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Computational extraction of formulaic 
sequences from corpora
Two case studies of a new extraction algorithm

Alexander Wahl and Stefan Th. Gries
Donders Institute for Brain, Cognition and Behaviour, Radboud University / 
University of California Santa Barbara & Justus Liebig University

We describe a new algorithm for the extraction of formulaic language from cor-
pora. Entitled MERGE (Multi-word Expressions from the Recursive Grouping 
of Elements), it iteratively combines adjacent bigrams into progressively longer 
sequences based on lexical association strengths. We then provide empirical 
evidence for this approach via two case studies. First, we compare the perfor-
mance of MERGE to that of another algorithm by examining the outputs of the 
approaches compared with manually annotated formulaic sequences from the 
spoken component of the British National Corpus. Second, we employ two child 
language corpora to examine whether MERGE can predict the formulas that the 
children learn based on caregiver input. Ultimately, we show that MERGE in-
deed performs well, offering a powerful approach for the extraction of formulas.

Keywords: formulaic sequences, collocation extraction, lexical association, child 
language, MERGE, adjusted frequency list

1.	 Introduction

Bolinger (1976, p. 2) famously claimed that “speakers do at least as much remem-
bering as they do putting together”, suggesting that the production of complex 
linguistic constituents (e.g. multiword phrases) was as often about retrieving these 
items from memory in pre-fabricated form as it was about constructing them online 
based on regular rules. While at the time such a view was seen as radical, today 
an increasing number of studies are examining the importance, complexity, and 
ubiquitousness of such formulaic language or phraseology (see Wray, 2002; Granger 
and Meunier, 2008 for influential discussion and overviews.)
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This term broadly encompasses many different types of multiword and co- 
occurrence phenomena. Prototypical or well-known kinds of formulaic language 
include idioms (kick the bucket), prepositional verbs (talk about), phrasal verbs (pick 
up), multiword prepositions (in spite of), and nominal compounds (gold medal), 
among others. But formulaicity operates at a more subtle level, too. Consider the 
well-known example of the two semantically similar words strong and powerful, 
where only the former is typically applied to the noun tea. This case demonstrates 
the phenomenon of restricted exchangeability (Erman and Warren, 2000), whereby 
formulaic language may be diagnosed when one or more words in a word sequence 
could not be substituted with synonyms without a loss in the particular meaning of 
that sequence. The implication is that the production of the noun phrase ‘strong tea’ 
cannot be based purely on a generative phrase structure rule agnostic to the lexical 
combinatorial preferences of individual words; rather, the language user must store 
some knowledge that circumscribes a complete phrasal unit populated with these 
particular lexical items. In other words, the whole is more than the sum of its parts.

While restricted exchangeability is of limited use in cases where there are no 
suitable synonyms (e.g. when a word sequence comprises only function words), 
Erman and Warren (2000) determined, primarily based on this criterion, that at 
least 50% to 60% of the corpora they examined comprised formulaic language. 
Numerous other studies have yielded formulaic sequence density estimates as well, 
with often wildly different results and, because of differences in diagnostic criteria, 
some counts of corpus formulaic language density going as high as 80% (Altenberg, 
1998). This all suggests that Bolinger’s historic claim, while hard to verify numer-
ically exactly, may have essentially been correct. Ultimately, regardless of exact 
density, it is clear that formulaic language is an important feature of language that 
was ignored in much of mainstream linguistics until work from a phraseological 
perspective (e.g. Wray, 2002) and work from a usage-based perspective on how 
much is stored and how much is computed (e.g. Bybee, 2010) zoomed into what 
had largely been a computational-linguistic task/phenomenon.

In order to study formulaic language (or collocations), one must be able to 
identify these sequences in discourse. However, this is no straightforward task. One 
option would be to annotate sequences by hand, but then sequence identification 
criteria must be defined. Perhaps the most frequent approach is to simply ask an-
notators who have specialist-level familiarity with formulaic language to perform 
the task (e.g. Ellis et al., 2008). An obvious objection to such an approach would 
be the chance for bias, so annotations from different raters are often compared in 
order to arrive at a reasonably consistent set of annotations. Still, the nature of the 
mental criteria individual raters are applying is not necessarily clear.

Alternatively, annotators may be provided with more specific instructions in 
how to identify formulaic language, yet these are prone to the problem of formulaic 
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language definitions typically being insufficiently comprehensive. So, the aforemen-
tioned restricted exchangeability used by Erman and Warren (2000) is a succinct 
criterion and works well for certain sequences, but it cannot be applied in cases 
where, as mentioned above, there are no suitable synonyms to exchange for a given 
word in the sequence (to check whether that sequence thereby loses its idiomaticity 
under the exchange).

Finally, one could define more elaborate annotation criteria – for example ques-
tions aimed at identifying specific types of formulaic sequences (e.g. “is this sequence 
a nominal compound comprising two or more nouns with a non-compositional 
meaning?” or, “does this sequence function as a single multiword preposition?” 
etc.). Yet even still, certain obviously formulaic sequences can be difficult to defin-
itively categorize, particularly in the case of sequences that do not co-extend with 
syntactic constituents (see Biber et al., 2004). In addition, as is particularly true of 
this last approach, manual annotation is slow and backbreaking work.

Ideally, one would want to be able to extract a reasonably reliable list of formu-
laic sequences from a corpus without an excessive amount of manpower. For this 
reason, a widely-used alternative to manual annotation is different collocational 
extraction algorithms, implemented computationally and applied to corpora. The 
algorithms vary in their designs, but they all return an ordered list of multiword 
sequences, whose ranking may be thought of as representing the confidence of 
the algorithm in the degree to which any sequence represents a true formulaic 
sequence. This ranking is assembled according to some statistical measure – which 
is itself based on the frequency of each sequence and the contingency/predictability 
of its parts – but the particular statistical measure used often varies from algorithm 
to algorithm; see below.

Thus, broadly speaking, automatic extraction is successful insofar as usage 
frequency is correlated with formulaicity. And indeed, much research has shown 
that the more often language users deploy a particular formulation rather than an 
alternative one with the same meaning, that formulation increasingly becomes (via 
statistical preemption) the conventionalized way of expressing oneself (and, in turn, 
comes to no longer mean “the same thing” as erstwhile alternatives) (e.g. Bybee, 
2010, Chapter 3). At the same time, the results of automatic extraction algorithms 
are still noisy. The reason for this noisiness is twofold: On the one hand, this has to 
do with the fact that this correlation between usage and formulaicity is not perfect. 
On the other hand, different algorithms yield results that differ in their goals (e.g. 
lexicographic and translational goals differ) and their methodological implemen-
tation (statistical algorithms react differently to input frequencies), which affects 
their output and, thus, also their quality.

In the current study, we present an algorithm that we have developed en-
titled MERGE (for Multi-Word Expressions from the Recursive Grouping of 
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Elements).1 We believe that our approach addresses some of the limitations of 
previous approaches from the literature, with regard to both these issues of count-
ing sequences and identifying them. To investigate the degree to which this is true, 
we formulate the following research question:

RQ1: 	� Does our algorithm perform better than a more conventional approach 
when both are compared to manual annotation?
Relatedly, remember that the ultimate goal for formulaic sequence 
identification is often some downstream research such as variety re-
search, psycholinguistic processing, and L1 acquisition. For example, 
researchers have examined, among other things, dialectological dif-
ferences on the basis of differences in formulaic language (Gries and 
Mukherjee, 2010); the degree to which formulaic sequences are pro-
cessed more quickly than non-formulaic ones by adults (Arnon and 
Snider, 2010); and the degree to which formulaic sequences play a role 
in early child language (Lieven et al., 2009). And while many such 
approaches rely on manual annotation (but see Gries and Muhkerjee, 
2010), if a particular corpus extraction approach is viable, it ought to 
be possible to put this to use in place of manual annotation. Thus, a 
second research question that we pursue is:

RQ2: 	� Can an extraction algorithm be successfully employed as part of the 
methodology of a formulaic language-focused study?

