
Chapter 5
Analyzing Dispersion

Stefan Th. Gries

Abstract This chapter provides an overview of one of the most crucial but at
the same time most underused basic statistical measures in corpus linguistics,
dispersion, i.e. the degree to which occurrences of a word are distributed throughout
a corpus evenly or unevenly/clumpily. I first survey a range of dispersion measures,
their characteristics, and how they are computed manually; also, I discuss how
different kinds of measures are related to each other in terms of their statistical
behavior. Then, I address and exemplify the kinds of purposes to which dispersion
measures are put in (i) lexicographic work and in (ii) some psycholinguistic
explorations. The chapter then discusses a variety of reasons why, and ways in
which, dispersion measures should be used more in corpus-linguistic work, in
particular to augment simple frequency information that might be misleading;
I conclude by discussing future directions in which dispersion research can go
both in terms of how the logic of dispersion measures extends from frequencies
of occurrence to co-occurrence and, potentially, even key words and in terms of
how dispersion measures can be validated in future research on cognitive and
psycholinguistic as well as applied-linguistics applications.

5.1 Introduction

Imagine a corpus linguist looking at a frequency list of the Brown corpus, a corpus
aiming to be representative of written American English of the 1960s that consists
of 500 samples, or parts, of approximately 2000 words each. Imagine further that
corpus linguist is looking at that list to identify verbs and adjectives within a certain
frequency range – maybe because he needs to (i) create stimuli for a psycholinguistic
experiment that control for word frequency, (ii) identify words from a certain
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frequency range to test learners’ vocabulary, or (iii) compile a vocabulary list for
learners, or some other application. Imagine, finally, the frequency range he is
currently interested in is between 35 and 40 words per million words and, as he
browses the frequency list for good words to use, he comes across an adjective and
a verb – enormous and staining – that he thinks he can use because they both occur
37 times in the Brown corpus (and are even equally long) so he notes them down
for later use and goes on.

This is not an uncommon scenario and yet it is extremely problematic because,
while that corpus linguist has indeed found words with the same frequency, he has
probably not even come close to do what he actually wanted to do. The frequency
range of the words he was interested in – 35-40 – or the actual frequency of the
two words discussed – 37 – may have been an operationalization for things that
might have to do with how fast people can identify the word in a psycholinguistic
experiment (as in a lexical decision task) or with how likely a learner would be to
have encountered, and thus hopefully know, a word of that kind of rarity. However,
chances are that this choice of words is highly problematic: While both words are
equally long and equally frequent in one and the same corpus, they could hardly be
more different with regard to the topic of this chapter, their dispersion, which prob-
ably makes them useless for the above-mentioned hypothetical purposes, controlled
experimentation, vocabulary testing, or vocabulary lists. This is because

• the word enormous occurs 37 times in the corpus, namely once in 35 corpus parts
and twice in 1 corpus part;

• the word staining occurs 37 times in the corpus, namely 37 times in 1 corpus
part.

In other words, given its (relatively low) frequency, enormous is pretty much
as evenly dispersed as a word with that frequency can possibly be while, given
its identical frequency, staining is as unevenly dispersed as a word with that
frequency can possibly be: enormous is characterized by even dispersion, staining
is characterized by a most uneven dispersion, clumpiness, or, to use Church and
Gale’s (1995) terms, high burstiness or bunchiness. In the following section, I will
discuss fundamental aspects of the notion of dispersion, including some of the very
few previous applications as well as a variety of dispersion measures that have been
proposed in the past.

5.2 Fundamentals

5.2.1 An Overview of Measures of Dispersion

Corpus linguistics is an inherently distributional discipline: Virtually all corpus-
linguistic studies with at least the slightest bit of a quantitative angle involve the
frequency or frequencies with which
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• an element x occurs in a corpus or in a part of a corpus representing a register or
variety or something else, . . . or

• an element x occurs in close proximity (however defined) to an element y in a
corpus (or in a part of a corpus).

Also, any kind of more advanced corpus statistic – for instance, association
measures (see Chap. 7) or key words statistics (see Chap. 6) is ultimately based
on the observation of, and computations based upon, such frequencies. However,
just like trying to summarize the distribution of any numeric variable using only
a mean can be treacherous (especially when the numeric variable is not normally
distributed), so is trying to summarize the overall ‘behavior’ (or the co-occurrence
preferences or the keyness) of a word x on the basis of just its frequency/frequencies
because, as exemplified above, words with identical frequencies can exhibit very
different distributional behaviors.

On some level, this fact has been known for a long time. Baron et al. (2009)
mention Fries & Traver’s assessment that Thorndike was the first scholar to augment
frequency statistics with range values, i.e. the numbers of corpus parts or documents
in which words were attested at least one. However, this measure of range is rather
crude: it does not take into consideration how large the corpus parts are in which
occurrences of a word are attested, nor does its computation include how many
occurrences of a word are in one corpus part – to have an effect on the range statistic,
all that counts is a single instance. Therefore, during the 1970s, a variety of measures
were developed to provide a better way to quantify the distribution of words across
corpus parts; the best-known measures include Juilland’s D (Juilland and Chang-
Rodriguez 1964, Juilland et al. 1970), Carroll’s D2 (Carroll 1970), and Rosengren’s
S (Rosengren 1971).

