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How to use statistics in quantitative 
corpus analysis 

Stefan Th. Gries    

To begin with what sounds like a disappointing start for this chapter: Usually, corpora 
do not directly provide what most linguists are interested in, such as meaning, com-
municative function/intention, information structure, cognition/processing and language 
proficiency/dialect. Instead, a prototypical corpus provides information on the presence 
or absence of character strings (typically a grapheme such as any letter [in any language], 
a space, a number or special characters like “%”, “~”, “@”, “™”, etc.):  

• In (certain parts/locations of) corpora;  
• In the presence or absence of other character strings. 

Note that character strings can be anything: text that was scraped from the Web, 
transcribed audio or video data (of spoken or signed language) with or without context 
and any kind of annotation that was then added to the actual text such as lexical/ 
structural annotation (on morphemes, parts of speech, parse trees), annotation pro-
viding information about the speakers, contextual annotation providing information 
about the circumstances of language production, etc. That has two consequences: First, 
whatever a linguist using corpus data is interested in will have to be studied via 
(i) frequencies of occurrence of something (text or annotation) somewhere in (parts of) a 
corpus or via (ii) frequencies of co-occurrence of two or more things. 

Second, ultimately, corpus-linguistic analysis will involve the notion of correlation. 
For instance, if one wants to study meaning, e.g. the semantics of a certain word or 
argument structure construction, one typically has to retrieve examples for the word/ 
construction from one’s corpus, annotate them for characteristics of interest and cor-
relate those characteristics with each other and/or with the meanings or kinds of uses of 
the word/construction. Similarly, if one wants to study information structure and its role 
for constituent ordering, one typically has to retrieve examples of the constructions in 
question, annotate them for information-structural and other characteristics and cor-
relate those with each other and the constructional choices. 

Trivial as that may seem, this reliance on the notion of correlation also means that 
corpus linguistics has often a very close to connection to statistical analysis – because 
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statistics is how we make sense of frequencies, distributions and correlations. This 
chapter will discuss some of the most frequent kinds of statistical applications in corpus 
linguistics: I will begin with some statistics that are, in a sense at least, specific to corpus 
linguistics and that are ordered in terms of how much contextual information they in-
clude; I will then turn to applications of statistical methods that are very general, but are 
here discussed for corpus data annotated for (potentially many) contextual features/ 
information. 

1 Frequency and dispersion 

Frequency information 

The most basic kind of statistic, and one that is typically completely acontextual, is token 
frequency of occurrence, i.e. the frequency with which something – a morpheme, a word, 
a multi-word unit, a grammatical construction, etc. – occurs in a corpus or in a part of a 
corpus; this would lead to statements such as “the word x occurs 134 times in corpus c”. 
This kind of statement might be compared to another one such as “the word y occurs 
150 times in corpus c”, but often we also have to make comparisons between different 
corpora that are not equally large, in which case we often find normalisations such as “x 
occurs 55 times per million words in corpus c, which is more often than y’s occurrence of 
34 times per million words in corpus d”. And similar statements can be made for token 
frequencies of co-occurrence such as “in corpus c, criticise is used 43 times per 100 K 
passives, but only 13 times per 100 K actives”. Such token frequencies have been im-
portant in many areas because of their correlations with many experimental tasks (word 
naming, picture naming, word retrieval); thus, frequency is often used as an explanatory 
or even just as a control variable in statistical analyses of corpora and experimental data. 
Also, frequency is a dimension that informs lexicographic work, curriculum/textbook 
design and many other applications. 

Another kind of frequency information is type frequency, i.e. the number of types 
that, for instance, occur in a certain lexically or syntactically defined slot. For example, a 
corpus might contain 500 instances of the verb lemma cause followed by some nominal 
direct object, and these 500 tokens might instantiate 80 noun lemma types – some very 
frequent ones (e.g. problems, which might account for 120 of the 500 tokens), some 
intermediately frequent ones (e.g. pain, which might account for another 40 tokens) and 
some really rare ones (e.g. cerebral palsy, which might account for just one token). Type 
frequencies have been considered important for studies of productivity (see Bybee and 
Thompson 1997; Bybee and Hopper 2001), as when a productive morpheme attached to 
more types than an unproductive one, or studies of category formation, as when a lexical 
item becomes a grammatical item by virtue of being associated with many semantically 
very diverse words. In a sense, very low type frequency can also reveal phraseologisms or 
fixed expressions: Since the type frequency of the word immediately after the adverb 
hermetically is one in just about every corpus (because sealed is just about always the 
next word), this is a good indicator that it may be a fixed expression. 