In the next three subsections, we discuss in more detail the issues surrounding 
contemporary computational extraction approaches. Then, in Section 2, we define 
our extraction approach. The sections that follow comprise case studies: Section 3 
evaluates our approach on the basis of annotated corpus data and aims to address 
the first research question, while Section 4 addresses the second research question 
by demonstrating the applicability of our approach to formulaic language research 
through a small case study on child language. Finally, in Section 5, we discuss con-
clusions and directions for future research.

1.1	 Counting co-occurrences

One of the most important variables affecting the performance of different auto-
matic extraction approaches is the statistic a particular algorithm uses to weight or 
merge word co-occurrences. Probably the two most popular methods, or families 

1.	 We use the terms multiword expression (or MWE), formula, and formulaic sequence inter-
changeably here.
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of methods, are (i) relative frequencies, which are simply the frequencies of a 
co-occurrence normalized, typically, for the frequency of the first/node word of 
a collocation/formulaic sequence, and (ii) lexical association measures. Numerous 
association measures have been proposed (e.g. Pecina (2009) reviews 80), and they 
vary mathematically and, therefore, in the precise list of results that they return. 
However, generally speaking, the most widely-used association measures are based 
on how much more or less often a particular sequence is observed than might be 
expected by chance. Such scores are calculated by considering not just the fre-
quency of the target sequence, but other pieces of frequency information relevant 
to the occurrence as well. Depending on the specific measure, this may include the 
frequencies of the individual words (see above), as well as the size of the corpus 
(usually measured in words).

Most of these measures are based on contingency tables, such as the one in 
Table 1, which schematically represents the observed and expected frequencies of 
occurrence of the two constituents of a bigram (or any bipartite co-occurrence, for 
that matter).

Table 1.  Schematic 2×2 table for bigram co-occurrence statistics / association measures

  word2 = present word2 = absent Total

word1 = present obs.: a exp.: (a+b)×(a+c)/n obs.: b exp.: (a+b)×(b+d)/n a+b
word1 = absent obs.: c exp.: (c+d)×(a+c)/n obs.: d exp.: (c+d)×(b+d)/n c+d
Totals a+c b+d a+b+c+d=n

Based on the frequencies represented in Table 1, an association measure returns 
an association score for each co-occurrence type; these scores may then be used 
to rank the bigrams in a corpus by strength or significance. While each measure’s 
scores represent different units, often a positive value will indicate statistical at-
traction between two words: that is, that the two words co-occur more often than 
might be expected by chance. Conversely, a negative value will indicate statistical 
repulsion, or that two words occur less frequently than might be expected by chance 
(see Evert, 2004, 2009 for comprehensive discussion).

Lexical association measures tend to offer greater sensitivity to formulaic lan-
guage than relative frequency, since they can capture sequences that are infrequent 
though nonetheless formulaic. Consider the bigrams San Francisco and in the. 
While the latter sequence is clearly more frequent (and would thus be ranked more 
highly on a frequency list), most would agree that the former is a ‘better’ formulaic 
sequence. This is because when one of the unigrams San and Francisco does occur, 
there is a high probability that the other will, too, whereas when in and the occur, 
they may occur together but they very often occur apart as well. In other words, 
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San and Francisco embody a much greater degree of contingency than do in and 
the. It is this feature that most lexical association measures are designed to capture.

Of the measures that have been developed, some have emerged as more popular 
than others. For example, pointwise mutual information (MI) is probably the most 
well-known association measure. However, MI and transitional probability – which 
is not usually considered a lexical association measure but nonetheless measures 
sequence strength – exhibit a similar problem: they often rank very low-frequency, 
high-contingency bigrams too highly, even in the case of a bigram in which both 
component words are hapaxes (see Daudaraviĉius and Murcinkeviĉiené, 2004, 
pp. 325–326). In other words, these two measures have the opposite problem of 
relative frequency. Ideally, one would want a measure that ‘splits the difference’ 
between these two extremes. While alternatives such as MIk fare somewhat better 
in this respect (see McEnery, 2006; Evert, 2009, p. 1225), one lexical association 
measure that has yielded quite good results for multiword extraction (e.g. Wahl, 
2015), and does not appear oversensitive to very low frequencies is log-likelihood 
(Dunning, 1993), whose formula is given in (1).

	 (1)	 log loglikelihood obs
obs

i a
d= ¥=2Σ exp

Unlike some other measures, log-likelihood takes into account observed and ex-
pected values from all four frequency cells (a, b, c, and d) of the kind of contingency 
table shown in Table 1. Because of the very widespread, successful adoption of 
log-likelihood in many studies (collocation studies, multiword extraction studies, 
keywords studies, etc.), log-likelihood is the measure we use in the algorithm that 
we develop here.2

The reader may note that we have not discussed in this section co-occurrences 
of higher-order n-grams. This is not an omission, but rather reflects the fact that 
virtually all lexical association measures are designed for two-way co-occurrences. 
This is of course problematic, since formulaic sequences may theoretically com-
prise any number of words. Some techniques for adapting lexical association to 
higher-order n-grams have been developed (see also below), but no best practice 
has emerged yet. In addition, while relative frequency does exhibit the insensitivity 
to low-frequency, high-contingency sequences as discussed above, it does not have 
the bigram restriction, and thus still is used by researchers today (e.g. O’Donnell, 
2011). We return to these issues in a little while.

2.	 One final point that should be made is that (1) will always result in positive values. Thus, in 
order for log-likelihood scores to correspond to the convention in which positive values denote 
statistical attraction between words and negative values repulsion, the product of Equation 1 must 
be multiplied by −1 when the observed frequency of a bigram is less than the expected (following 
Evert, 2009, p. 1227).
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1.2	 N-Gram sizes/configurations and the problem of redundancy

Once a scoring metric has been chosen, a typical next step is to select one or more 
n-gram sizes for extraction. Furthermore, one may choose n-gram templates that 
contain one or more gaps in them. This reflects the possibility of discontinuous 
formulaic sequences, exemplified by the as _ as construction in as tall as or as little 
as. Next, all n-grams corresponding to the selected templates are extracted from 
a corpus, they are scored, and then they are ranked: ultimately, the higher-ranked 
n-grams are the algorithm’s best hypotheses for true formulaic sequences.

However, even if one uses relative frequency for scoring or if one manages to 
adapt lexical association measures to co-occurrences greater than 2-grams, one still 
faces an issue of redundancy with this conventional approach. Specifically, if one 
extracts the 5-gram as a matter of fact, one will have also extracted the 4-grams as 
a matter of and a matter of fact. Because these 4-grams are at least as frequent as 
the 5-gram that contains them, they might be ranked higher (if ranking is based 
on frequency, or, in the case of a lexical association-based ranking, since strength 
is correlated with frequency). Of course, this effect is a problem since, in the case 
of as a matter of fact, the 5-gram is clearly a better hypothesis for a ‘true’ formulaic 
sequence than any n<5-grams included in as a matter of fact.