To discuss how these statistics and some other competing ones are computed,
I am following the expository strategy of Gries (2008), who surveyed all known
dispersion measures on the basis of a small fictitious corpus; ours here consists of
the following five parts:

b a m n i b e u p
b a s a t b e w q n
b c a g a b e s t a
b a g h a b e a a t
b a h a a b e a x a t

This ‘corpus’ has several characteristics that make it useful for the discussion of
dispersion: (i) it is small so all computations can easily be checked manually, (ii) the
sizes of the corpus parts are not identical, which is more realistic than if they were,
and (iii) multiple corpus-linguistically relevant situations are built into the data:

• the words b and e are equally frequent in each corpus part (two times and one
time per corpus part respectively), which means that their dispersion measures
should reflect those even distributions;

http://dx.doi.org/10.1007/978-3-030-46216-1_7
http://dx.doi.org/10.1007/978-3-030-46216-1_6
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• the words i, q, and x are attested in one corpus part each: i in the first corpus part
(which has 9 elements), q in the second corpus part (which has 10 elements),
and x in the third corpus part (which has 11 elements), which means these words
are extremely clumpily distributed, but slightly differently so (because the corpus
parts they are in differ in size);

• the word a, whose dispersion we will explore below and which is highlighted in
bold, is attested in each corpus part, but with different frequencies.

To compute the measures of dispersion to be discussed here, a few definitions are
in order; we will focus on the word a:

(1) l = 50 (the length of the corpus in words)
(2) n = 5 (the length of the corpus in parts)
(3) s = (0.18, 0.2, 0.2, 0.2, 0.22) (the percentages of the n corpus part sizes)
(4) f = 15 (the overall frequency of a in the corpus)
(5) v = (1, 2, 3, 4, 5) (the frequencies of a in each corpus part 1-n)
(6) p = (1/9, 2/10, 3/10, 4/10, 5/11) (the percentages a makes up of each corpus

part 1-n)

The most important dispersion measures – because of their historical value and
evaluation studies discussed below – are computed as discussed in what follows;
see Gries (2008) for a more comprehensive overview. The simplest measure is the
range, i.e. the number of corpus parts in which the element in question, here a, is
attested, which is computed as in (7):

(7) range: number of parts containing a = 5

Then, there are two traditional descriptive statistics, the standard deviation of the
frequencies of the element in question in all corpus parts (sd, see (8)). This measure
requires to take every value in v, subtract from it the mean of v (f /n, i.e. 3), square
those differences, and sum them up; then one divides that sum by the number of
corpus parts n and takes the square root of that quotient:

(8) sdpopulation:

√∑n
i=1

(
vi− f

n

)2

n
≈ 1.414 (sdsample has n-1 in the denominator)

A maybe more useful variant of this measure is its ‘normalized version, the
variation coefficient (vc, see (9)); the normalization consists of dividing sdpopulation

by the mean frequency of the element in the corpus parts f /n:

(9) vcpopulation:
sdpopulation(v)

mean(v)
≈ 0.471 (vcsample would use sdsample)

The version of Juilland’s D that can handle differently large corpus parts is then
computed as shown in (10). In order to accommodate the different sizes of the
corpus parts, however, the variation coefficient is not computed using the observed
frequencies v1-n (i.e. 1, 2, 3, 4, 5 in files 1 to 5 respectively, see (5) above) but using
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the percentages in p1-n (i.e. how much of each corpus part is made up by the element
in question, i.e. 1/9, 2/10, 3/10, 4/10, 5/11, see (6) above), which is what corrects for
differently large corpus parts:

(10) Juilland’s D: 1 − sdpopulation(p)

mean(p)
× 1√

(n−1)
≈ 0.785

Carroll’s D2 is essentially a normalized version of entropy of the proportions of
the element in each corpus part, as shown in (11) (see also Gries 2013: Sect. 3.1.3.1
for general applications of this measure). The numerator computes the entropy of
the percentages in p1-n while dividing it by log2 n amounts to normalizing it against
the maximally possible entropy given the number of corpus parts n.

(11) Carroll’s D2:
−∑n

i=1

(
pi∑

p
×log2

pi∑
p

)
log2n

≈ 0.938

The version of Rosengren’s S that can handle differently large corpus parts is
shown in (12). Each corpus part size’s in percent (in s) is multiplied with the
frequencies of the element in question in each corpus part (in v1-n); of each product,
one takes the square root, and those are summed up, that sum is squared, and divided
by the overall frequency of the element in question in the corpus (f ):

(12) Rosengren’s (1971) Sadj:
(∑n

i=1
√

si · vi

)2 × 1
f

≈ 0.95 (with min S=1n)

Finally, Gries (2008, 2010) and the follow-up by Lijffijt and Gries (2012)
proposed a measure called DP (for deviation of proportions), which falls between
1-min s (for an extremely even distribution) and 1 (for an extremely clumpy
distribution) as well as a normalized version of DP, DPnorm, which falls between 0
and 1, which are computed as shown in (13). For DP, one computes the differences
between how much of the element in question is in each corpus file in percent on the
one hand and the sizes of the corpus parts in percent on the other – i.e. the differences
between observed and expected percentages. Then, one adds up the absolute values
of those and multiplies by 0.5; the normalization then consists of dividing this values
by the theoretically maximum value of DP given the number of corpus parts (in a
way reminiscent of (11)1:

(13) DP: 0.5 × ∑n
i=1

∣∣∣ vi

f
− si

∣∣∣ = 0.18 and DPnorm: DP
1−mins

≈ 0.22

The final measure to be discussed here is one that, as far as I can tell, has never
been proposed as a measure of dispersion, but seems to me to be ideally suited to be
one, namely the Kullback-Leibler (or KL-) divergence, a non-symmetric measure
that quantifies how different one probability distribution (e.g., the distribution of
all the occurrences of a across all corpus parts, i.e. v/f ) is from another (e.g., the

1As pointed out by Burch et al. (2017), DPnorm is equivalent to a measure called ADA (for average
deviation analog) proposed by Wilcox (1973).
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Table 5.1 Dispersion measures for several ‘words’ in the above ‘corpus’

b i q x

Range 5 1 1 1
Sd/vc 0/0 0.4/2 0.4/2 0.4/2
Juilland’s D 0.968 0 0 0
Carroll’s D2 0.999 0 0 0
Rosengren’s S 0.999 0.18 0.2 0.22
DP/DPnorm 0.02/0.024 0.82/1 0.8/0.976 0.78/0.951
KL-divergence 0.003 2.474 2.322 2.184

corpus part sizes s); the KL-divergence is computed as shown in (14) (with log2s of
0 defined as 0):