Given the relevance of frequency information, and especially the relative simplicity 
with which it can be obtained, frequency data are among the most widely provided 
corpus statistics. However, frequency is not without its problems, both conceptually and 
methodologically. For instance, frequency is correlated with many other aspects of 
language and cognition but that does not entail that it also has a causal effect on these 

Statistics in quantitative corpus analysis 

169 



other aspects, which is an entirely different hypothesis to (dis)prove. Statistically and 
methodologically, however, reporting a frequency, in particular a token frequency, on its 
own, is just as problematic as reporting an average (such as a mean) on its own: In fact, a 
frequency of, say, a word w in a corpus c is kind of a mean, namely the mean of the 
numbers you get when every word in c that is not w is coded as 0 and every word in c 
that is w is coded as 1. Therefore, the old statistical adage that one should never report 
an average without a measure of dispersion applies to corpus frequencies, too, and we 
turn to dispersion now. 

Dispersion 

The notion of dispersion in corpus linguistics is related to the notion of dispersion in 
statistics, and it refers to the evenness with which an element is distributed throughout a 
corpus. From that definition, it also follows that dispersion in corpus linguistics is re-
lated to the notion of recency (the effect that we remember and repeat things we have 
encountered recently more than things we have encountered earlier) in cognitive psy-
chology (see Gries 2019, Chapter 4): What dispersion quantifies is the degree of reg-
ularity with which you encounter the element in question when you read the corpus from 
beginning to end, i.e. the variability in how recently you saw that element if you just saw 
it again. If a word is distributed very evenly in the corpus, you will see it in regular 
intervals as you go through the corpus, but if a word is distributed very clumpily (i.e. 
unevenly), you will not see it at all for a long (corpus) time, then you will see it very often 
in a very short period of time and then maybe never again. 

Consider as an example the words staining and enormous in the Brown corpus, a 
corpus containing 500 parts with approximately 2,000 words each of written American 
English of the 1960s. Both words have the same frequency in the corpus – 37 – but 
nevertheless their distribution in the corpus could hardly be more different: All 37 oc-
currences of staining are in just 1 of the 500 corpus parts, but the 37 occurrences of 
enormous are spread out over 36 different corpus parts. Put differently, if you randomly 
pick 1 of the 500 corpus parts, there is only a 0.002 chance it contains staining, but there 
is a 0.072 chance it contains enormous. Therefore, trying to characterise both words’ 
distribution by just providing their frequency is completely misleading (and yet still what 
most corpus studies do). 

Of course, this was an extreme example – frequency and dispersion are usually cor-
related: Obviously, high-frequency function words will be the most evenly dispersed; 
obviously, it is hapaxes (words with a frequency of 1) that will be most unevenly dis-
persed. However, in spite of that general correlation, dispersion and frequency deviate 
from each other most in the range of intermediately frequent lexical words, which is why 
keeping them separate at all times is essential. 

Thus, dispersion should be a central corpus statistic for any corpus-linguistic appli-
cation involving acquisition/learning, language change or processing, and there are now 
initial results that indicate dispersion can outperform the predictive power of frequency 
(Adelman et al. 2006; Baayen 2010; Gries 2010). Basically whenever a linguist wants to 
measure the probability that a linguistic element is known or familiar to a speaker or the 
familiarity of a linguistic element to a speaker, frequency is usually the easiest statistic to 
obtain, but should always be augmented by a dispersion statistic; see Gries (2008) and  
Lijffijt and Gries (2012) for a comprehensive overview of most dispersion measures 
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known then and Gries (2021) for an update of that discussion and an updated script to 
compute dispersion. 