1.3	 Recent approaches

Some recent approaches address the above-mentioned issues. For example, 
Daudaraviĉius and Marcinkeviĉienė (2004) develop a new lexical association meas-
ure called lexical gravity G. This measure computes the lexical association of two 
elements x and y by not only using the information in Table 1 above (i.e. the token 
frequencies with which x and y are observed in the corpus together and on their 
own), but also using the numbers of types with which x and y co-occur (i.e. the type 
frequencies underlying the token frequencies of cells b and c in Table 1). They then 
apply this measure to the identification of formulaic language by, so to speak, mov-
ing through a corpus incrementally and considering any uninterrupted sequence of 
bigrams with a G-score exceeding a threshold as constituting a formulaic sequence, 
or ‘collocational chain’ in their terminology.

In a later paper, Gries and Mukherjee (2010) develop a modification of lex-
ical gravity for the identification of formulaic language. Specifically, they extract 
sequences of various lengths and score them on the basis of the G-score of their 
component bigrams, discarding those sequences with mean G-scores below a cer-
tain threshold. Then, they proceed through the list, discarding sequences that are 
contained by one or more n+1-grams with a higher mean G-score. The resulting list 



© 2020. John Benjamins Publishing Company
All rights reserved

90	 Alexander Wahl and Stefan Th. Gries

constitutes their algorithm’s hypothesis of the formulaic sequences in the corpus. 
With this pruning process, Gries and Mukherjee’s approach also addresses the 
redundancy issue mentioned in the previous section, whereby high-scoring grams 
may merely be fragments of larger, true grams. However, the fact that lower-order 
n-grams are entirely discarded if a higher-order n-gram containing them is stronger 
is potentially problematic: while certain tokens of a lower-order n-gram may be 
fragmentary (fingers crossed in to keep one’s fingers crossed), others may not be 
(fingers crossed in Speaker A: “I hope we win!” Speaker B: “Fingers crossed!”).

A recent approach by O’Donnell (2011) takes a different approach to extracting 
formulaic sequences of various sizes, which also avoids the problem of redundancy: 
Rather than adapting lexical association measures to co-occurrences beyond the 
bigram, O’Donnell employs frequency counts as a metric of formula strength. His 
Adjusted Frequency List (AFL) works by first identifying all n-grams up to some 
size threshold in a corpus. Next, only n-grams exceeding some frequency thresh-
old (3, in his study) are retained in the AFL along with their frequency. Then, 
for each n-gram, starting with those of threshold length and descending by order 
of length, the two components n-minus-1-grams are derived. Finally, the num-
ber of tokens in the frequency list of each n-minus-1-gram is decremented by the 
number of n-grams in which it is a component. Like the approaches above, this 
procedure prevents the kinds of overlaps and redundancies that would result from 
a brute-force approach of simply extracting all n-grams of various sizes and then 
ranking them based on frequency. However, in using the AFL, there is a very real 
risk that low-frequency though high-contingency formulaic sequences would be 
ranked (too?) low, while high-frequency though non-formulaic sequences would 
be ranked (too?) high.

One drawback shared by all of the approaches discussed thus far is that, as 
implemented, they do not allow for discontinuous formulaic sequences. A recent 
algorithm by Wible et al. (2006) addresses this limitation. Their approach also 
crucially differs from these other approaches in that it does not generate a list of 
ranked formula hypotheses contained in a corpus. Instead, it is designed to find 
all of the formulaic sequences that a given node word participates in (in this way, 
it is more akin to a concordance). Their algorithm represents what we will call a 
recursive bigram approach. Upon selection of a node word to be searched, the algo-
rithm generates continuous and discontinuous bigrams within a specified window 
size around each token of the node word in the corpus; these bigrams consist of all 
those that have the node word as one of their elements. Next, the algorithm scores 
the bigrams on the basis of a lexical association measure (they use MI), and all 
those bigrams whose score exceeds a specified threshold are ‘merged’ into a single 
representation. The algorithm then considers new continuous and discontinuous 
bigrams, in which one of the elements is one of the new, merged representations 
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and the other element is a single word within the window. The new bigrams are 
scored, and winners are chosen and merged. This process iterates until no more 
bigrams exceeding the threshold are found. Ultimately, the algorithm generates 
a list of formulaic sequence of various sizes that contain the original node word.

Importantly, the model never has to calculate association strengths for 
co-occurrences larger than two elements, since one element will always be a word, 
and, after the first iteration, the other element will always be a word sequence 
containing the node word. The obvious limitation of this approach is that it is not 
designed for broad-scale use on all words in a corpus. In principle, one could treat 
every corpus word type as a node word. However, this would result in numerous in-
stances of redundancy, whereby partially or fully overlapping formulaic sequences 
would be grown from neighboring node words. And because the authors did not 
intend for their algorithm to be used for applications other than concordance, they 
do not offer a suggestion for how this might be addressed.

In the next section, we present our algorithm, which addresses all of the is-
sues raised so far: scalability of lexical association, redundancy, discontinuity, and 
broad-scale use on all words in a corpus.

2.	 The MERGE algorithm

Similar to the algorithm developed by Wible et al. (2006), the MERGE algorithm 
embodies a recursive bigram approach. But unlike their work, our algorithm is 
designed to extract all formulaic sequences in a corpus – not just those that contain 
a particular node word. It begins by extracting all bigram tokens in the corpus. 
These include adjacent bigrams, and potentially bigrams with one or more words 
intervening, up to some user-defined discontinuity parameter (similar to Wible 
et al.’s use of a window). The tokens for each bigram type are counted, as are the 
tokens for each individual word type, and the total corpus size (in words) is tallied. 
Next, these values are used to calculate log-likelihood scores. The highest-scoring 
bigram is selected as the winner, and it is merged into a single representation; that 
is, it is assigned a data structure representation equivalent to the representations 
of individual words (this differs from Wible and colleagues’ approach, wherein 
multiple winners were chosen at an iteration on the basis of a threshold associa-
tion value). We call these representations lexemes. At the next stage, all tokens of 
co-occurring word lexemes in the corpus that instantiate the winning bigram are 
replaced by instances of the new, merged representation. This process by which 
smaller tokens are consumed by larger winners avoids the kinds of redundancy 
issues raised above, in which a particular word token or sequences of tokens may 
simultaneously participate in numerous fragmentary grams.
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Frequency information and bigram statistics must then be updated. New can-
didate bigrams are created through the co-occurrence in the corpus of individual 
word lexemes with tokens of the new merged lexeme. Furthermore, certain existing 
candidate bigrams may have lost tokens. That is, some of these tokens may have 
partially overlapped with tokens of the winning bigram (i.e. they shared a particular 
word token). Since these word tokens in effect no longer exist, these candidates’ fre-
quency counts must be adjusted downward. Moreover, the frequency information 
for the individual word types found in the winner must be reduced by the number 
of winning bigram tokens. Finally, the corpus frequency has decreased, since indi-
vidual words have been consumed by two-word sequences. After these adjustments 
in frequency information have been made, new bigram strengths can be calculated.

The cycle then iteratively repeats from the point at which a winning bigram 
is chosen above, and iterations continue until the association strength of the win-
ning bigram reaches some user-defined minimum cut-off threshold or until a 
user-defined number of iterations has been completed. The output of the algorithm 
is a corpus, parsed in terms of formulaic sequences, and a list of lexemes, from 
individual words to formulaic sequences of different sizes.