(14) KL-divergence:
∑n

i=1
vi

f
× log2

(
vi

f
× 1

si

)
≈ 0.137 with log20 : = 0

Table 5.1 shows the corresponding results for several elements in the above
‘corpus’. The results show that, for instance, b is really distributed extremely evenly
(since it occurs twice in each file and all files are nearly equally large). Note in
particular how the values of Rosengren’s S, DP, and the KL-divergence for i, q, and
x differ: all three occur only once in the corpus, only in one corpus part, but what
differs is the size of the corpus part, and the larger the corpus part in which the single
instance of i, q, or x is attested, the more even/expected that distribution is.

In sum, corpus linguists have proposed quite a few different measures of
dispersion, most of which are generally correlated with each other, but that also react
differently to the kinds of distributions one finds in corpus data, specifically,

• the (potentially large) number of corpus parts in which an element is not attested;
• the (potentially large) number of corpus parts in which an element is attested

much less often than the mean;
• the range of distributions a corpus linguist would consider to be different but that

would yield the same dispersion measure(s);
• the number of different corpus parts a corpus linguist would assume and their

(even or uneven sizes).2

2Some dispersion measures do not require a division of the corpus into parts and/or also involve
the differences between successive mentions in a corpus parts. These are theoretically interesting
alternatives, but there seems to be virtually no research on them; see Gries (2008, 2010) for some
review and discussion as well as the Further reading section for a brief presentation of one such
study, Savický & Hlaváčová (2002).
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5.2.2 Areas of Application and Validation

There are at least a few areas where dispersion information is now considered at
least occasionally, though much too infrequently. The area of research/application
where dispersion has gained most ground is that of corpus-based dictionaries and
vocabulary lists. Leech et al. (2001) discuss dispersion information of words in
the British National Corpus (BNC) and remark that, as in the enormous/staining
example above, for instance, the words HIV, lively, and keeper are approximately
equally frequent in the corpus, but are very differently dispersed in the corpus
and proceed to use Juilland’s D as their measure of choice. Similarly, Davies
and Gardner (2010) and Gardner and Davies (2014) also use Juilland’s D in their
frequency dictionary and academic vocabulary list, as does Paquot (2010) for her
academic keyword list.

It is worth pointing out in this connection that, especially in this domain of
dictionaries/vocabulary lists, researchers have often also computed what is called
an adjusted frequency, i.e. a frequency that is adjusted downwards depending
on the clumpiness/unevenness of the distribution. In the mathematically simplest
case, the adjusted frequency is the observed frequency of the word in the corpus
times the dispersion value; for instance, Juilland’s usage coefficient U is just that:
the frequency of the word in the corpus f times Juilland’s D, a measure that,
for instance, Davies and Gardner (2010) use. In the above case for the word a,
U = 15 × 0.785 = 11.777 whereas for q, U = 1 × 0 = 0; similar adjusted
frequencies exist for Carroll’s D2 (the so-called Carroll’s Um) and Rosengren’s S
(the so-called Rosengren’s AF).

Another area where dispersion information has at least occasionally been
recognized as important is psycholinguistics, in particular the domain of lexical
decision tasks. Consider, for instance, Schmid’s (2010:115) concise summary:
“frequency is one major determinant of the ease and speed of lexical access
and retrieval, alongside recency of mention in discourse.” And yes, for many
decades now, (logged) frequency of occurrence has been known to correlate with
reaction times to word/non-word stimuli. However, compared to frequency, the
other major determinant, recency, has been considered much less in cognitive and
psycholinguistic work. This is somewhat unexpected because there are general
arguments that support the importance of dispersion as a cognitively relevant notion,
as the following quote demonstrates:

Given a certain number of exposures to a stimulus, or a certain amount of training, learning
is always better when exposures or training trials are distributed over several sessions than
when they are massed into one session. This finding is extremely robust in many domains
of human cognition. (Ambridge et al. 2006:175)

Ambridge et al. do not mention dispersion directly, but what would be its direct
corpus-linguistic operationalization. Similarly, Adelman et al. (2006:814) make the
valid point that “the extent to which the number of repeated exposures to a particular
item affects that item’s later retrieval depends on the separation of the exposures in
time and context,” and of course the corpus-linguistic equivalent to this “separation
of the exposures in time and context” is dispersion.
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More empirically, there are some studies providing supporting evidence for the
role of dispersion when it comes to lexical decision tasks. One such study is in fact
Adelman et al. (2006), who study dispersion. Their study has a variety of general
problems:

• they only use the crudest measure of dispersion possible (range) and do not relate
to previous more psychological/psycholinguistic work that also studied the role
of range (such as Ellis 2002a, b);

• they do not establish any relation to the notion of dispersion in corpus linguistics
and, somewhat worse even, refer to range with the misleading label contextual
diversity, when in fact the use of a word in different corpus parts by no means
implies that the actual contexts of the word are different: No matter in how many
different corpus parts hermetically is used, it will probably nearly always be
followed by sealed.

Nonetheless, they do show that dispersion is a better and more unique predictor
of word naming and lexical decision times than token frequency and they, like Ellis
(2011), draw an explicit connection to Anderson’s rational analysis of memory.
More evidence for the importance of dispersion is offered by Baayen (2010), who
includes range in the BNC as a predictor in a multifactorial model that ultimately
suggests that the effect of frequency when considered a mere repetition-counter as
opposed to some other cognitive mechanism is in fact epiphenomenal and can partly
be explained by dispersion, and Gries (2010), who shows that lexical decision times
from Baayen (2008) are most highly correlated with vc and DP/DPnorm (see Box 2
for details).