2 Association/contingency 

The next kind of basic statistic involves at least a bit of contextual information, namely 
co-occurrence information. In its simplest form, such co-occurrence information may 
come as frequencies of co-occurrence or probabilities of co-occurrence in the form of 
statements such as “of the 600 instances of the ditransitive construction (V NPRecipient 

NPPatient as in gave him a book) in corpus c, 200 (i.e. 0.333 or 33.3 per cent) have a form 
of the verb lemma give in its verb slot”. Of course, the perspective can also be reversed, 
as in “of the 400 instances of the verb lemma give in corpus c, 200 (i.e. 0.5 or 50 per cent) 
occur in the ditransitive construction”. Thus, if one is concerned with the co-occurrence 
of two elements – give and the ditransitive – then their co-occurrence frequency is one 
number – here, 200 – but to compute a relative frequency/percentage or probability, we 
need to decide what to normalise it against: the frequency of the construction, i.e. 
computing p(give|ditransitive), or the frequency of the verb, i.e. computing p(di-
transitive|give), which amounts to answering different questions. Normalising against 
the construction’s frequency says something about how prominent a role give plays for 
the ditransitive, whereas normalising against the verb’s frequency says something about 
how prominent a role the ditransitive plays for give. 

However, most applications involving co-occurrence do not just settle for co- 
occurrence frequency, but also report an association measure, a statistic quantifying the 
degree of association between the two elements, which is usually computed from a 2 × 2 
co-occurrence table such as shown in Table 13.1. In Table 13.1, the italicised frequencies 
are retrieved with, ideally, a programming language, whereas the regular frequencies are 
then computed via subtraction from the italicised ones; the letters in the lower-right 
corners of each cell indicate how these cells are usually referred to in the literature, which 
means that the most important cell, the one with the co-occurrence frequency, is usually 
designated a. 

For such tables, the two relative frequencies mentioned are easy to compute: p(give| 
ditransitive) is a/a+c whereas p(ditransitive|give) is a/a+b. However, literally dozens of 
association measures can be computed from such a table. Two simple ones are MI (for 
mutual information) and the OR (the odds ratio), which are computed as shown in (1) and 
(2), respectively:  

1. ( )MI log a= ÷ 6.381a b a c
a b c d2
( + ) ( + )
+ + +

2. OR = ÷ = 248a
b

c
d

(sometimes, OR is reported in its logged version) 

If MI > 0/OR > 1, then the two elements under consideration occur more often together 
than expected by random chance (they are “attracted to each other”); if MI < 0 / OR < 1, 
then they occur less often together than expected by random chance (they “repel each 
other”); and if MI = 0/OR = 1, then they occur together at chance level. In the hy-
pothetical examples provided earlier, therefore, give and the ditransitive are strongly 
attracted to each other. Typically, researchers would compute MI or OR for all types 
that might occur in a certain slot/position and then rank-order them. For instance, they 
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might compute OR for every verb type attested in the ditransitive construction and then 
rank them from the highest OR to the lowest. 

This kind of statistical method has many applications, virtually all of which are based 
on the so-called distributional hypothesis: 

If we consider words or morphemes A and B to be more different in meaning than A 
and C, then we will often find that the distributions of A and B are more different 
than the distributions of A and C. In other words, difference of meaning correlates 
with difference of distribution. 

(Harris 1970: 785f)  

For our present example, this translates into the expectation that a construction such as 
the ditransitive will be particularly strongly attracted to verbs whose meanings/functions 
are compatible with, or even highly similar to, the construction’s meaning function. And 
indeed, in a study of the ditransitive (Stefanowitsch and Gries 2003), give and tell score 
the highest association scores, and their semantics are indeed very closely related to the 
semantics of the ditransitive (“transfer”). Similar considerations apply to the co- 
occurrence of, for instance, near-synonymous lexical items, whose meaning differences 
can be so subtle as to be inaccessible even to native speakers, but which can be inferred 
from other lexical items they are attracted to. For instance, virtually no native speakers 
are able to explain the difference between botanic and botanical, yet if one uses asso-
ciation measures to identify the nouns these two forms prefer to modify, clear patterns 
emerge (see Gries 2003). 

