this is because a high TP is more impressive
when it occurs in the context of many possible outcomes).

While LG, like other association measures, is principally a two-way co-
occurrence metric, Daudaraviĉius and Murcinkeviĉiené 2004 develop a technique
for extending it to the identification of n + 2-grams. Their algorithm moves through
the corpus incrementally and considers any uninterrupted sequence of bigrams with
LG values exceeding 5.5 as constituting an MWE or collocational chain in their
terminology (they do not motivate their choice of 5.5 as their threshold value, but
at df = 1 this corresponds to a p-value of approximately 0.02). In a later paper,
Gries and Mukherjee (2010) refine this technique by basing the collocational chain
criterion on mean LG. Specifically, they extract n-grams of various lengths and score
them on the basis of the mean LG of their component bigrams, discarding those
n-grams with mean LGs below 5.5. Then, they proceed through the list, discarding
n-grams that are contained by one or more n + 1-grams with a higher mean LG
score. The resulting list constitutes their algorithm’s hypothesis of the MWEs in the
corpus.

4Note that while log likelihood is developed in Dunning (1993) as a lexical association measure,
it is in fact a multiple of another measure known as the Kullback-Leibler (K-L) divergence from
the field of information theory (Evert 2005). K-L divergence was not developed to quantify word
co-occurrences, but rather to measure the difference between two discrete probability distributions
that share the same domain.
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Rather than adapting lexical association measures to co-occurrences beyond the
bigram, another set of approaches circumvent this problem by employing frequency
counts as a metric of MWE strength. One of the seminal works on MWE extraction,
by Nagao and Mori 1994, takes this approach, as does the more recent adjusted
frequency list (AFL) by O’Donnell (2011). This latter algorithm works by first
identifying all n-grams up to some size threshold in a corpus. Next, only n-grams
exceeding some frequency threshold are retained in the AFL along with their
frequency (in his paper, the author set this frequency threshold to three). Then,
for each n-gram, starting with those of threshold length and descending by order
of length, the two component n-minus-1-grams are derived. Finally, the number of
tokens in the frequency list of each n-minus-1-gram is decremented by the number
of n-grams in which it is a component. Like the lexical gravity approaches, this
procedure prevents the kinds of overlaps and redundancies that would result from
a brute-force approach of simply extracting all n-grams of various sizes and then
ranking them based on frequency. However, in using the AFL, there is the possibility
that low-frequency, high-contingency MWEs would be ignored.

One drawback of these approaches is that, as implemented, they do not allow
for discontinuous MWEs. Most corpus linguistic work has shied away from the
challenges of the combinatorial explosion entailed by extracting MWEs with
discontinuities. Notable exceptions include an early approach by Ikehara et al.
(1996) (itself based on the work by Nagao and Mori), Da Silva et al.’s (1999)
LocalMax algorithm, and an algorithm by Wible et al. (2006), all of which are
capable of identifying both continuous and discontinuous MWEs. We will focus
on this last approach, which also crucially differs from other approaches in that
it does not generate a list of ranked MWEs hypotheses contained in a corpus.
Instead, it is designed to find all of the MWEs that a given node word participates
in (in this way, it is more akin to a concordancer). The algorithm represents what
we will call a recursive bigram approach. Upon selection of a node word to be
searched, the algorithm generates continuous and discontinuous bigrams within a
specified window size around each token of the node word in the corpus; these
bigrams consist of all those that have the node word as one of their elements.
Next, the algorithm scores these bigrams on the basis of a lexical association
measure (they use MI), and all those bigrams whose score exceeds a specified
threshold are “merged” into a single representation. The algorithm then considers
new continuous and discontinuous bigrams, in which one of the elements is one
of the new, merged representations, and the other element is a single word within
the window. The new bigrams are scored, and winners are chosen and merged.
This progress iterates until no more bigrams exceeding the threshold are found.
Ultimately, the algorithm generates a list of MWEs of various sizes that contain
the original node word. Importantly, the model never has to calculate association
strengths for co-occurrences larger than two elements, since one element will always
be a word, and, after the first iteration, the other element will always be a word
sequence containing the node word.
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2.2.3 Co-occurrence Versus Grammar-Based MWE Extraction

The methods for MWE extraction discussed thus far are based on recurrent co-
occurrences between word forms or, sometimes, lemmas. Furthermore, they are
unsupervised: while gold standard lists of MWEs may be used a posteriori to
evaluate algorithms’ performance, there are not parameters of the algorithm trained
on labels prior to evaluation. In contrast to this paradigm, a parallel line of research
for the identification of MWEs has been pursued in the field of computational
linguistics. While methods vary, these researchers prototypically use supervised
approaches whereby sequence labelers and/or parsers are trained on a partition of a
corpus that is enriched with additional features besides just the boundaries between
word forms or lemmas (see, e.g., Spence et al. 2013, Constant et al. 2017 for an
up-to-date survey). For example, these features may include parts of speech labels,
syntactic dependencies, MWE tags, and morphological and frequency/statistical
association information. Once training has converged, the algorithm is tested on
another partition of the corpus in order to see how it can match the MWE tags (and
possibly other features).