In spite of all the effort that has apparently gone into developing measures of
dispersion and in spite of uneven dispersion posing a serious threat to the validity of
virtually all corpus-based statistics, it is probably fair to say that dispersion is still
far from being routinely included in both (more) theoretical research and (more)
practical applications. One early attempt to study the behavior of these different
measures is Lyne (1985), who compared D, D2, and S to each other using 30 words
from the French Business Correspondence Corpus, which for that application was
divided into 5 equally large parts; on the basis of testing all possible ways in which
10 words can be distributed over 5 corpus parts, Lyne concludes that Juilland’s
D performs best; see also Lyne (1986), but there is little research that includes
dispersion on a par with frequency or other corpus statistics and even less work
that attempts to elucidate which measures are best (for what purpose); two studies
that begin to work on this important issue are summarily discussed below.
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Representative Study 1

Biber D., Reppen, R., Schnur, E., and Ghanem, R. 2016. On the
(non)utility of Juilland’s D to measure lexical dispersion in large
corpora. International Journal of Corpus Linguistics 21(4): 439–464.

Starting out from observations in Gries (2008), Biber et al. (2016) is one of
the most comprehensive tests, if not the most comprehensive one, of how the
perceived default of Juilland’s D behaves in particular with contemporary cor-
pora that are large and have many different corpus parts, i.e. high values of n.

They begin by discussing the mathematical characteristics of Juilland’s D,
in particular the fact that the formula shown above in (10) increases “degrees
of uniformity” (i.e. evenness of distribution/dispersion across corpus parts)
“as the number of corpus parts is increased” (Biber et al. 2016:443); thus,
the larger the corpora one considers, the more likely one uses a relatively
large number of corpus parts (for reasons of statistical sampling), and the
more Juilland’s D is reduced, which “inflat[es] the estimate of uniformity,
and overall, greatly reduc[es] the effective range of values for D” (p. 444).

Biber et al. then proceed with two case studies. The first one explores
D-values of a set of words in the British National Corpus, which, for the
purpose of testing what effect the numbers of corpus parts n one assumes,
was divided into n = 10, 1000, and 1000 equal-sized parts; crucially, the
words explored were words for which theoretical considerations would lead
an analysis to expect fairly different D-values, contrasting words such as at,
all, or time (which should be distributed fairly evenly) with words such as
erm, ah, and urgh (which, given their preponderance in spoken data, should
be distributed fairly unevenly). Specifically, they analyzed 153 words in 10
categories emerging from crossing (i) several different word frequency bands
and (ii) expected distribution (uniform, writing-skewed, and speech-skewed).

In this first case study, they find the expected high D-values for higher-
frequency words that would be uniformly-distributed or skewed towards
writing (i.e. the 90% majority of the BNC) regardless of n. However, they
also discover that the D-values for lower-frequency writing-skewed words
are quite sensitive to variations of n. Their concern that these results are not
due to the larger sampling sizes reflecting the dispersions more accurately is
supported by what they find for the speech-skewed words, namely “extremely
large discrepancies even for the most frequent speech-skewed words” (p.
450). More precisely, D-values for high-frequency speech-skewed words can
vary between very high (e.g. 0.885 for yeah with n = 1000) and very low (e.g.

(continued)
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0.286 for yeah with n = 10). Even more worryingly, “[t]hese discrepancies
become even more dramatic as [they] consider moderate and lower-frequency
words” (p. 452), with differences in D-values frequently exceeding 0.5 just
because of varying n, which on a scale from 0 to 1 of course corresponds
to what seems to be an unduly large effect. Their main conclusion of the
first case study is that “D values based on 1,000 corpus parts completely fail
to discriminate among words with uniform versus skewed distributions in
naturalistic data” (p. 454).

In their second case study, Biber et al. created different data sets with,
therefore, known distributions of target words across different numbers of
corpus parts, but the bottom line of this more controlled case study is in fact
the same as that of the first. Their maybe most extreme, and thus worrying,
result is that

the exact same distribution of a target word – a uniform distribution across 10% of
a corpus – can result in a D value of 0.0 when the computation is based on a corpus
split into 10 parts, versus a D value of 0.905 when the computation is based on a
corpus split into 1000 parts. (p. 457)

As a more useful alternative, they propose to use Gries’s (2008) DP. They
recommend DP because it is conceptually simple, can easily handle unequally
large corpus parts, and “it seems to be a much more reliable estimate of
dispersion (and uniformity) in large corpora divided into many corpus parts”
(p. 459). In a direct comparison with Juilland’s D, they show that DP not only
returns values from a more useful wider range of values when given a diverse
set of differently dispersed words, but it also reacts differently to larger
numbers of n: (1-DP) values are consistently lower for corpus divisions into
many parts, which Biber et al. interpret as being desirably compatible with the
expected benefits of the finer-grained sampling that comes with increasing n:

Theoretically, we would expect more conservative estimates of dispersion based on
a large number of corpus parts. For example, it is more likely that a word will occur
in 6 out of 10 corpus parts than for that same word to occur in 600 out of 1000
corpus parts. The values for 1-DP seem to reflect this fact, resulting in consistently
lower values when computations are based on a large number of corpus parts. In
summary, DP is clearly more effective than D at discriminating between uniform
versus skewed distributions in a corpus, especially when it is computed based on a
large number of corpus-parts. (Biber et al. 2016:460)

Biber et al. conclude with a plea for more validation and triangulation
when it comes to developing corpus-linguistic statistics and/or more general
methods.



5 Analyzing Dispersion 109

Representative Study 2

Gries, S.T. 2010. Dispersions and adjusted frequencies in corpora: fur-
ther explorations. In Corpus linguistic applications: current studies,
new directions, eds. Gries S.T., Wulff S., and Davies, M., 197–212.
Rodopi, Amsterdam.