However, the range of applications goes well beyond such simple examples: 
Association measures can be used in, say,  

• First-language acquisition contexts: Do children learn syntactic constructions on the 
basis of the verbs that these constructions are most associated with in their care-
takers’ speech? How quickly and early do children generalise the use of certain 
syntactic constructions? (See Pine et al. 2013 for a corpus-based study of determi-
ners in English.)  

• Second-/foreign-language acquisition/learning contexts: As non-native speakers of a 
language learn more and more words and constructions, do their preferred usage 
patterns resemble those of their input or that of native speakers? (See Wulff 2016 for 
a study of that complementation.) 

Table 13.1 A co-occurrence table based on the frequencies of co-occurrence (and assuming a corpus size 
of 100,000 constructions, however defined)       

Ditransitive construction Other constructions Sum  

give 200 200 400 
a b a + b 

other verbs 400 99,200 99,600 
c d c + d 

Sum 600 99,400 100,000 
a + c b + d a + b + c + d    
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• Diachronic linguistics: Can we quantify the degree of grammaticalisation of verbs 
by seeing how the degrees of associations with their preferred complements change 
over time (e.g. by weakening)? (See Hilpert 2006 for discussion of how to monitor 
linguistic change in diachronic corpus data using association measures.)  

• Psycholinguistic studies of speech production: Are speakers more likely to reduce 
the articulation of words that are highly predictable from, say, the previous word(s)? 
(See Bell et al. 2009 for a study of word durations based using, among other things, 
conditional probabilities and MI.) 

In other words, the fact that association measures essentially quantify the notion of 
contingency (the degree to which two stimuli are probabilistically related), a central 
component of theories of learning and processing (e.g. Ellis 2006), these measures are 
probably useful in any scenario in which some linguistic phenomenon might be condi-
tioned or determined at least in part by some other linguistic phenomenon in its context;  
Evert (2009) provides a good overview of many critical issues. Current topics of dis-
cussion involve questions such as “should we use measures that quantify mutual at-
traction/repulsion (such as MI/OR) or ones that quantify directional association?” or 
“should we use measures that are less sensitive to overall frequency/corpus size?” and 
others, but the general utility of being able to quantify attraction/repulsion of linguistic 
and other units is hardly ever called into question anymore. 

3 Context and concordances 

The last somewhat more specifically corpus-linguistic kind of statistic is on a form of 
output that many corpus linguists would probably not even apply any statistics to: the 
concordance display, i.e. the display of the search word(s) or tag(s) in question in a 
central column with a typically user-defined amount of context on the left and right. This 
is the most informative, context-rich display, because one can see the complete co-text of 
the expression in question (or, with relevant annotation, the context of the expression). 
At the same time, it is a display that might appear to defy the very notion of statistical 
analysis – at least not before annotation has been added, in which case we often apply 
the methods to be discussed in Sections 4 and 5. However, we will briefly discuss two 
useful applications of statistical methods to concordances: type-token ratios and lexical 
gravity. 

Type-token ratios 

Type-token ratios (TTRs), i.e. the number of types in a certain (part of a) text divided by 
the number of tokens in the same corpus (part), are a measure of lexical density/richness 
so it might seem as if this measure could have been mentioned in Section 1. However, 
since TTRs are very much correlated with the size of a text or a corpus, they are not 
usually used for that purpose. However, TTRs can be more useful when applied to, say, 
the fixed number of words around a node word or tag of interest. For instance, if one 
retrieves all instances of two words in a large corpus and then, for every instance of one 
of the two words, also retrieves exactly 200 words of co-text – 100 before the word in 
question, 100 after it – then one can compute the TTR for each instance’s context and 
compare them, because then the “text length” in the window has been held constant. 
What might this be good for? Szmrecsanyi (2006) computes TTRs (on 100 words of 
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context) as a proxy for lexical density in a case study of future choice (will vs. be going to) 
in a part of the British National Corpus and finds that the TTRs enter into significant and 
surprising interactions with the main predictor in his study (for instance, he found that 
increasing TTRs increase the odds for will-futures in some corpora, but decrease it in 
others). Thus, even such a statistically simple method applied to an unlikely target – a 
concordance display – can yield important results. 