Because the input to candidate bigrams at later iterations may be output from 
previous iterations, MERGE can grow formulaic sequences unrestricted in size 
(even while never considering co-occurrences larger than two items), which is 
similar to the Wible et al. (2006) algorithm. Another key difference, however, is 
that one element of their candidate bigrams must always be a single word and the 
other a word sequence (at least after the first iteration, where both elements are 
single words). In contrast, at later iterations, MERGE can choose a winning bigram 
that comprises two single words, a single word and a word sequence, or two word 
sequences. Moreover, assuming a sufficiently sized gap parameter, one element may 
in principal occur inside the gap of another element. Even more unusual scenarios 
are possible: as _ matter and a _ of fact could be interleaved to form as a matter of 
fact. Thus, there are many possible paths of successive merges that result in par-
ticular formulaic sequences, provided that the leftmost word of the two elements 
of a bigram never exceed the discontinuity parameter.

3.	 Case study 1: MERGE vs. AFL

In this case study, we address our first research question, “does our algorithm per-
form better than a more conventional approach when both are compared with 
respect to manual annotations?” To answer this question, we chose to compare the 
performance of MERGE to that of one of the other algorithms discussed earlier, 
the Adjusted Frequency List (AFL), by O’Donnell (2011).
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Like MERGE, the AFL addresses the redundancy/overlap problem faced by 
algorithms that simply extract and rank all n-grams of various sizes. However, 
unlike MERGE, the AFL uses frequency rather than lexical association. In another 
study (Wahl and Gries, 2018), we show that the use of frequency reduces the quality 
of the formulaic sequences found by the AFL significantly, compared with those 
found by MERGE. However, in that study, we evaluated the performance of the two 
algorithms on the basis of a rating experiment conducted using naïve participants 
(i.e. participants who had no explicit knowledge of formulaic language and received 
instructions/examples describing it on the spot).

Here, we wish to see if the superior performance of MERGE holds up in a dif-
ferent test situation, namely a corpus already annotated for formulaic sequences. 
In other words, while in the previous study we assessed the performance via naïve 
intuitions, here we are testing performance via specialist knowledge, as those who 
annotated the corpus must have had some relevant lexicographic training to do so.

3.1	 Materials

The corpus we use is the spoken component of the British National Corpus (BNC), 
which comprises approximately 10 million words. Crucially, this component of 
the corpus was tagged for formulaic sequences; in total, there are 436 sequence 
types (once tagged and all identical sequences conflated). However, a number of 
these sequences contain disfluencies such as er or erm. There are a total of 48 such 
items, and all of their ‘clean’ forms are also found amongst attested among the 
BNC’s formulaic sequences. Thus, when they are removed from the list, there are 
only 388 total BNC items. Having worked extensively with formulaic sequences, 
we must point out that this estimate likely seriously underestimates the number 
of formulaic sequences actually present in the BNC spoken component. Consider, 
for example, the work of Erman and Warren (2000), who found over 50% of their 
corpus comprised formulaic sequences. This would mean that over 5 million words 
of the BNC spoken component would be distributed among a mere 388 types, 
which is obviously not the case – rather, the BNC annotators must have used 
much more conservative criteria in determining formulaic sequences than did 
Erman and Warren.

In order to compare the performance of the algorithms, all 388 sequence types 
were first obtained from the corpus. The corpus was then preprocessed so that 
only word strings along with utterance boundaries were retained. Next, MERGE 
was run for 10,000 iterations on the corpus, with the maximum gap size set to 0 
(only adjacent sequences were permitted). Additionally, the AFL was run on the 
corpus and the top 10,000 most frequent items were selected from the list that was 
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generated. Note that items 9977 through 10539 in the AFL output were all tied with 
a frequency of 35. In order to arrive at an even 10,000 items, we randomly selected 
10,000–9977 = 23 items from these 10539–9977 = 562 total tied items.3

The 10,000 items from each of these runs of the respective algorithms then served 
as the basis for comparison with respect to the 388 tagged types from the BNC.

3.2	 Results

First, we checked how many of the 388 formulaic sequences from the BNC spo-
ken were identified by the top 10000 MERGE items and by the 10000 AFL items: 
MERGE found 112 of the 388 formulas whereas the AFL found only 93 of the 
same 388 formulaic sequences. According to a one-tailed binomial test, MERGE 
finds a significantly higher number of formulaic sequences [binom.test(112, 388, 
93/388, alternative=“greater”), pone-tailed = 0.01522); conversely, according to a sec-
ond one-tailed binomial test, the AFL performs significantly worse than MERGE 
[binom.test(93, 388, 112/388, alternative=“greater”), pone-tailed = 0.01779].4

In order to more closely analyze the differing performance of MERGE and the 
AFL, we present Table 2, in which each column corresponds to a different category 
of (non-)overlap between the algorithm outputs. Thus, column A contains those 
items in the BNC identified by both algorithms; column B contains those identified 
by MERGE but not the AFL; column C contains those identified by the AFL but 
not by MERGE; and column D contains those BNC items identified by neither al-
gorithm. Note that columns A and D contain only a sampling of the total number 
of items in those categories.

One way to explore these sets of items quantitatively is via the parameters that 
matter to, or are inherent to, formulaicity: frequency of occurrence, dispersion, and 
lexical association. Dispersion refers to how evenly tokens of a particular type are 
distributed in a corpus and we are using the “DP” measure of dispersion (Gries, 
2008). If tokens are perfectly evenly distributed in a corpus, DP will approach 0, 

3.	 In order to rule out an effect of which 23 formulas with the AFL frequency of 35 were sam-
pled, we conducted a Monte Carlo simulation with 1,000 iterations in which the 23 formulas 
were replaced with 23 randomly-sampled items from all formulas with the AFL frequency of 
35. The mean and 95%-confidence interval of how many of the 388 BNC-grams the AFL found 
were 93.03 ([93.02, 93.04], see below), which means our randomly chosen items did not skew 
the results in any direction (let alone in our favour).

4.	 We performed one-tailed tests because our first comparison of merge and AFL (Wahl and 
Gries, 2018) showed that merge outperformed AFL; however, even two-tailed tests proved sig-
nificant for merge outperforming the AFL (pone-tailed = 0.02761) and the AFL performing worse 
than merge (pone-tailed = 0.03326).
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whereas if tokens are extremely clumpily distributed (i.e. largely or even exclusively 
concentrated in one part of the corpus, then DP will approach 1). As a lexical 
association measure, we are using the MI2 measure, a version of MI that rewards 
n-grams with higher observed frequencies – log (obs a2/exp a) – and we computed 
the expected frequencies on the basis of the assumption of complete independence.5

In order to visualize the distributional properties of the tokens in columns A-D 
with respect to frequency, dispersion, and MI2, Figure 1 displays empirical cumu-
lative distribution (ECD) plots for frequency, dispersion, and lexical association 
respectively for all columns A-D, but our discussion will focus on the comparison 
of B versus C and the comparisons of both B and C with A.

At this stage of exploration of MERGE (vs. the competing algorithm), we are 
not yet in a position to state specific alternative hypotheses – let alone directional 
ones or specific effect sizes – regarding how MERGE and the AFL differ along these 
three parameters other than the maybe most obvious one that MERGE should be-
have differently with regard to MI2 because it is an algorithm whose computations 
involve a measure of association strength. Thus, we are restricting our discussion 
here to an exploratory description. With regard to the frequencies, it is obvious that 

5.	 That means, expected frequencies were computed as they would in chi-squared tests of in-
dependence; for a 3-gram that would be (fword1 × fword2 × fword3) ÷ corpus size2; see Gries (2015, 
Section 2.2.1 for an example and why this can only be a first heuristic).