Research has suggested that these labeler- and parser-based supervised
approaches achieve a higher level of precision and recall than n-gram-based
approaches. That said, unsupervised co-occurrence-based approaches present a
different domain of application. To the extent that they do not rely on a corpus
already enriched with MWE and POS labels, syntactic dependencies, and other
features, they may be applied in a much broader set of contexts – for example,
for the case of smaller languages with few corpus resources or with texts from
specialized domains. In many of these circumstances, while the set of POS and
syntactic category types (if not tokens) may be exhaustively known, it is not
necessarily the case that the set of MWE types are known. Thus, unsupervised
co-occurrence-based approaches allow for the exploratory, bottom-up investigation
of what MWEs might exist within a particular domain.

2.2.4 MERGE: A New Recursive Bigram Approach

Similar to the algorithm developed by Wible et al. (2006), the MERGE algorithm
embodies a recursive bigram approach. But unlike this earlier work, our algorithm
is designed to extract all MWEs in a corpus (not just those that contain a particular
node word). It begins by extracting all bigram tokens in a corpus. These include
adjacent bigrams, as well as bigrams with one or more words intervening, up
to some user-defined discontinuity parameter (similar to Wible et al.’s use of a
window). The tokens for each bigram type are counted, as are the tokens for each
individual word type, and the total corpus size (in words) is tallied. Next, these
values are used to calculate log likelihood scores. The highest-scoring bigram
is selected as the winner, and it is merged into a single representation; that is,
it is assigned a data structure representation equivalent to the representations
of individual words (this differs from Wible and colleagues’ approach, wherein
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multiple winners were chosen at an iteration on the basis of a threshold association
value). We call these representations lexemes. At the next stage, all tokens of
co-occurring word lexemes in the corpus that instantiate the winning bigram are
replaced by instances of the new, merged representation. More specifically, if the
winning bigram type is the combination of the lexeme “in” followed by a one-word
gap and followed by the lexeme “of,” the newly created lexeme would be “in _ of.”
Furthermore, at each point in the corpus where this co-occurrence is attested, the
leftmost word position is populated with the new lexeme (“in” becomes “in _ of”)
and the other word positions in the co-occurrence (i.e., “of”) are populated with
placeholder objects that point to the leftmost word position of the co-occurrence.

Frequency information and bigram statistics must then be updated. New candi-
date bigrams are created through the co-occurrence in the corpus of individual word
lexemes with tokens of the new merged lexeme. For example, the lexeme in _ of can
now co-occur with spite, which occurs in the gap between in and of. Furthermore,
certain existing candidate bigrams may have lost tokens. That is, some of these
tokens may have partially overlapped with tokens of the winning bigram (i.e., they
shared a particular word token). Since these word tokens in effect no longer exist,
these candidates’ frequency counts must be adjusted downward. For example, some
or all of the occurrences of the individual word in followed by spite have ceased
to exist, since many/all of the relevant tokens of in were swallowed up by the
merge that created in _ of. And because of this, the frequency of the individual
word types found in the winner must be reduced by the number of winning bigram
tokens. Finally, the corpus frequency has decreased, since individual words have
been consumed by two-word sequences. After these adjustments in frequency
information have been made, new bigram strengths can be calculated.

The cycle then iteratively repeats from the point at which a winning bigram is
chosen above, and this iteration continues until the lexical association strength of
the winning bigram reaches some minimum cutoff threshold. After cycle cutoff, the
output of the algorithm is a corpus, parsed in terms of MWEs, and a list of lexemes,
from individual words to MWEs of different sizes, with and without gaps.

Because the input to candidate bigrams at later iterations may be output from
previous iterations, MERGE can grow MWEs unrestricted in size, which is similar
to the Wible et al. (2006) algorithm. Another key difference, however, is that one
element of their candidate bigrams must always be a single word and the other
a word sequence (at least after the first iteration, where both elements are single
words). In contrast, at later iterations, MERGE can choose a winning bigram that
comprises two single words, a single word and a word sequence, or two word
sequences. Moreover, assuming a sufficiently sized gap parameter, one element may
in principal occur inside the gap of another element. Even more unusual scenarios
are possible: as _ matter and a _ of fact could be interleaved to form as a matter
of fact. Thus, there are many possible paths of successive merges that result in a
particular MWEs, provided that the distance between the leftmost words of the two
elements of a bigram never exceeds the discontinuity parameter.
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Thus, MERGE sits at the vanguard in terms of MWE extraction research in
that it identifies MWEs that are co-occurrences of (dis)continuous words of various
lengths, on the basis of statistical measures of lexical association.

3 Empirical Evaluation of the Algorithm

It is necessary to determine whether MERGE does in fact do a reasonable job of
identifying MWEs. In this section, we report two different empirical studies. In
Sect. 3.1, we discuss a study in which human participants rated sequences extracted
by the algorithm for how well these sequences reflect “true” MWEs. Specifically, we
are testing the hypothesis that the point in time when MERGE labels an expression
a MWE can distinguish MWEs that are highly formulaic from MWEs that are not.
After that, in Sect. 3.2, we discuss another such rating study; this time, however,
the output of MERGE is compared to the output of a different automated MWE
extraction approach from the literature, the AFL, to test the hypothesis that MWEs
returned by MERGE will score higher in formulaicity than MWEs returned by the
AFL approach.