Lexical gravity 

Another interesting and underused application of statistical tools to concordances is  
Mason’s (1999) notion of lexical gravity. For each slot around, say, a word of interest, he 
computed the entropy (a measure of randomness) of the frequency distribution of all 
words in that slot, and the lower the entropy of the slot, the more it deserves attention in 
the form of an analyst exploring that slot. 

How does this work? The entropy H of a frequency distribution is a measure of the 
evenness of the frequency distribution. In other words, if one has a concordance of a 
word with 200 instances, then one would look at, say, all 18 slots around the word from 
nine words to the left (L9) to nine words to the right (R9). Then, for each of these 18 
slots, one generates a frequency list of the 200 tokens in it and then computes the cor-
responding H-value (see Gries 2014: 40–1 for how to compute H). H will be high if the 
word types making up the 200 tokens are fairly evenly distributed, it will be low if a very 
small number of types account for most tokens and it will be 0 if a single type accounts 
for all 200 tokens (recall the example of hermetically earlier). Thus, slots for which one 
obtains a (very) low entropy value will be interesting because it is these slots that the 
node word whose concordance one is exploring has the strongest impact on. In other 
words, the entropies function as a pointer towards “where to look next” that is arrived at 
in a completely data-driven, statistically informed fashion. 

4 Regression and classification approaches 

The previous sections dealt with, in a sense, specifically corpus-linguistic statistics – “in a 
sense” because, of course, many disciplines use 2 × 2 co-occurrence tables, but arguably 
their particular use to compute association measures is a prominent corpus-linguistic 
method. This section and the next, by contrast, deal with general statistical techniques 
whose application to corpus data is really not all that different from their use in other 
areas. The first of these is concerned with regression and classification approaches, where 
the goal typically is to determine which of potentially very many different (predictor) 
variables explain speakers’ behaviors such as word durations or choices of one of several 
alternatives, e.g. the choice of one or more functionally similar morphemes, lexical items, 
grammatical constructions, etc. 

In such situations, a researcher’s starting point is usually a concordance of a phe-
nomenon in question (e.g. a syntactic alternation between two constructions), which is 
then imported into spreadsheet software so that each instance can be annotated for all 
the variables the researcher considers relevant – for instance, because they might be 
causally related to the phenomenon in question or because they might be variables that 
only need to be controlled for while one studies the potentially causal predictors. This 
process typically leads to a spreadsheet or data frame in the so-called case-by-variable 
format: Each instance of the linguistic phenomenon has its own row (i.e. the number of 
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rows corresponds to the sample size n), and each variable the data are annotated for has 
its own column. 

Such datasets are then often studied with either a regression-based approach or a tree- 
based approach. For either method, the researcher formulates one or more hypotheses 
regarding which (predictor) variables will be correlated with the (response) variable of 
the phenomenon in question and codifies this hypothesis in a model. For instance, if one 
studied the genitive alternation (of-genitive as in the speech of Captain Picard vs. s- 
genitive as in Captain Picard’s speech), one might hypothesise that the choice of one 
genitive over the other will be related to the length of “the possessor” (Captain Picard), 
the length of the possessum (the speech) and the kind or degree of animacy of the 
possessor (Captain Picard is human) and would therefore minimally formulate a model 
such as that in (3). In this model, the tilde (~) means “as a function of”; therefore, the 
tilde separates the response variable on the left (the choice of genitive) and the pre-
dictors/controls on the right, and in this model the hypothesis is that genitive choices are 
influenced by possessor length and (“+”) possessum length and (“+”) possessor animacy.  

3. GENITIVE ~ POSSESSORLENGTH + POSSESSUMLENGTH + POSSESSORANIMACY 

Both regression and tree-based approaches usually return two types of information: 
First, they quantify how well the researcher’s hypotheses embodied in the model fit the 
data; second, how much each variable on right of the “~” contributes to the hopefully 
good fit of the model. The former is often expressed with one of several so-called R2- 
values, which range from 0 (very bad fit) to 1 (perfect fit) or other kinds of statistics such 
as classification or prediction accuracies (how often in a percentage does the model make 
the right prediction?) and related scores. 