Table 2.  Comparison of attestation of BNC items among the results of the two algorithms

Column A: +M,+A  
(83 types)

Column B:+M,-A  
(29 types)

Column 
C: -M,+A 
(10 types)

Column D: -M,-A  
(266 types)

by way of, subject to, as 
usual, in case, even if, 
and so on, in relation to, 
a little, that is, next to, off 
of, for good, for instance, 
just about, for the time 
being, as regards, even 
though, each other, as it 
were, at once, sort of, by 
now, old fashioned, from 
time to time, of course, all 
round, as to, no longer, 
for example, kind of, in 
between, rather than, as 
opposed to, …

in addition, whether 
or not, vice versa, up 
to date, in order, half 
way, depending on, up 
front, up until, all of a 
sudden, anything but, 
grand prix, status quo, 
as if, know how, per 
cent, in common, fed 
up, so as, every so often, 
in accordance with, 
as though, en suite, a 
great deal, less than, per 
annum, an awful lot, sinn 
fein, out of date

given that, 
in respect 
of, as yet, 
in full, for 
certain, in 
the main, 
near to, 
no matter 
what, with 
regard to, 
except for

relative to, hard up, poco 
a poco, now that, teeny 
weeny, al fresco, at large, 
au fait, a la, in search of, 
no matter how, grand mal, 
a la carte, as between, as 
from, au revoir, nom de 
plume, from now on, ad 
hominem, in return for, in 
place of, insofar as, as for, 
except for, in relation to, 
once more, all at once, au 
pairs, pate de foie gras, in 
vain, in proportion to, de 
facto, raison d’être, …
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(i) the formulas identified by both MERGE and the AFL are those with the highest 
frequencies and (ii) the formulas identified by neither MERGE nor the AFL are 
those with the lowest. Also, (iii) the formulas of columns B and C do not seem to 
differ from each other in terms of their average frequency or the variability of their 
frequencies, while both B and C differ from those of A (i.e. those formulas that both 
algorithms found). Put differently, both MERGE and the AFL agree on many high 
frequency collocates but the formulaic sequences that only one of them finds do 
not differ from each other in terms of their corpus frequencies.

With regard to dispersion, the picture changes a bit: Again, (i) the formulas 
identified by both algorithms are the ones with the lowest DP-values (i.e. most 
evenly distributed in the corpus), but it is also worth noting that the formulas found 
by both algorithms exhibit DP-values across the whole range of values. Then, (ii) 
the formulaic sequences identified by neither MERGE nor the AFL are those with 
the highest DP-values / clumpiness and very little variability of dispersion: 75% of 
the DP-values of column D are ≈ 0.96 or higher. However, (iii) while the formulaic 
sequences found by only one algorithm do not differ in their average dispersion, 
they appear to differ in the variability of their dispersion: the interquartile range 
of the B formulas is twice as high as that of the C formulas, which we interpret as 
advantageous for MERGE, because it can be seen as indicating that MERGE is 
better at finding formulaic sequences with diverse dispersions.

Finally, with regard to lexical association, the results are quite different: (i) the 
main findings are that the formulas found by at least one algorithm (i.e. those in 
columns A, B, and C) do not differ much from each other in terms of either central 
tendency or variability (with just a small effect of column A exhibiting a wider range 
of MI2-values). In addition, the formulas of column B do exhibit somewhat larger 
mean and median MI2s than those of column C, but the effect is merely suggestive 
at this point (in part because of the very small sample size of 10 items in column C).
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Figure 1.  ECD plot of frequency (left panel), dispersion (DP, center panel), and lexical 
association (MI2, right panel)
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Given the just-mentioned small number of cases in C, it is difficult to make a 
detailed qualitative comparison at this point, but it does seem to us that three of 
the ten column C formulas are not ‘as good’ examples of formulas as all of those 
in column B, to the extent that they seem to be incomplete or less frequent – spe-
cifically, in respect of, in the main, and near to – but this assessment awaits future 
(rating?) studies to be put on a more solid footing.

3.3	 Interim conclusions

In the comparison of MERGE with the AFL in Wahl and Gries (forthcoming), we 
essentially employed what one might consider a kind of unsupervised approach: 
we ran both algorithms and then compared samples of top-ranked formulaic se-
quences. We found that there was a striking difference between the kinds of se-
quences identified by MERGE and the AFL, which patterned like the San Francisco/
in the example discussed above. The present study, by contrasts, is essentially more 
similar to a supervised classification approach: we had a list of 388 likely positives 
and then the degrees to which the algorithms find them. Accordingly, we do not 
find the same San Francisco/in the bifurcation in the results. Rather, the results 
were more nuanced, with numerous items identified by both algorithms, and subtle 
differences in the items that were identified only by one or the other algorithm; it 
seems that MERGE does better in particular by being able to find formulas from a 
wider range of dispersion values, as well as exhibiting the tendency of identifying 
formulas with higher association scores.

4.	 Case study 2: Exploring MERGE in the context of L1 acquisition

As mentioned above, formulaic language extraction from corpora is typically a 
means to some other research end, used in fields as diverse as cognitive-/psycho-
linguistics, dialectology, digital humanities, applied linguistics, and many others. 
Thus, to provide evidence that an automatic extraction approach such as MERGE 
is powerful enough to be methodologically applicable to such downstream formu-
laicity research, we deploy it here in a small applied study.

Within the cognitive domain, formulaic sequences play a particularly integral 
role in child language. Specifically, current theories hold that they serve as a stepping 
stone on a child’s way to more productive grammatical knowledge: children begin 
with stored formulaic sequences and, over time, generalize across them to acquire 
a mature grammar (see Tomasello, 2005 for one of the most thorough overviews); 
at the same time, this is not to say that representations of formulas acquired during 
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childhood do not endure into adulthood, nor that new formulas are not acquired 
beyond childhood. One question, though, is whether these early representations 
are truly formulaic, and not creatively constructed. One source of evidence for this 
would be if demonstrably formulaic structures in the adult input to the child are 
taken up and deployed in the child’s own productions. Meanwhile, adult creative 
structures ought not to be reproduced by the child, at least at the same rate.

This broad style of approach, in which specific child productions are linked to 
specific adult inputs, has been used elsewhere in the child language literature. For 
example, Bod (2009) developed a parsing/grammar induction algorithm called 
UDOP (Unsupervised Data-Oriented Parsing). UDOP is based on a Probabilistic 
Context-Free Grammar (PCFG) that can store and reuse (sub)trees (including spe-
cific word terminals) that it had constructed to parse previously-encountered sen-
tences. The lexicalized, reusable nature of the (sub)trees makes them, by definition, 
formulaic sequences, at least in the context of the model (whether or not they reflect 
true formulaic sequences known to humans is another question). The primary 
goal of UDOP is to demonstrate that grammatical knowledge can be induced in 
a bottom-up fashion, without reliance on innately-specified syntactic knowledge, 
contra many generative grammarians. Thus, the role of formulaic language in this 
model is to increase performance in the pursuit of this objective (just as a child may 
use formulaic language as a stepping stone).