The second representative study to be discussed here is concerned with
dispersion and its role in psycholinguistic contexts. Gries (2010) is an attempt
to provide at least a first glimpse at how different dispersion measures
are behaving statistically and predictively when studied in conjunction with
psycholinguistic (reaction time) data. To that end, he conducted two kinds
of case studies: First, he explored the degree to which the many existing
measures capture similar kinds of dispersion information by exploring their
intercorrelations; second, he computed the correlations between raw fre-
quency, all dispersion measures, and all adjusted frequencies on the one hand
and experimentally-obtained reaction time data from lexical decision tasks in
psycholinguistics; in what follows, I briefly discuss these two case studies.

As for the first case study, he extracted all word types from the spoken com-
ponent of the BNC that occur 10 or more times – there are approx. 17,500 such
types – and computed all 29 dispersion measures and adjusted frequencies
cataloged in the most recent overview article of Gries (2008). All measures
were z-standardized (to make their different scales more comparable) and then
used as input to both hierarchical agglomerative cluster analyses (see Chap.
18) and principal component analyses (see Chap. 19) separately for dispersion
measures and adjusted frequencies. For the former, he used 1-Pearson’s r (see
Chap. 17) as a similarity measures and Ward’s method as an amalgamation
rule.

The results from both analyses revealed several relatively clear groupings
of measures. For instance, the following clusters/components were well
established in both the cluster and the principal components analysis:

• Rosengren’s S, range, and a measure called Distributional Consistency
(Zhang et al. 2004);

• Juilland’s D, Carroll’s D2, and a measure called D3 based on chi-squared
(Lyne 1985); and, more heterogeneously,

• DP, DPnorm, vc, and idf (inverse document frequency, see Spärck Jones
1972 and Robertson 2004);

• frequency, the maxmin measure (the difference between max(v1-n) and
min(v1-n)), and sd.

In fact, the principal components analysis revealed that just two principal
components capture more than 75% of the variance in the 16 dispersion

(continued)
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measures explored: many measures behave quite similarly and fall into
several smaller groups. Nevertheless, the results also show that the groups
of measures also sometimes behave quite dissimilarly: “different measures of
dispersion will yield very different (ranges of) values when applied to actual
data” (Gries 2010:204, his emphasis).

With regard to the adjusted frequencies, the results are less diverse and,
thus, more reassuring. All measures but one behave relatively similarly, which
is mostly interesting because it suggests that (i) the differences between the
adjusted frequencies are less likely to yield very different results, but also that
(ii) the computationally very intensive distance-based measures that have been
proposed (see in particular Savický and Hlaváčová 2002 as well as Washtell
2007) do not appear to lead to fundamentally different results; given that these
measures computing time can be 10 times as long or much much longer for
large corpora, this suggests that the simpler-to-compute ‘classics’ might do
the job well enough.

The second case study in this paper involves correlating dispersion mea-
sures and adjusted frequencies with response time latencies from several
psycholinguistic studies, specifically with (i) data from young and old speak-
ers from Spieler and Balota (1997) and Balota and Spieler (1998), and (ii)
data from Baayen (2008). All dispersion measures and adjusted frequencies
were centered and then correlated with these reactions times (using Kendall’s
τ , see Chap. 17). For the Balota/Spieler data, the results indicate that some
measures score best (including, for instance, AF, U, and DP), but that most
measures’ correlations with the reaction times are very similar. However, for
the reaction times of Baayen (2008), a very different picture emerges: While
DP scores very well, only surpassed by vc, there is a distinct cline such that
some measures really exhibit only very low and/or insignificant correlations
with the psycholinguistic comparison data.

Gries concludes with some recommendations: Many dispersion measures
are relatively similar, but if one is uncertain what measure to trust, it would
be useful to compute measures that his cluster/principal component analyses
considered relatively different to get a better picture of the diversity in the
data; at present and until more data have been studied, it seems as if the
computationally more demanding measures may not be worth the effort.
Trivially, more analyses (than Lyne’s really small study) are needed, in
particular of larger data sets and, along the lines of what Biber et al. (2016)
did, of data sets with known distributional characteristics.

http://dx.doi.org/10.1007/978-3-030-46216-1_17
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5.3 Critical Assessment and Future Directions

The previous sections already touched upon some recommendations for future work.
It has hopefully become clear that dispersion is as important an issue as it is still
neglected or even completely ignored. While every corpus linguist with only the
slightest bit of statistical knowledge knows to never present a mean or median
without a measure of dispersion, the exact same advice is hardly ever heeded
when it comes to frequencies and dispersions in corpus data: There are really only
very few studies that report frequency data and dispersion or, just as importantly,
report frequencies and association measures and dispersion, although Gries (2008)
has shown that the computation of association measures is just as much at risk
as frequencies when dispersion information is not also considered. Thus, the first
desideratum is that more research takes the threat of underdispersion/clumpiness
much more seriously; strictly speaking, reviewers should always request dispersion
information so that readers can more reliably infer what reported frequencies or
association measures really represent or whether they represent what they purport
to represent.

Second, we need more studies of the type discussed in the representative studies
boxes so that we better understand the different measures’ behavior in actual but
also controlled/designed data. One issue, for instance, has to do with how corpora
are divided into how many parts and how this affects dispersion measures (see for
example Biber et al.’s 2016 discussion of the role of the denominator in Juilland’s
D, which features the number of corpus parts). Another is how dispersion measures
relate to issues outside of corpus linguistics such as, again, psycholinguistically-
or cognitively-informed approaches. This is particularly relevant for measures
that are advertised as having certain characteristics. To discuss just one example,
Kromer (2003:179) promotes his adjusted frequency measure by pointing to its
interdisciplinary/psycholinguistic utility/validity:

From our point of view, all usage measures considered above have one common disadvan-
tage: their introduction and application are not based psycholinguistically. A usage measure,
free from the disadvantage mentioned, is offered below.