The latter, the information about the predictors, usually comes in three kinds:  

• An effect direction, which states how certain values of the predictors/controls affect 
genitive choices; for instance, such a model might indicate that the probability of s- 
genitives increases, rather than decreases, when the possessor is animate (as opposed 
to abstract);  

• An effect size, which states how much certain values of the predictors/controls affect 
genitive choices; for instance, such a model might indicate that the length of the 
possessor is a better/stronger predictor of genitive choices than the length of the 
possessum;  

• A significance test, which states how likely the effect of a certain predictor/control 
variable in one’s sample would be if, in the population from which the corpus sample 
was drawn, there was no such effect. If that probability is very small (conventionally 
below 0.05 or 5 per cent) for a certain predictor, then one typically interprets this as 
meaning that the effect in one’s data is not due to random variation. 

With these kinds of information and, typically, some visualisation of the effects that 
were found, a researcher would then revisit the initial hypotheses: Did the model fit the 
data well and in a way that confirms the initial hypotheses or not and, hopefully, why is 
that the case? 

While such a model is multifactorial – it considers the potential impact of multiple 
variables on the phenomenon at the same time – it might still be severely lacking in ways 
that are still often not understood in the field. This is because the model discussed earlier 
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only tested the so-called main effects of the three predictors. For instance, it tested how 
much POSSESSORLENGTH contributes to genitive choices regardless of the values of the 
other predictors POSSESSUMLENGTH and POSSESSORANIMACY, and the same for the other 
predictors. Thus, the model’s results for POSSESSORLENGTH assume and imply that 
POSSESSORLENGTH has the same effect no matter whether the possessum is short or long 
and/or whether the possessor is animate, inanimate/concrete or abstract. Thus, if the 
effect of POSSESSORLENGTH on genitive choices is different for different degrees of 
POSSESSORANIMACY, this model can, by definition, not reveal that because it does not 
contain a predictor encoding that possibility; that is, by formulating the model as we did 
in (3), we forced the model to assume that each predictor has the same effect everywhere. 

In order to be able to analyse such questions, one’s model needs to contain what is called 
an interaction term. An interaction term of predictors A and B, written as A:B, allows the 
effect of predictor A to vary as a function of another predictor B. To use a non-linguistic 
example: The effect of taking a certain medication (predictor A) may depend on whether 
one is taking it with a glass of water or a glass of vodka – if the medication is taken with 
water, it helps; if it is taken with vodka, it might make matters (much) worse. 

In our genitive example, if one expected that the effect of POSSESSORLENGTH was not the 
same regardless of whether the possessor is animate or not, one would include an in-
teraction term in the model, which is often written as in (4):  

4. GENITIVE ~ POSSESSORLENGTH + POSSESSUMLENGTH + POSSESSORANIMACY + 
POSSESSORLENGTH:POSSESSORANIMACY  

If the interaction term now returns, say, a significant result with a strong effect, then we 
interpret this as confirmation that the effect of POSSESSORLENGTH does indeed vary de-
pending on POSSESSORANIMACY. 

This scenario may seem useful in only a small number of circumstances – but that 
impression would be mistaken: The notion of interaction is one of the most frequent and 
important ones for such analyses. First, this is so because we already know that pre-
dictors often modify the effect of other predictors. For instance, in the case of particle 
placement (the alternation between Captain Picard gave back the phaser and Captain 
Picard gave the phaser back), there is a strong tendency for idiomatic verb phrases to 
prefer the particle before the direct object (DO), but when the DO is pronominal, the 
idiomaticity suddenly “doesn’t matter” anymore, and the particle goes behind the DO 
goes behind the DO. In other words, IDIOMATICITY does not have the same effect ev-
erywhere: It has a strong effect when the DO is lexical but none when it is pronominal – 
that is an interaction. 

Interactions play an even more important role in a second way. Imagine the earlier 
study of the genitive alternation was actually diachronic, covering three different time 
periods. In that case, one would have another predictor TIME with three levels. However, 
including TIME as a predictor as in (5) is not enough:  

5. GENITIVE ~ POSSESSORLENGTH + POSSESSUMLENGTH + POSSESSORANIMACY + TIME  

This is because this regression model would only indicate whether each of the three 
linguistic predictors has an effect regardless of what the other two linguistic predictors 
and TIME are doing. And from an effect of TIME, we would only learn whether s-genitives 
become more or less frequent over time, but not whether the effects of POSSESSORLENGTH, 
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POSSESSUMLENGTH or POSSESSORANIMACY changed over time – for that we would need each 
of these variables to interact with TIME, as in (6).  