Bod (2009) evaluated UDOP in various case studies. In one, he partitioned a 
longitudinal child language corpus into two sections, and then trained UDOP on 
the adult utterances in the earlier partition (in separate trials, he also trained the 
algorithm on the child utterances, and on a combination of the child and adult 
utterances).6 Next, he evaluated the algorithm by seeing how well it could parse 
the child utterances in the later partition, based on the grammar it had acquired 
on the earlier adult utterances. The parses assigned were compared against man-
ually annotated, gold standard parses for the data. Indeed, the grammar acquired 
based on the adult input performed well, demonstrating that a child’s emergent 
grammatical knowledge can be modeled on concrete adult structures that the 
child has stored.

In another related study, Swingley (2005) examined the distributional learning 
of word boundaries from syllable co-occurrences. Although he did not investigate 

6.	 A related approach is taken in Bannard et al.’s (2009) study using a Bayesian-based distri-
butional learning algorithm that the authors had developed, as well as in Lieven et al.’s (2009) 
corpus-based discourse-analytic study. However, a crucial difference is that these studies use 
child utterances for both training and test; thus, there is no attempt to link the children’s acquired 
structures to adult input, but rather just to account for the children’s advancing linguistic devel-
opment across different stages of the child’s own usage.
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formulaic word sequences, his design is instructive. He extracted all syllable bigrams 
and trigrams, scored them on the basis of MI and frequency, and ranked them. He 
then correlated this ranked list with how well the n-grams instantiated words. In 
other words, he examined the question of how well association strength and fre-
quency can predict the word boundaries that children go on to learn. However, 
his definition of what children ‘go on to learn’ is mature, adult-like gold standard 
boundaries. Furthermore, the corpus he used was not longitudinal, but rather a 
collection of caregiver utterances (phonologically transcribed) from the input to 
a collection of different children. An interesting complementary approach would 
be to examine how well the ranked n-grams of (a) specific caregiver(s) predict the 
word boundaries that their child goes on to learn at the particular developmental 
stage of the corpus (which would be possible with a longitudinal corpus).

In the current chapter, our approach brings together techniques developed 
in evaluation methods from the child language studies within Bod (2009) and 
Swingley (2005). As in both approaches, we train the algorithm (MERGE) on a 
set of adult utterances. Like Bod (2009) and unlike Swingley (2005), we use lon-
gitudinal corpora, focusing on the input to/output from individual children. We 
compare the multiword representations generated by the model based on earlier 
adult utterances against the actual output of these children, as registered in later 
child utterances. And like Swingley and unlike Bod, we work with a list of output 
candidates scored and ranked on the basis of association strength, rather than best 
grammatical parses for whole utterances. The hypothesis is that higher-scoring 
formulaic sequences, extracted from the adult utterances, will go on to be learned/
used by the child, while formulas that scored lower will not (at least not to the 
same degree).

In the next section, we discuss the corpora that we use as well as their 
pre-processing, and we discuss the technique for generating the stimulus items 
from the corpora using MERGE. After that, we turn to the results of the study. 
Finally, we discuss these findings.

4.1	 Materials and methods

In this study, we use two longitudinal child language corpora, both of which were 
sourced from the CHILDES database (MacWhinney, 2000). CHILDES is an online 
repository for corpora of child language acquisition data. Our selected corpora are 
the ‘Lara’ corpus (Rowland and Fletcher, 2006) and the ‘Thomas’ corpus (Lieven 
et al., 2009). Both Lara and Thomas are children who have grown up in the United 
Kingdom (and were thus raised as native speakers of varieties of British English), 
and the recordings were made in the children’s respective homes.
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These corpora were selected for several reasons. First, they both span the early 
multiword speech stage of development, an ideal stage for examining the role of 
formulaic language in early acquisition: Lara was between the ages of 1;9.13 (i.e., 
1 year, 9 months, and 13 days) and 3;3.25 when her recordings were made, and 
Thomas was between the ages of 2;00.12 and 4;11.20 when his were made. Second, 
both corpora include extensive speech from the children as well as caregivers with 
whom they interact (and, in the case of the ‘Thomas’ corpus, researcher speech 
as well). Finally, the corpora are relatively large/dense: while ‘Lara’ comprises 120 
hours of transcribed audio, ‘Thomas’ totals 379 hours of transcribed audio.

The ‘Thomas’ recordings/transcriptions are in fact divided into 3 subcorpora. 
The first subcorpus spans the ages of 2;00.12 to 3;02.12, and recordings were made 
for 1 hour, 4 times per week. The second and third subcorpora span the remainder 
of the time, and recordings were made for 1 hour, once per week.7 Because the 
first subcorpus overlaps in time most closely with the ‘Lara’ corpus, we only used 
those recordings. Even with this limitation, the first subcorpus still comprises 279 
hours’ worth of transcripts (i.e. more than double the size of the ‘Lara’ corpus). In 
order to make the corpora more comparable in size, the first ‘Thomas’ subcorpus 
was downsampled by including only every other corpus file. This resulted in a more 
comparable 140 hours’ worth of transcripts.

Both corpora were transcribed according to the CHAT format (MacWhinney, 
2000), so the same preprocessing procedure was used. This included the removal 
of metadata, transcriber commentary, punctuation, time stamps, non-speech vo-
calizations, and incomprehensible syllables. In addition, transcription tags were 
removed, which marked phenomena such as missing words, grammatically correct 
forms when an incorrect form appeared, and invented forms, among other things. 
Note that, while incomprehensible forms were removed, grammatically/phonolog-
ically incorrect and invented forms were themselves indeed included. Speaker tags 
were also removed, but not before they were used to separate each corpus into child 
and caregiver/adult utterances. Additionally, the two corpora were divided into two 
partitions, whereby the first two-thirds of each corpus represented partition A and 
the final third represented partition B.

MERGE was then run on the adult utterances of partition A, once for each 
corpus. No gaps in the formulaic sequences acquired were permitted, and the al-
gorithm was allowed to run until the log-likelihood score of the top-scoring merge 
candidate reached 0 (Remember that positive log-likelihood values signify statis-
tical attraction between bigram elements while negative values signify statistical 
repulsion. By this standard, all bigrams exhibiting a positive log-likelihood score 

7.	 The ‘Thomas’ corpus additionally included video data, but this was not used in the present 
study.
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are in theory formulaic sequences.). From the final output, all sequences of length 
2 through 5 were retained.

Next, all n-grams from lengths 2 through 5 were extracted from the child ut-
terances in partition B. From this group, any n-grams which also appeared among 
the child utterances in partition A were discarded in order to ensure that the group 
comprised only n-grams that were new attestations in the child’s speech. Finally, 
the sequences from the MERGE output were compared to the n-grams from the 
partition B child utterances, and two lists were created. The first list comprised 
those MERGE output sequences that also appeared as n-grams in the child utter-
ances. These are formulas that the child plausibly went on to learn in partition B 
from the input they received from the adult utterances in partition A. The second 
list comprised those MERGE output sequences that did not appear as n-grams in 
the child utterances. These are items that, despite being MERGE output from the 
adult utterances from partition A, did not later go on to be learned by the child. 
The hypothesis is that the log-likelihood scores on the basis of which the sequences 
were merged ought to be higher for the first ‘learned’ group than for the second 
‘nonlearned’ group; this is because formulaic sequences with higher degrees of 
attraction are more likely candidates for acquisition by the child.

Finally, for each child, all of the sequences were grouped into numbered bins 
on the basis of log-likelihood scores – the lowest-numbered bin contained the se-
quences with the lowest scores and the highest-numbered bin the highest scores. 
Then, for each bin, the proportion of sequences that were learned by the child was 
calculated. In the eventual statistical model (discussed below), the proportions of 
sequences learned serve as the dependent variable (the variable being predicted). In 
contrast, the numbers of the bins (BIN) serve as (one of) the independent variables 
(the variable predicting). In other words, we are trying to predict the proportion 
of sequences learned by the children on the basis of the BIN, which is a proxy for 
the log-likelihood score/MERGE order.