However, the advantage is just asserted, not demonstrated, and in Gries (2010)
at least, the only study I am aware of testing Kromer’s measure, his measure scored
worse than most others when explicitly compared to psycholinguistic reference data.
While that does of course not mean Kromer’s measures has been debunked, it shows
what is needed: more and explicit validation.

That being said, a certain frequent trend in corpus linguistic research should be
resisted and this is best explained with a very short excursus on association measures
(see Chap. 7), where the issue at hand has been recognized earlier than it has in the
little existing dispersion research. For several decades now, corpus linguists have
discussed dozens of association measures that are used to rank-order, for instance,
collocations by the attraction of their constituent words. Some of these measures
are effect sizes in the sense that they do not change if the co-occurrence tables from
which they are computed are increased by some factor (e.g., the odds ratio), others
are based on significance tests, which means they conflate both sample size/actual

http://dx.doi.org/10.1007/978-3-030-46216-1_7
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Fig. 5.1 The correlation of frequency and DP of words in the spoken BNC

observed frequencies and effect size (e.g., the probably most widely-used measure,
the log-likelihood ratio).

This is relevant in the present context of dispersion measures because we are
now facing a similar issue in dispersion research, namely when researchers and
lexicographers also take two dimensions of information – frequency and the effect
size of dispersion – and conflate them into one value such as an adjusted frequency
(e.g., by multiplication, see above Juilland’s U). To say it quite bluntly, this is a
mistake because, frequency and dispersion are two different pieces of information,
which means conflating them into a single measure loses a lot of information. This
is true even though frequency and dispersion are correlated, as is shown in Fig. 5.1
and Fig. 5.2. Both have word frequency on the x-axis (logged to the base of 10) and a
dispersion measure (DP in Fig. 5.1, range in Fig. 5.2) on the y-axis, and have words
represented by grey points. Also, in both plots, the words have been divided into 10
frequency bins, for each of which a blue whisker and the numbers above and below
it represent the range of the dispersion values in that frequency bin. For example,
in Fig. 5.1, the 6th frequency bin from the left includes words with frequencies
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Fig. 5.2 The correlation of frequency and range of words in the spoken BNC

between 2036 and 5838 and DP values between 0.23 and 0.86, i.e. a DP-range of
0.63 also noted in blue at the bottom of the scatterplot.

Obviously, there are the expected correlations between frequency and dispersion
(R2 = 0.832 for logged frequency and DP), but just as obviously, especially
in the middle range of frequencies – ‘normal content words’ with frequencies
between 1000 and 10,000 – words can have extremely similar frequencies but still
extremely different dispersions. This means several things: First, even though there
is the above-mentioned overall correlation between frequency and dispersion, this
correlation can be very much weakened in certain frequency bins. For example, in
the 6th frequency bin, R2 for the correlation between frequency and dispersion is
merely 0.086.

Second, a relatively ‘specialized’ word like council is in the same (6th) frequency
bin (freq = 4386, DP = 0.72, range = 292 out of 905) as intuitively more
‘common/widespread’ words like nothing, try, and whether (freqs = 4159, 4199,
4490; DPs = 0.28, 0.28, 0.32; ranges = 652, 664, 671 out of 905); in both plots,
the positions of council and nothing are indicated with the c and the n respectively
plotted into the graph.
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Also, even just in the sixth frequency band, the extreme range values that
are observed are 85/905 = 9.4% vs. 733/905 = 81% of the corpus files, i.e. huge
differences between words that in a less careful study that ignores dispersion would
simply be considered ‘similar in frequency’.

Finally, these graphs also show that forcing frequency and dispersion into one
value, e.g. an adjusted frequency, would lose a huge amount of information. This
is obvious from the visual scatter in both plots, but also just from simple math: If
a researcher reports an adjusted frequency of 35 for a word, one does not know
whether that word occurs 35 perfectly evenly distributed times in the corpus (i.e.,
frequency = 35 and, say, Juilland’s D = 1) or whether it occurs 350 very unevenly
distributed times in the corpus (i.e., frequency = 350 and, say, Juilland’s D = 0.1).
And while this example is of course hypothetical, it is not as unrealistic as one
might think. For instance, the products of observed frequency and 1-DP for the two
words pull and chairman in the spoken BNC are very similar – 375 and 368.41
respectively – but they result from very different frequencies and DP-values: 750
and 0.5 for pull but 1939 and 0.81 for chairman. Not only is it the dispersion value,
not the frequency one, that reflects our intuition (that pull is more basic/widely-used
than chairman) much better, but this also shows that we would probably not want to
treat those two cases as ‘the same’ as we would if we simply computed and reported
some conflated adjusted frequency. Thus, keeping frequency and dispersion separate
allows researchers to preserve important information and it is therefore important
that we do not give in to the temptation of ‘a single rank-ordering scale’ and simplify
beyond necessity/merit – what is needed is more awareness and sophistication of
how words are distributed in corpora, not blunting our research tools.