3.1 Rating Study 1: “Good” vs. “Bad” MWEs

In this study, we explore how human participants rate MWEs that differ along two
crucial dimensions. The first of these dimensions is captured in a binary variable
BINRANK, early vs. late, which states when during MERGE’s application a MWE
is identified: early (which, if MERGE is successful, should be MWEs that are rated
as highly formulaic) or late (which should be MWEs that should not be rated as
highly formulaic).

The second dimension is captured in a numeric variable SIZE which could take
on values from 2 to 5 and just provides the number of lexical constituents of
the MWE. In Sect. 3.1.1, we discuss how the MWEs we used in the experiment
were obtained; in Sect. 3.1.2, we describe how the experiment was designed and
undertaken; in Sect. 3.1.3, we discuss how the results were analyzed statistically; in
Sect. 3.1.4, we present the results of the statistical analysis, and in Sect. 3.1.5, we
provide an interim summary and discussion of this first case study.

3.1.1 Materials

The input data for the algorithm comprised two corpora: the Santa Barbara Corpus
of Spoken American English (SBC; Du Bois, Chafe, Meyer, and Thompson 2000;
Du Bois, Chafe, Meyer, Thompson, and Martey 2003; Du Bois and Englebretson
2004; 2005) and the spoken component of the Canadian subcorpus of the Interna-
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tional Corpus of English (ICE-Canada Spoken; Newman and Columbus 2010). SBC
includes about 250,000 words, while ICE-Canada Spoken includes about 450,000,
for a combined total of 700,000 words.

To maximize the likelihood that study participants would be familiar with the
MWEs that appear, it was decided to use corpora that comprise recent North
American English, since the participants are young college students in the USA.
Furthermore, it was decided to use spoken language data that span a variety
of discourse genres (the files of the corpora include face-to-face and telephone
conversations, academic lectures, religious sermons, political debates, business
meetings, radio programs, and many others). The greater formality of written
language means that it is more likely to contain low-frequency, unfamiliar word
combinations.5

These criteria greatly limited the candidate corpora, so we decided to combine
two smaller corpora to generate as large a data set as possible. Note that, although
more than half of the words in the combined corpus are from Canadian speech,
while the study participants are from the USA, the differences between these two
varieties are relatively minute compared to the differences between, say, US and
British varieties (the reason why the ten million word spoken component of the
British National Corpus was not used).

The formatting of both corpora was then standardized. All tags and transcription
characters that were not part of the lexical representation of the words themselves
were removed, including markers of overlap in talk, laughter, breathing, incom-
prehensible syllables, pauses, and other non-lexical vocalizations, among other
features.

Following corpus preprocessing, the MERGE algorithm was run on the data set.
The maximum gap size threshold was set to one – that is, the algorithm could acquire
MWEs with one or more gaps within them, provided that these gaps were no longer
than one word long. The algorithm was run for 20,000 iterations. Bigrams that span
a boundary between turns-at-talk were not permitted.

Next, output MWEs were selected for use as experimental stimuli. These
included the first 40 and last 40 merged items for each size of MWE in terms of
the number of words that they contained, from MWEs of two words to MWEs of
five words. While the model did extract sequences of six or more words, these were
relatively few in number, so a maximum size of five words was chosen. Thus, 320
different MWE types were selected, with half belonging to an early bin and half to
a late bin.

5This assumption that written language exhibits a greater lexical diversity than the often more
repetitive, simpler topics kind of language you find in spoken data (especially in conversation) is
widely held and supported, for instance, by a quick computation of lexical diversity statistics in the
ICE-GB. Guiraud’s measure of lexical diversity returns a value of approximately 64.3 for all the
written data in ICE-GB, which is completely different than the mean of 500 random samples of
the same number of words from the spoken data without replacement, mean = 41.2, IQR = 0.14.
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3.1.2 Experimental Design

Four different versions of the rating survey were then created, each containing 80
MWEs. Each version included 10 two-word MWEs from the early bin, 10 two-word
MWEs from the late bin, 10 three-word MWEs from the early bin, and so forth. Each
group of 10 words was selected at random, without replacement, from all the MWEs
that exhibited the same bin identity and were of the same size. Five copies of each
version of the survey were then created (with stimuli ordered randomized within
each copy), for a total of 20 surveys. Each stimulus item was also accompanied by
an example utterance sourced from the corpus that contained the item, so that study
participants had a sense of the use of the candidate MWE in context.