Note that, since the ‘Thomas’ corpus is larger than that of Lara, the number of 
sequences extracted by MERGE is larger. As a result, we created many more bins 
for the ‘Thomas’ sequence scores (213 versus Lara’s 75). This is because we wanted 
there to roughly be the same number of scores in each bin across children (99 scores 
per bin for Lara and 97 scores per bin for Thomas).8 Also note that any particular 
score was placed into its bin only once; that is, if MERGE extracted two different 
sequences on the basis of the same score, this score would not be duplicated within 
the appropriate bin.

8.	 The final bins (i.e. the one corresponding to the highest log-likelihood scores), have slightly 
less than 99 and 97 items in them. Despite this, this set of bin counts and number of items per 
bin was chosen to ensure that the final bins came as close to possible to the other bins in terms 
of number of items contained.
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4.2	 Results

The proportions of sequences learned are plotted against the normalized bin num-
bers in Figure 2 for Lara (left panel) and for Thomas (right panel); bin numbers 
were normalized to a 0–1 range to make the values of the two children comparable. 
Note the consistent pattern across the two. On the right half of each plot, as one 
moves from mid-range log-likelihood scores to high log-likelihood scores, there is 
an increase in the proportion of sequences per bin that are learned by each child, 
which is precisely what we predicted. However, the plots also display something 
unexpected: Moving from the low log-likelihood scores on the left of the plots, to 
the mid-range scores, there is a decrease in the proportion of learned sequences. 
This pattern goes against intuition – why might this be?
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Figure 2.  Proportion sequences learned as a function of normalized bin rank

One possible explanation is based on the lengths of the sequences, a factor that plays 
an important role in which sequences are and are not retained. Thus, in Figure 3, 
we show average lengths of the sequences in each bin against the bin numbers. 
Strikingly, the pattern is a virtual mirror image of that depicted in Figure 2, despite 
the fact that the y-axis measures a different unit: proportion of formulas learned in 
Figure 2 and average sequence length per bin in Figure 3. In the present context, 
the pattern signifies that, for both children, the average length of very low and very 
high scoring sequences is very short; however, sequences that were merged on the 
basis of a mid-range score are, on average, considerably longer.

The isomorphy between the plots in Figure 2 and Figure 3 suggests that perhaps 
the variable which holds all the predictive power for the proportion of sequences 
learned is average length, not (normalized) log-likelihood bin. Indeed, in Figure 4, 
we show average sequence lengths against the proportion of sequences learned for 
each child, and the apparent correlation between these two suggests that, somewhat 
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unsurprisingly, average length may be strongly predictive of the dependent variable. 
This appears particularly true for higher average lengths, where all data points cor-
respond to a low proportion of sequences learned. Note, however, that for shorter 
average lengths, there are data points which correspond to both rather high and 
rather low proportions of sequences learned.

To investigate this empirically, we combined the data from the two children 
and applied a linear model to it. Proportions of sequences learned served as the 
dependent variable (PROPSrt); to avoid violations of linear model assumptions, 
we used the square root of the dependent variable (PROPS), while child (CHILD), 
normalized normalised log-likelihood bin (BIN), and average sequence length 
(AVELEN) served as predictors. CHILD was a binary variable (Lara vs. Thomas), 
while all others were numeric. We began with a maximal model in which all nu-
meric predictors were entered as a polynomial to the second degree (to allow for 
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Figure 3.  Average sequence lengths as a function of normalized bin rank
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Figure 4.  Proportion sequences learned as a function of average sequence lengths
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curvature in the effects) and in which all predictors could interact with each other; 
model selection tested for the elimination of the polynomial terms and all other 
predictors. The final model’s formula was PROPSrt ~ AVELEN * poly(BIN, 2) * 
KID (that three-way interaction was very significant: p = 0.0076) and that model 
was highly significant (F11, 276 = 93.54, p<10-15) and achieved a rather high variance 
explanation (mult. R2 = 0.7885, adj. R2 = 0.7801). All regression coefficients for the 
model are provided in the appendix, and model checking (homoscedasticity and 
normality of residuals as well as autocorrelation) raised no red flags.

In Figures 5, 6, and 7, we provide visual representations of the predicted pro-
portions from the final model. Two different perspectives are shown; let us begin 
with Figure 5 and Figure 6, which are contour plots in which the x- and y-axes 
represent the predictors AVELEN and BIN respectively, and the colours and lines 
displayed represent the predicted proportions of learned formulaic sequences for 
each combination of the two predictors; for instance, in Figure 5, the plot indicates 
that the model predicts (and remember that the amount of explained variance was 
quite high) that, when AVELEN is 3 and BIN is medium (0.5), then the proportion 
of learned formulas for Lara is about 40% (0.4).
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Figure 5.  Contour plot of the regression surface of the final model for Lara
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Figure 6.  Contour plot of the regression surface of the final model for Thomas

These regression surfaces show that, for both children, short formulas with high 
log-likelihood scores are learned well/best, and long formulas with moderate to 
high log-likelihood scores are learned badly. The main difference between the two 
children is found with low log-likelihood scores: For Lara, there is an effect such 
that formulas with low log-likelihood scores are learned intermediately well regard-
less of their length, in fact with a tiny increase for the longer formulas; that finding 
is not compatible with a long history of research findings on child acquisition and, 
thus, is somewhat counterintuitive, but it has to be noted that the effect is very 
small (about a mere 5%) and, for instance, for the BIN-values of 0, 0.1, and 0.2 the 
slope of the regression surface is statistically not different from 0 (as judged from 
the predictions’ 95%-confidence intervals). For Thomas, the results are more com-
patible with ‘received wisdom’: Across all BIN-values, longer formulas are learned 
less well than shorter ones, but this effect of AVELEN is weakest for intermediately 
high log-likelihood scores.

With the exception of the (insignificant) slope of the regression surface for low 
log-likelihood values of Lara, these results make sense and provide some first evi-
dence for higher MERGE bins being learned better even when length is controlled 
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for. However, it needs to be borne in mind that Figure 5 / Figure 6 provide predic-
tions for all possible combinations of AVELEN and BIN – nevertheless, most of 
the combinations that are mathematically possible are actually not attested in the 
data, which makes it useful to consider the predictions specifically for the ranges of 
combinations of values that are attested, which is what is represented in Figure 7. 
In each panel (one for each child), the x- and y-axes are the same as in the contour 
plots above, but now the predicted proportion is represented by an integer value 
from 0 (lowest predicted proportion) to 9 (highest predicted proportion). In other 
words, the integer values within the plots can be thought of as ‘relative elevations’ 
corresponding to the different predicted proportions of sequences learned, given 
the intersecting values of the two predictors. In addition to the number, the physical 
font size of the plotted number represents the predicted proportion as an additional 
visual clue.