In all fairness, even if one decides to keep the two dimensions separate, as one
definitely should, there still is an additional unresolved question, namely what kind
of threshold value(s) to choose for (frequency and) dispersion. It is unfortunately
not clear, for instance, what dispersion threshold to adopt to classify a word as
‘evenly dispersed enough for it to be included in a dictionary’: DP = 0.4/D = 0.8?
DP = 0.45/D = 0.85? In the absence of more rigorous comparisons of dispersion
measures to other kinds of reference data, at this point any cut-off point is arbitrary
(see Oakes and Farrow 2007:92 for an explicit admission of this fact). Future
research will hopefully both explore which dispersion measures are best suited
for which purpose and how their relation to frequency is best captured. In order
to facilitate this necessary line of research, an R function computing dispersion
measures and adjusted frequencies is provided at the companion website of this
chapter, see Sect. 5.4; hopefully, this will inspire more research on this fundamental
distributional feature of linguistic elements and its impact on other corpus statistics
such as association measures, key (key) words, and others.
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5.4 Tools and Resources

Dispersion is a corpus statistic that has not been implemented widely into existing
corpus tools and arguably it is in fact a statistic that, unlike others, is less obvious
to implement, which is why all implementations of dispersion in such general-
purpose tools probably leave something to be desired. This is for two main reasons.
First, most tools offer only a very small number of measures, if any, and no ways
to implement new ones or tweak existing ones. Second, most existing dispersion
measures require a division of the corpus into parts and the decision of how to do this
is not trivial. While ready-made corpus tools such as WordSmith Tools or AntConc
might assume for the user that the corpus parts to be used are the n (a user-defined
number) equally-sized parts a corpus can be divided into or the separate files of the
corpus, this may actually not be what is required for a certain study if, for instance,
sub-divisions in files are to be considered as well (as might be useful for some files
in the BNC) or when groupings of files into (sub-)registers are what is of interest.

To mention a few concrete examples, WordSmith Tools offers a dispersion plot
as well as range and Juilland’s D-values (without explicitly stating that that is in
fact the statistic that is provided) while AntConc offers a version of a dispersion
plot separately for each file of a corpus, which is often not what one needs.
The COCA-associated website https://www.wordfrequency.info/ (accessed 22 May
2019) provides data that went into Davies and Gardner (2010), which means they
provide Juilland’s D for the corpus when split up into 100 equally-sized parts. As is
obvious, the range of features is extremely limited and virtually non-customizable.

By far the best – in the sense of most versatile and powerful – approach
to exploring issues of dispersion is with programming languages such as R or
Python (see Chap. 9), because then the user is not dependent on measures and
settings enshrined in ready-made software but can customize an analysis in exactly
the way that is needed, develop their own methods, and/or run such analysis on
data/annotation formats that none of the above tools can handle. This chapter comes
with some companion code for readers to explore as well as an R function to
compute a large number of dispersion measures for data provided by a user. This
function is an update of the function provided in Gries (2008), which adds the KL-
divergence as a dispersion measure, updates the computation of some measures,
cleans up the code, and drastically speeds up all computations; see the companion
website for how to use it.

Further Reading

Burch, B., Egbert, J., and Biber, D. 2017. Measuring and interpreting lexical
dispersion in corpus linguistics. Journal of Research Design and Statistics in
Linguistics and Communication Science 3(2):189–216.

Burch et al. (2017) is a study that introduces another dispersion measure DA (or
MDA in Wilcox’s 1973 terminology) and compares it to the historically most

https://www.wordfrequency.info/
http://dx.doi.org/10.1007/978-3-030-46216-1_9
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widely-used dispersion measure of Juilland’s D and to the recently-proposed
measure of Gries’s DP. They define DA and test its performance by, for instance, a
simulation study of three different scenarios by creating randomly sampled corpora
and comparing the three different dispersion statistics. Also, they correlate the
dispersion statistics for 150 words taken from the British National Corpus using
scatterplots and pairwise differences of dispersion statistics. It is worth pointing
out, as the authors also do, that (i) this study is based on the overall probably less
realistic scenario that all corpus parts are equally large, which is not that likely when
corpus parts are considered to be files (e.g., in the BNC) or (sub-)registers (e.g. in
the ICE-GB) and that (ii) computing DA can take literally thousands more time
than D or DP even though its non-linear correlation R2 with DP exceeds 0.99. That
being said, their study is nonetheless a good example of exactly the kind of study we
need more of to further our understanding of (i) how different dispersion measures
react to corpus-linguistic data and (ii) how they react to certain kinds of potentially
extreme input data.

Savický, P., and Hlaváčová, J. 2002. Measures of word commonness. Journal of
Quantitative Linguistics 9(3):15–31.

Savický and Hlaváčová (2002) is another interesting reading. Their study starts out
from the question of how to identify “common” words to be included in a universal
dictionary. However, they propose to approach dispersion in ways that do not require
a division of a corpus in parts – rather, the corpus is treated as a single sequence or
vector of words and then dispersion is used to compute corrected frequencies that are
close to the actual observed frequencies when a word is very evenly distributed and
(much) small when it is not. They propose three different corrected frequencies –
one based on Average Reduced Frequency (fARF), one based on Average Waiting
Time (fAWT ), and one based on Average Logarithmic Distance (fALD) – and proceed
to apply them to data from the Czech National Corpus to test the measures’ stability
(how much do they vary when applied to different parts of the overall corpus?)
and to exemplify the kinds of words that the measures return as highly unevenly
distributed. While these dispersion measures can take much longer to compute
than the parts-based measures reported on above and adjusted frequencies are
problematic for the reasons discussed above, this paper is nonetheless noteworthy
and interesting for the novel, non-parts-based approach to dispersion.

References

Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual diversity, not word frequency,
determines word-naming and lexical decision times. Psychological Science, 19(9), 814–823.

Ambridge, B., Theakston, A. L., Lieven, E. V. M., & Tomasello, M. (2006). The distributed
learning effect for children’s acquisition of an abstract syntactic construction. Cognitive
Development, 21(2), 174–193.

Baayen, R. H. (2008). Analyzing linguistic data: A practical introduction to R. Cambridge:
Cambridge University Press.



5 Analyzing Dispersion 117

Baayen, R. H. (2010). Demythologizing the word frequency effect: A discriminative learning
perspective. The Mental Lexicon, 5(3), 436–461.