Next, the survey instructions were prepared. As discussed in Sect. 2, there are
various criteria involved in defining/identifying MWEs, which differ from study
to study. However, as we have mentioned, a common thread among different
definitions and types of MWEs is that they are maintained in and reused from
memory across usage events, rather than constructed on line from regular rules. In
order to tap into nonspecialist intuitions about this notion, the instructions asked
participants to rate sequences, on a seven-point Likert scale, for how well they
represented common, reusable chunks (with seven indicating strong agreement).
The instructions were supplemented with both good and bad examples of common,
reusable chunks, based on the opinion of the researcher. These examples were
sourced from the MERGE output and were not included as stimulus items.

Finally, 20 participants were recruited from introductory linguistics courses at
the University of California, Santa Barbara. Each participant was placed in a quiet
room by themselves and given as much time as they needed to complete the survey.

3.1.3 Statistical Analysis

The judgment data were analyzed with what is currently the state of the art for
psycholinguistic data with dependent numeric (or potentially ordinal) variables,
a linear mixed-effects model; we used the software language and environment R
(R Core Team 2016) with the packages lmer (Bates et al. 2015) for the overall
model selection process, lmerTest (Kuznetsova et al. 2016) to obtain p-values (based
on Satterthwate’s approximations), as well as MuMIn (Barton 2015) to obtain R2

values for our regression models (Nakagawa and Schielzeth 2010, Johnson 2014).
The dependent variable in our regression model was RATING, i.e., those ratings
provided by the subjects. As independent variables, we entered the above-mentioned
predictors SIZE (as an orthogonal polynomial to the second degree) and BINRANK
as well as their interaction. The random-effects structure we used was the maximal
random-effects structure that converged without warnings (following Barr et al.
2013): varying intercepts for every n-gram and every experimental subject as well
as slopes for SIZE and BINRANK for every n-gram and every subject.

Note that this approach to evaluation differs from many of the approaches
adopted in the literature on supervised MWE identification. There, algorithm
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Table 5.2 Results for the fixed-effects part of the regression model (REML)

Predictor coef se df t p2-tailed

Intercept 5.69 0.16 29.6 34.86 <10−15

SIZE (polynomial 1) −26.26 4.13 129.6 −6.36 <10−8

SIZE (polynomial 2) −13.04 2.85 162.5 −4.57 <10−5

BINRANK: early → late −3.87 0.2 31 −19.17 <10−15

SIZE (polynomial 1): BINRANK 15.88 4.93 178.6 3.22 0.0015
SIZE (polynomial 2): BINRANK 11.66 3.92 322.2 2.98 0.0031

performance is compared against MWE labels/decisions as to whether a particular
sequence is or is not an MWE provided by human subjects, which are considered to
be to be the gold standard. Here, we make no such Boolean either-or claims but use
scalar information instead. Because of this methodological choice, the conventional
Boolean-based evaluation metrics of “precision” and “recall” are not available, and
instead we use regression to assess the degree of correlation between human ratings
and algorithm performance.

3.1.4 Results

The results of the linear mixed-effects model indicated a significant correlation
(LR chi-squared 87.08, df = 5, p < 10−15, from a ML-comparison to a model
without fixed effects) with a high/strong overall effect: R2marginal, the R2-value
that quantifies the amount of variance explained by the fixed effects, is 0.643, and
all fixed effects entered into the model reached standard levels of significance; see
Table 5.2 for the corresponding results.

Compared to the above-mentioned fixed-effects, the random-effects structure,
while having some effect, did less in terms of variance explanation: R2conditional,
the R2-value that quantifies the amount of variance explained by both fixed and
random effects, is 0.84, and the main random-effects contributions were made by
both varying intercepts and by the different GRAM slopes for BINRANK; the
product-moment correlation between the observed ratings and the one predicted by
our model is r = 0.93.

Figure 5.1 is a visual effects-plot representation of both our fixed- and random-
effects results. On the x-axis, we show the predictor SIZE, on the y-axis the predicted
judgments by the experimental participants (averaged across MWEs). Each thin blue
and red line represents a single participant’s regression line for the BINRANK,
early, and BINRANK, late data, respectively (highlighting the individual variation
quantified by the random-effects structure), whereas the red and blue confidence
bands indicate the impact the interaction of the two fixed effects has on the predicted
judgments.

The main effect of BINRANK, early vs. late, is the most crucial finding in this
experiment: the (blue) early MWEs, the ones hypothesized to be highly formulaic,
do indeed have highly significantly higher overall ratings than the (red) late MWEs,

stgries@linguistics.ucsb.edu



100 A. Wahl and S. T. Gries

Fig. 5.1 The interaction of poly(SIZE, 2): BINRANK

which confirms the main hypothesis formulated above. The main effect of SIZE,
on the other hand, consists of the expected weak negative correlation such that the
longer the MWE, the lower its ratings. This is to some extent a reflection of the fact
that the longer an expression, the less likely it is to indeed be a stored unit in the
subjects’ mental lexicons rather than “creatively” assembled on the spot and the less
likely subjects were to recognize it as an expression they would give a high rating.
This finding is compatible with the frequencies of lengths of MWEs in corpora: the
spoken component of the British National Corpus contains >65 K MWEs of length
2, ≈10.5 K MWEs of length 3, 675 MWEs of length 4, and 10 of length 5.