2.5
0.0

0.2

0.6

0.8

0.4

1.0

3.0 3.5

1
11

2

2
222

2
2

2

22
22
2
2333

3
33

3
3

3 3 33 33
4

45
5
5555

55
5

666
788999

66
666

6
66

6

55

44
4

444

44
4

4

3

3

2

Average length

Predicted %s of learned sequences:
AVELEN:BINRANK for Lara

Bi
n 

ra
nk

 (n
or

m
al

iz
ed

 to
 0

–1
)

2.5
0.0

0.2

0.6

0.8

0.4

1.0

3.0 3.5

11
11111

11
11 11 1

1
1

11
11

1111111
11111

11

1 111
1 1

1 11
1

00

2
222222

222
222

2

2

22
222
2

2
2222 22
2

00
0000

0 0
000 0000 0 0

00000
0 00000

0
00000

00 00
000000

0

0
0

1
1111

11
11

3
3

33333
33
333333

33
3

3

4444
4555567

566
666788999 7

555555
5

4
444444

44

Average length

Predicted %s of learned sequences:
AVELEN:BINRANK for Thomas

Bi
n 

ra
nk

 (n
or

m
al

iz
ed

 to
 0

–1
)

Figure 7.  Regression surface of the final model for Lara (left panel)  
and Thomas (right panel)

This visualization of predicted values – now for those combinations of AVELEN 
and BIN that are attested – makes the trends even clearer: it is very apparent that 
there is an overall effect of AVELEN such that both children learn formulas worse 
the longer they are. For Lara, this effect is weaker, while for Thomas it is stronger. 
At the same time, one can just as clearly see that, for any observed formula length, 
the formulas with high BIN-values are learned better. Consider for instance the 
left panel for Lara, namely when AVELEN is between 2.75 and 3: in those cases, 
when BIN is low, the predicted values are represented with values ranging from 6 
to 4, but when BIN is high, the predicted values range from 9 to 6 respectively. A 
similar case can be made for Thomas, if one considers AVELEN-values between 
2.5 and 3.1: for every predicted value when BIN is low, the corresponding values 
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for when BIN is high are (sometimes considerably) higher – 6 to 1 compared to 9 
to 2. In other words, and as anticipated, when BIN (i.e. MERGE values) are higher, 
the children learn the formulaic sequences better.

4.3	 Discussion

To summarize, these children are averse to learning long sequences, regardless of 
the association strengths. Given that they are in the age range of 2–3, this is un-
surprising, since longer multiword utterances are rare in the speech of children of 
this age. However, association strength indeed has an effect for all but the longest 
average lengths: as expected, in the case of both children, higher-strength sequences 
(as registered by their BIN rank) are learned at a higher rate than lower-strength 
sequences. In the future, it would be desirable to use longitudinal corpora from 
slightly older children who produce longer, more complex utterances to determine 
whether the same effect for short n-grams observed here may be likewise observed 
for longer n-grams.

More generally, we have shown that the MERGE algorithm can indeed be meth-
odologically deployed in a theoretical application that studies formulaic language. 
Whether, in this particular application, automatically extracted formulaic sequences 
would perform better than manually annotated ones is an open question (and not 
one that we set out to address in this case study). However, we wish to point out 
that it is not clear in the first place that the formulaic sequences that children detect 
in caregiver input and in turn use to bootstrap their own language production are 
necessarily the same ones that adult annotators would identify as true formulaic 
sequences. Rather, it may be that the bottom-up approach of automatic extraction in 
general and lexical association in particular, while obviously imperfect, exhibit closer 
parallels to the frequency-based acquisition mechanisms employed by children than 
do whatever crystallized lexical knowledge that adult annotators use.

5.	 Conclusion

Formulaic language has become a major focus of research in linguistics, as scholars 
have realized how fundamental and omnipresent it is in discourse. Accordingly, 
techniques for its efficient identification in textual data are much in demand. While 
manual annotation is still considered the technique that offers the highest preci-
sion, the degree of recall it can offer is more limited given its high costs and time 
requirements (esp. once interrater reliability is also considered), which has led to 
great interest in the development of effective computational extraction algorithms. 
Many of the existing algorithms exhibit shortcomings, though, including the use of 
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statistical measures for scoring candidate sequences that are either (1) limited to bi-
grams, or (2) insensitive to high-frequency, low-contingency sequences. Moreover, 
basic approaches tend to extract many partially redundant, overlapping, and frag-
mentary sequences.

In this paper, we have presented and tested an algorithm that addresses various 
issues. Entitled MERGE (for Multi-word Expressions from the Recursive Grouping 
of Elements), the algorithm employs a recursive bigram approach, whereby it is able 
to grow formulaic sequences of any length in a bottom-up fashion, all while never 
having to calculate statistical associations for anything other than simple 2-way 
co-occurrences. As we have shown, MERGE stands up well against another extrac-
tion algorithm from the literature, the Adjusted Frequency List, when compared to 
manually annotated formulaic sequences from the British National Corpus (BNC). 
What is more, we have shown that MERGE can be successfully used to help predict 
word sequences that young children learn based on their caregiver input, lending 
support to the idea that automatic extraction algorithms are viable methodological 
tools for application in formulaic language research. But despite these successes, 
it is clear from case study 1 that MERGE still neglects to identify many formulaic 
sequences identified by the BNC annotators. Thus, further refinement of automatic 
techniques such as MERGE is still needed.

Along these lines of further refinement, MERGE allows for the identification of 
formulaic sequences that may contain one or more gaps of various sizes. However, 
in the present case studies, this ability was not exploited/tested. In the future, it 
would be desirable to investigate what benefits, if any, this built-in capacity yields. 
Does it improve the performance of the identification of continuous sequences by 
offering more paths to a particular formulaic sequence (in spite + of versus in + spite 
of + in _ of + spite)? Does it indeed result in the identification of true discontinuous 
formulaic sequences or does it not result in performance gains?

Note that paradigmatic slots within formulaic sequences (and at their edges 
for that matter) may be filled with constituents of different lengths in words (e.g., 
as small as versus as vanishingly small as). However, as it is currently implemented, 
MERGE would not treat, say, as _ as and as _ _ as as the same type, even though 
they clearly are. Again, further development of the algorithm is needed, given that 
formulaic sequences comprise not only frozen lexical items but they also allow for 
different kinds of – and varying degrees of – schematicity (see Langacker, 1987; 
Goldberg, 1995; 2006; or Bybee, 2010 for discussion of the many different lev-
els of schematicity/generality of the mental lexicon/constructicon), which in turn 
suggests that, down the road, using an association measure, or a combination of 
measures that also incorporate type frequencies or type entropies, might be useful. 
Currently, however, we submit that MERGE offers a state-of-the-art approach to 
the automatic identification of formulaic sequences.
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Appendix.  Summary statistics for the linear model on the acquisition data

Predictor b se t ptwo-tailed

Intercept   0.87926   0.18777   4.683 <0.001    
AVELEN −0.15195   0.06040 −2.516   0.012445
BIN   5.29464   1.34825   3.927 <0.001    
poly(BIN, 2)   0.26540   1.29413   0.205   0.837663
CHILD Lara → Thomas −0.08024   0.20476 −0.392   0.695463

AVELEN : BIN −1.72888   0.47150 −3.667 <0.001    
AVELEN : poly(BIN, 2)   0.14818   0.43396   0.341   0.733017
AVELEN: CHILD Lara →Thomas −0.01156   0.06589 −0.175   0.860909
BIN : CHILD Lara →Thomas −3.26269   1.54239 −2.115   0.035296
poly(BIN, 2) : CHILD Lara →Thomas   3.03135   1.48600   2.040   0.042309

AVELEN : BIN : CHILD Lara →Thomas   1.19420   0.53703   2.224   0.026976
AVELEN : poly(BIN, 2) : CHILD Lara →Thomas −1.00916   0.49722 −2.030   0.043358
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