Balota, D. A., & Spieler, D. H. (1998). The utility of item level analyses in model evaluation: A
response to Seidenberg and Plaut. Psychological Science, 9(3), 238–240.

Baron, A., Rayson, P., & Archer, D. (2009). Word frequency and keyword statistics in historical
corpus linguistics. Anglistik: International Journal of English Studies, 20(1), 41–67.

Biber, D., Reppen, R., Schnur, E., & Ghanem, R. (2016). On the (non)utility of Juilland’s D to
measure lexical dispersion in large corpora. International Journal of Corpus Linguistics, 21(4),
439–464.

Burch, B., Egbert, J., & Biber, D. (2017). Measuring and interpreting lexical dispersion in corpus
linguistics. Journal of Research Design and Statistics in Linguistics and Communication
Science, 3(2), 189–216.

Carroll, J. B. (1970). An alternative to Juilland’s usage coefficient for lexical frequencies and
a proposal for a standard frequency index. Computer Studies in the Humanities and Verbal
Behaviour, 3(2), 61–65.

Church, K. W., & Gale, W. A. (1995). Poisson mixtures. Journal of Natural Language Engineering,
1(2), 163–190.

Davies, M., & Gardner, D. (2010). A frequency dictionary of contemporary American English:
Word sketches, collocates and thematic lists. London/New York: Routledge, Taylor and Francis.

Ellis, N. C. (2002a). Frequency effects in language processing and acquisition: A review with
implications for theories of implicit and explicit language acquisition. Studies in Second
Language Acquisition, 24(2), 143–188.

Ellis, N. C. (2002b). Reflections on frequency effects in language acquisition: A response to
commentaries. Studies in Second Language Acquisition, 24(2), 297–339.

Ellis, N. C. (2011). Language acquisition as rational contingency learning. Applied Linguistics,
27(1), 1–24.

Gardner, D., & Davies, M. (2014). A new academic vocabulary list. Applied Linguistics, 35(3),
305–327.

Gries, S. T. (2008). Dispersions and adjusted frequencies in corpora. International Journal of
Corpus Linguistics, 13(4), 403–437.

Gries, S. T. (2010). Dispersions and adjusted frequencies in corpora: Further explorations. In S.
T. Gries, S. Wulff, & M. Davies (Eds.), Corpus linguistic applications: Current studies, new
directions (pp. 197–212). Amsterdam: Rodopi.

Gries, S. T. (2013). Statistics for linguistics with R (2nd rev. and ext. ed, 359). Berlin/Boston: De
Gruyter Mouton.

Juilland, A. G., & Chang-Rodriguez, E. (1964). Frequency dictionary of Spanish words. The
Hague: Mouton de Gruyter.

Juilland, A. G., Brodin, D. R., & Davidovitch, C. (1970). Frequency dictionary of French words.
The Hague: Mouton de Gruyter.

Kromer, V. (2003). An usage measure based on psychophysical relations. Journal of Quantitative
Linguistics, 10(2), 177–186.

Leech, G. N., Rayson, P., & Wilson, A. (2001). Word frequencies in written and spoken English:
Based on the British National Corpus. London: Longman.

Lijffijt, J., & Gries, S. T. (2012). Correction to “Dispersions and adjusted frequencies in corpora”.
International Journal of Corpus Linguistics, 17(1), 147–149.

Lyne, A. A. (1985). Dispersion. In The vocabulary of French business correspondence (pp. 101–
124). Geneva/Paris: Slatkine-Champion.

Lyne, A. A. (1986). In praise of Juilland’s D. In Méthodes quantitatives et informatiques dans
l’Études des textes, vol. 2 (pp. 589–595). Geneva/Paris: Slatkine-Champion.

Oakes, M., & Farrow, M. (2007). Use of the chi-squared test to examine vocabulary differences
in English language corpora representing seven different countries. Literary and Linguistic
Computing, 22(1), 85–99.

Paquot, M. (2010). Academic vocabulary in learner writing: From extraction to analysis.
London/New York: Continuum.



118 S. Th. Gries

Robertson, S. (2004). Understanding inverse document frequency: On theoretical arguments of
IDF. Journal of Documentation, 60(5), 503–520.

Rosengren, I. (1971). The quantitative concept of language and its relation to the structure of
frequency dictionaries. Études de linguistique appliquée (Nouvelle Série), 1, 103–127.

Savický, P., & Hlaváčová, J. (2002). Measures of word commonness. Journal of Quantitative
Linguistics, 9(3), 15–31.

Schmid, H. J. (2010). Entrenchment, salience, and basic levels. In D. Geeraerts & H. Cuyckens
(Eds.), The Oxford handbook of cognitive linguistics (pp. 117–138). Oxford: Oxford University
Press.

Spärck Jones, K. (1972). A statistical interpretation of term specificity and its application in
information retrieval. Journal of Documentation, 28(1), 11–21.

Spieler, D. H., & Balota, D. A. (1997). Bringing computational models of word naming down to
the item level. Psychological Science, 8(6), 411–416.

Washtell, J. (2007). Co-dispersion by nearest-neighbour: Adapting a spatial statistic for the
development of domain-independent language tools and metrics. Unpublished, M.Sc. thesis,
School of Computing, Leeds University.

Wilcox, A. R. (1973). Indices of qualitative variation and political measurement. The Western
Political Quarterly, 26(2), 325–343.

Zhang, H., Huang, C., & Yu, S. (2004). Distributional consistency: As a general method for de-
fining a core lexicon. Paper presented at language resources and evaluation 2004, Lisbon,
Portugal.


	Part II Corpus methods
	5 Analyzing Dispersion
	5.1 Introduction
	5.2 Fundamentals
	5.2.1 An Overview of Measures of Dispersion
	5.2.2 Areas of Application and Validation

	5.3 Critical Assessment and Future Directions
	5.4 Tools and Resources
	Further Reading
	References