While the main effects just discussed are relatively straightforward to interpret,
they also participate in a highly significant interaction. Crucially for the purposes of
the present paper, the interaction is of such a nature that it does not negate (any part
of) the effect of BINRANK. Instead, it reflects the fact that MWEs returned late by
MERGE do not decrease much in formulaicity as they become longer: we believe
that, in some sense, this is little more than a floor effect, and in general, there’s a
negative effect of SIZE such that longer MWEs are less formulaic than shorter ones.
Since MWEs with BINRANK (late) are already also much less formulaic than those
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with BINRANK (early), there is just not that much “judgment space” to decrease
to, as is evidenced by the fact that the fixed-effects confidence interval for the red
regression line is not only compatible with a straight and completely horizontal
regression line but when SIZE = 5 is very close to the minimally possible judgment
value of 1.

3.1.5 Interim Summary

The main finding of our first experiment is that the MERGE algorithm does indeed
seem successful in identifying highly formulaic MWEs at an early stage of its
application and returns less formulaic ones at a later stage (when association
strengths decrease). This finding is compatible with our above hypothesis and, thus,
constitutes a first piece of encouraging evidence in favor of MERGE. However, more
evidence is needed to begin to make a solid case for MERGE, and we will provide
more evidence in the next section. Specifically, in Sect. 3.2, we contrast the MWEs
returned by MERGE with those of a competing proposal, namely, O’Donnell’s AFL
discussed above in Sect. 2.2.2.

3.2 Rating Study 2: AFL vs. MERGE

One of the major dimensions along which algorithms vary, as discussed in Sect. 2,
is how they quantify the statistical strength of MWEs in order to rank MWEs from
“better” to “worse.” Many approaches, such as MERGE, use lexical association
measures, which take into account various pieces of frequency information relevant
to a target word co-occurrence. The drawback of such measures is that they
have typically been limited to two-way co-occurrences and are thus not viable
for comprehensively finding longer MWEs in a corpus (such as it goes without
saying); this is because of the facts that just about all measures are based on co-
occurrence tables of the type shown in Table 5.1 and that it is not obvious how
to compute the expected frequencies of more than two words (since complete
conditional independence is ridiculously anticonservative, see Gries 2010:275). The
collocational chain approaches in Daudaraviĉius and Murcinkeviĉiené (2004) and
Gries and Mukherjee (2010) and the recursive bigram approaches of Wible et al.
(2006) and MERGE are innovative in their abilities to overcome this limitation. An
alternative, however, to dealing with this would be to use a measure that was not
limited to two-way co-occurrences, such as simple frequency counts.

This is precisely what another algorithm from the literature, the adjusted fre-
quency list (AFL), does (O’Donnell 2011). Under this approach, candidate MWEs
are ranked based simply on how often they occur. But remember that certain word
sequences may represent true MWEs yet be low frequency. Idioms are a prototypical
example of such sequences. We would thus anticipate a frequency-based approach
such as the AFL to fail to identify many good MWEs that follow this pattern.
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Conversely, lexical association measures are designed to be able to find such low-
frequency yet high-contingency sequences, so an approach like MERGE that has
adapted such a measure to sequences beyond bigrams ought to be able to not
only find low-frequency MWEs but ones of various sizes. In this section, we thus
compare MERGE and the AFL in another rating experiment in order to test the
hypothesis that an approach such as MERGE that scales lexical association up to
co-occurrences greater than 2 is superior to an approach that obviates this by using
frequency, which is not inherently restricted to bigrams.

A final note should be made regarding discontinuities in MWEs. Remember that
MERGE is designed to be able to find them; the AFL is not. Already, then, it can
be claimed that MERGE offers something beyond the AFL in that it identifies an
additional format of possible MWE. The present study will therefore be limited to
comparing the performances of the algorithms in their ability to find MWEs with
purely adjacent words. To this end, MERGE’s max gap size parameter will be set
here to zero.

3.2.1 Materials

The same corpora used in experiment 1 were also used here, with the same
preprocessing procedures. Next, the algorithms were run and the top 1000-ranked
items from the output of each were selected for further consideration. In the case
of MERGE, this involved simply running the algorithm for 1000 iterations. In the
case of the AFL, the minimum frequency threshold was set to 5 and the 1000 items
with highest frequencies were selected. We then decided to focus on the MWEs
that the two algorithms did not agree on rather than the MWEs that they had in
common. Thus, two groups of items were created: the first group comprised those
items found in the AFL output but not in the MERGE output; the second group
comprised those items found in the MERGE output but not in the AFL output;
this means the two lists do not share any items (and the overlap of the lists is not
relevant since we are comparing the algorithms on the basis of an external “gold
standard,” the subjects’ ratings). This allowed a highly tractable examination of how
the respective performances of the two algorithms contrasted, as stimulus items fell
into one of two categories.6 The two groups of disjunctive output contained 180
items each. An even distribution of sampling from across the range of items was

6Note that there would have been difficulties in comparing the performance of the algorithms on
the basis of the output that they had in common (i.e., by seeing which algorithm’s ranking of output
best correlated with participant-assigned ratings of this output). Since the strength metrics used to
rank output were different for each model, the algorithm-assigned strength values would have to
have been rank-ordered to make them comparable across algorithms. But the fact that the AFL is
based on integer frequency means that there are numerous ties, whereas the log likelihood decimal
values used by MERGE make for virtually no ties (at least at higher scores). Thus, the rank order
distributions of the two model outputs were intractably different.
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Table 5.3 Random sampling of output from AFL and MERGE

AFL MERGE

He is Well it Auto reverse Good afternoon

And just They all In the middle of Melissa Soligo

But if you And how We need They weren’t

Because the To their To make sure Must have been

And this Of it Square root Next week

And I think A real I want you A good idea

It the Says the You think I wanted to

Get a With that Kind of thing We’ll see

Before the There and Let us Thanks very much

What kind of So this Major depression A great

achieved by partitioning the two rank-ordered item groups into 10 bins and then
randomly sampling 18 items from each bin. These items were then used in our
experimental design.

3.2.2 Experimental Design

On the basis of the items sampled as described above, groups of stimuli for the
surveys were created, with each group containing 45 items sampled randomly
without replacement from each of the two groups of 180 items above. Thus, each
survey contained 90 items – 45 generated by MERGE and 45 generated by the AFL.
In Table 5.3, we provide a random sampling of 20 stimuli sourced from the 180 AFL
items and 20 sourced from the 180 MERGE items.

One can immediately appreciate the qualitative difference between many of
the items in these two lists. While the high-frequency sequences represented in
the AFL output comprise many combinations of function words, the MERGE
output comprises many sequences combining function and content words. The
combinations include structures such as noun phrases (a good idea) or compound
nouns (square root), compound prepositions (in the middle of ), whole utterances
(thanks very much), or phrasal verbs (to make sure), among others. Furthermore,
while these combinations may be lower overall in frequency, their component
words are mutually contingent. This type of relationship of mutual contingency is
precisely the statistical pattern that lexical association measures like log likelihood
are designed to capture.

At the next stage (and as in the first study), 20 surveys were created, including
5 of each version, each to be rated by a single participant. Again, the order of
presentation of stimulus items for each survey was randomized, and each stimulus
item was accompanied by an utterance sourced from the corpus containing that
stimulus item, so that study participants had a sense of the use of the candidate
MWEs in context. Pilot testing revealed that the ratings assigned across the
two stimulus groups did not differ significantly, despite the apparent qualitative
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difference in the stimulus patters seen in Table 5.3. It is possible that the instructions
to identify common, reusable chunks are to blame for this result. While they yielded
successful results in the first study, the instructions did not appear effective here;
this may be because they failed to tap into intended intuitions about memorization.
For example, the idea of commonness may trigger intuitions about frequency rather
than memory, and reusability may trigger notions about utility. To try to more
explicitly target intuitions about memorization, the instructions were altered. In the
new version, study participants were asked to rate sequences based on whether,
in their opinion, they represented a complete unit of vocabulary. The hope was that
participants’ understanding of the notion of vocabulary would be roughly analogous
to the linguistic notion of a lexicon, since these US students would have grown
up learning vocabulary lists in spelling classes, etc. Again as in the first study, 20
participants were recruited from an introductory linguistics course at the University
of California, Santa Barbara. Each participant was placed in a quiet room by
themselves and given as much time as they needed to complete the survey.

3.2.3 Statistical Analysis

The data were analyzed with a linear mixed-effects model as outlined above for
experiment 1. In this case study, the dependent variable was again RATING, i.e.,
the numerical rating provided by subjects for MWEs; the independent variable was
the binary variable ORIGIN, which specified from which list of MWEs – AFL vs.
MERGE – the rated MWE was from (recall that we used items that were returned by
only one algorithm). As above, the random-effects structure was maximal, including
varying intercepts and slopes for both subjects and MWEs.

3.2.4 Results

The linear mixed-effects model we fitted resulted in a significant fit (LR chi-
squared = 5, df = 1, p = 0.0254, from a ML-comparison to a model without
fixed effects) but not a particularly strong correlation: R2marginal = 0.02 and
R2conditional = 0.37; see Table 5.4 for the corresponding results.

As is obvious from the above statistics, the overall effect is weak – the product-
moment correlation between the observed ratings and the one predicted by our
model is r = 0.68 – and the random-effects structure explains more of the variance
than the fixed effects. We visualize the findings in Fig. 5.2. On the x-axis, we

Table 5.4 Results for the fixed-effects part of the regression model (REML)

Predictor coef se df t p1-tailed

Intercept 3.93 0.27 19.7 14.6 <10–11
ORIGIN: AFL → MERGE 0.59 0.25 22.8 2.31 0.0151
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Fig. 5.2 The main effect of ORIGIN

represent the two levels of ORIGIN, on the y-axis the predicted judgments by
the experimental participants (averaged across MWEs). Each green and orange
line represents a single participant’s regression line; a green line represents a
participant’s predicted median ratings for MWEs from the MERGE list, which are
higher than those for the AFL list; an orange line represents the opposite relation,
and the black points/lines (with confidence intervals) indicate the overall effect of
ORIGIN.

The main effect of ORIGIN provides support for the hypothesized usefulness of
the MERGE algorithm. While the effect is not strong and variable across subjects
and MWEs, there is a significant difference such that the randomly sampled MWEs
from the MERGE algorithm score higher average formulaicity judgments than the
randomly sampled MWEs from the AFL algorithm. Given the small effect size, the
evidence is not conclusive but nonetheless compatible with our hope/expectation of
MERGE outperforming the AFL approach. In the next section, we will present our
conclusions.
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4 Discussion and Conclusion

In this paper, we presented a new recursive algorithm to identify MWEs in corpora,
which we called MERGE. We motivated its application and characteristics and,
more importantly, attempted to validate it in two experimental ways. In a first
experiment, we demonstrated that MWEs returned by MERGE early, as predicted
by MERGE’s design, indeed score higher in formulaicity than MWEs returned
by MERGE late, a robust main effect that is largely unqualified by an interaction
with the size of an MWE. In a second experiment, we demonstrated that MWEs
returned by MERGE score higher in formulaicity than MWEs returned by the AFL
algorithm. While both case studies are small and can only begin to set the stage for
the large and comprehensive set of tests that will ultimately be necessary for any
new corpus-based algorithm, we interpret these first two significant results as good
initial support for MERGE.

In terms of methodological implications, MERGE’s performance provides fur-
ther evidence for the effectiveness of lexical association measures in identifying
meaningful word co-occurrences, especially compared to the use of raw frequency
counts, as in the AFL. While the AFL found many high-frequency, low-contingency
strings which do not obviously represent stored, meaningful units, MERGE was
much more effective in its ability to single out salient sequences (i.e., sequences that
occur more often than may be expected based on their individual word frequencies),
a hallmark of lexical association measures. Furthermore, MERGE’s performance
exemplifies one effective way of scaling up lexical association measures to co-
occurrences beyond the bigram. While the current study speaks to the good
performance of the log likelihood association measure in this implementation,
further work is needed to determine whether other association measures, such as
the widely used MI-score, or newer measures such as LG (which includes type
frequencies) or �P (which is directional, see Gries 2013), likewise yield good
results when implemented in MERGE.

The MERGE algorithm offers a relatively simple approach that harnesses the
proven potency of lexical association measures, and adapts them to MWEs of
various sizes, with and without gaps. But MWEs are not merely crystallized
sequences of words – the “slots” within them, or at their edges, may allow some
(limited) set of words (i.e., a part-of-speech category) to fill them. In the future, it
would be desirable if MERGE could be adapted to not only learn where the gaps
were, but also what word paradigms might fill them; specifically, what the set of
types is as well as their frequency distribution and maybe entropy. Furthermore,
since members of the same paradigm may comprise different numbers of words, it
would also be desirable if MERGE could be adapted to recognize identical word
sequences containing gaps of different sizes as instantiating the same MWE (e.g.,
as _ as in as funny as versus as __ as in as truly hilarious as).

Conventionalized, memorized, multi-word sequences represent an important
component in modern language sciences research, both at the level of cognitive
and grammatical theory as well as in the applied domain of computer technologies.
Being able to identify them automatically, using the explosion of corpus resources
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that are ever more available, is an increasingly important goal for researchers
in various disciplines. The MWEs extracted by MERGE, which exhibit strong
similarities to humanlike knowledge of formulaic language, indicate that this
algorithm is a powerful tool for such work.
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Daudaraviĉius, V., & Murcinkeviĉiene, R. (2004). Gravity counts for the boundaries of colloca-
tions. International Journal of Corpus Linguistics, 9(2), 321–348.

Du Bois, J. W., & Englebretson, R. (2004). Santa Barbara corpus of spoken American English,
part 3. Philadelphia: Linguistic Data Consortium.

Du Bois, J. W., Chafe, W. L., Meyers, C., Thompson, S. A., & Martey, N. (2003). Santa Barbara
corpus of spoken American English, part 2. Philadelphia: Linguistic Data Consortium.

Du Bois, J. W., & Englebretson, R. (2005). Santa Barbara corpus of spoken American English,
part 4. Philadelphia: Linguistic Data Consortium.

Du Bois, J. W., Chafe, W. L., Meyers, C., & Thompson, S. A. (2000). Santa Barbara corpus of
spoken American English, part 1. Philadelphia: Linguistic Data Consortium.

Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence. Computational
Linguistics, 19(1), 61–74.

Erman, B., & Warren, B. (2000). The idiom principle and the open choice principle. Text, 20(1),
29–62.

Evert, S. (2005). The statistics of word co-occurrences: Word pairs and collocations. Ph. D.
Dissertation. Universität Stuttgart.

Evert, S. (2009). Corpora and collocations. In A. Lüdeling & M. Kytö (Eds.), Corpus linguistics:
An international handbook (Vol. 2, pp. 1212–1248). Berlin & New York: Mouton de Gruyter.

Foster, P. (2001). Rules and routines: A consideration of their role in the task-based language
production of native and non-native speakers. In M. Bygate, P. Skehan, & M. Swain (Eds.),
Researching pedagogic tasks: Second language learning, teaching, and testing (pp. 75–93).
Harlow: Longman.

stgries@linguistics.ucsb.edu

http://cran.r-project.org/web/packages/MuMIn/index.html


108 A. Wahl and S. T. Gries

Green, S., de Marneffe, M.-C., Bauer, J., & Manning, C. D. (2013). Parsing models for identifying
multiword expressions. Computational Linguistics, 39(1), 195–227.

Gries, S. T. (2008). Phraseology and linguistic theory: A brief survey. In S. Granger & F. Meunier
(Eds.), Phraseology: An interdisciplinary perspective (pp. 3–25). Amsterdam: John Benjamins.

Gries, S. T. (2010). Useful statistics for corpus linguistics. In A. Sánchez & M. Almela (Eds.),
A mosaic of corpus linguistics: Selected approaches (pp. 269–291). Peter Lang: Frankfurt am
Main.

Gries, S. T. (2012). Frequencies, probabilities, association measures in usage-/exemplar-based
linguistics: Some necessary clarifications. Studies in Language, 36(3), 477–510.

Gries, S. T. (2013). 50-something years of work on collocations: What is or should be next . . . .
International Journal of Corpus Linguistics, 18(1), 137–165.

Gries, S. T., & Mukherjee, J. (2010). Lexical gravity across varieties of English: An ICE-based
study of n-grams in Asian Englishes. International Journal of Corpus Linguistics, 15(4), 520–
548.

Ikehara, S., Shirai, S., & Uchino, H. (1996). A statistical method for extracting uninterrupted
and interrupted collocations from very large corpora. Proceedings of the 16e Conference on
Computational linguistics, 1, 574–579.

Johnson, P. C. D. (2014). Extension of Nakagawa and Schielzeth’s R2GLMM to random slopes
models. Methods in Ecology and Evolution, 5(9), 944–946.

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B.. (2016). lmerTest: Tests in linear mixed
effects models. R package version 2.0–30. https://CRAN.R-project.org/package=lmerTest

Lareau, F., Dras, M., Börschinger, B., & Dale, R. (2011). Collocations in multilingual natural
language generation: Lexical functions meet lexical functional grammar. In Proceedings of
ALTA’11 (pp. 95–104).

McEnery, T. (2006). Swearing in English: Bad language, purity and power from 1586 to the
present. Abington. New York: Routledge.

Nagao, M., & Mori, S. (1994). A new method of n-gram statistics for large number of n and
automatic extraction of words and phrases from large text data of Japanese. Proceedings of the.
In 15thconference on computational linguistics (pp. 611–615).

Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: A
practical guide for biologists. Biological Reviews, 85(4), 935–956.

Newman, J., & Columbus, G. (2010). The international Corpus of English – Canada. Edmonton,
Alberta: University of Alberta.

O’Donnell, M. B. (2011). The adjusted frequency list: A method to produce cluster-sensitive
frequency lists. ICAME Journal, 35, 135–169.

Pawley, A., & Syder, F. H. (1983). Two puzzles for linguistic theory: Nativelike selection and
nativelike fluency. In J. Richards & R. Schmidt (Eds.), Language and communication (pp.
191–225). London: Longman.

Pecina, P. (2009). Lexical association measures: Collocation extraction. Prague: Charles Univer-
sity.

R Core Team. (2016). R: A language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing.

Sag, I. A., Baldwin, T., bond, F., Copestake, A., & Flickinger, D. (2002). Multiword expressions:
A pain in the neck for NLP. Proceedings of the third international conference on intelligent text
processing and computational linguistics (pp. 1–15). Mexico City.

Simpson-Vlach, R., & Ellis, N. (2010). An academic formulas list. Applied Linguistics, 31(4),
487–512.

Sinclair, J. (1987). Collins COBUILD English language dictionary. Ann Arbor: Collins.

stgries@linguistics.ucsb.edu

https://cran.r-project.org/package=lmerTest


5 Multi-word Expressions: A Novel Computational Approach to Their. . . 109

Siyanova-Chanturia, A., Conklin, K., & Schmitt, N. (2011). Adding more fuel to the fire: An
eye-tracking study of idiom processing by native and non-native speakers. Second Language
Research, 27(2), 251–272.

Wahl, A. (2015). Intonation unit boundaries and the storage of bigrams: Evidence from bidirec-
tional and directional association measures. Review of Cognitive Linguistics, 13(1), 191–219.

Wible, D., Kuo, C.-H., Chen, M.-C., Tsao, N.-L., & Hung, T.-F. (2006). A computational approach
to the discovery and representation of lexical chunks. Paper presented at TALN 2006. Leuven.

Wray, A. (2002). Formulaic language and the lexicon. Cambridge: Cambridge University Press.

stgries@linguistics.ucsb.edu