6. GENITIVE ~ POSSESSORLENGTH + POSSESSUMLENGTH + POSSESSORANIMACY + TIME + 
POSSESSORLENGTH:TIME + POSSESSORLENGTH:TIME + POSSESSORANIMACY:TIME 

In other words, the last term, POSSESSORANIMACY:TIME, determines whether the effect of 
POSSESSORANIMACY has been changing over time: Maybe the effect of animate possessors 
was stronger 200 years ago than it is now. 

The same would be true if one studied the genitive alternation in native and non-native 
data: To determine whether the three predictors’ effects differ between native and non-native 
speakers, one would need to include (i) a predictor NATIVE with, say, the levels yes and no and 
(ii) that predictor’s interactions with all other predictors. Or, if one assumed that a speaker’s 
choices change over time in a conversation or in response to what an interlocutor just said 
(as in priming effects, see Szmrecsanyi 2006 or Hoey 2005), then one most likely needs an 
interaction of all relevant predictors with a variable that encodes when in a conversation 
something happened (e.g. a time index or sentence/utterance counter) or what the other 
speaker just did. In other words, whenever one’s thinking about a phenomenon involves the 
question or expectation that some predictor’s effect will not be the same everywhere, one 
needs a model with interactions of at least that predictor with other variables to do justice to 
the complexity of one’s expectations or hypotheses. The way in which interactions are 
studied differs between regression models and tree-based approaches (such as classification, 
regression or conditional inference trees or random forests; see Levshina (2021) for discus-
sion and exemplification), but regardless of how one studies interactions in each approach, it 
is definitely one of the most fundamental things to consider in one’s analyses. 

Another important range of issues corpus linguists using these kinds of methods need 
to be aware of is what one might call the potential repeated-measurements structure of 
one’s data: A lot of times, our data contain more than one data point from a speaker. 
This is important because it means that this speaker’s potentially idiosyncratic behavior 
is represented in the data multiple times, which means that all the data points from that 
speaker are related, which can heavily distort analyses. Why is that? As a somewhat 
unrealistic, but nonetheless instructive, example, imagine a learner corpus study of the 
genitive alternation. We know that the s-genitive is very strongly preferred when the 
possessor is short and animate and the possessum is long and a concrete object. Now 
imagine a non-native speaker who is at such an early level that they do not know yet an 
s-genitive even exists. That learner might therefore use the of-genitive even when ev-
erything in the context “screams” s-genitive. If that speaker now were to produce 
multiple such data points, those data points will of course go completely against the 
overall trend of everyone who actually knows both genitives exist and, thus, weaken the 
otherwise very robust correlations. Controlling for the fact that these unexpected of- 
genitives all come from the same person is one central reason for the rise of mixed-effects 
modeling in corpus linguistics. Once one has developed a good general understanding of 
regression modeling, this kind of approach should be next on one’s list. 

5 Exploratory analyses 

While the previous section was concerned with hypothesis-testing approaches towards 
regression and classification, another widely used family of approaches are exploratory 
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in nature. In other words, in this kind of work we may have a potentially quite large 
dataset – again typically cases described by variables in a spreadsheet – and we are 
interested in identifying any kind of interesting structure in the data, which are too large 
for “normal human eyeballing” to be successful and reliable. “Any kind of structure” is 
deliberately general: It can refer to finding (i) groups made up by the cases (i.e. rows) or 
(ii) groups made up by the variables (i.e. columns), and often the algorithms then 
identify these groups of cases or variables by trying to maximise within-group simila-
rities and minimise between-group similarities. That means the goal of these algorithms 
is to create groups that contain members that are as similar as possible to each other 
while at the same are as different as possible from the members of other groups. For 
some of these methods, the researcher needs to provide the algorithm with a number of 
groups to identify; in others, the algorithm will either “propose” a number on the basis 
of the data that the researcher can then accept or reject, or the algorithm will represent 
the data in a certain fashion from which the researcher can then pick a most suitable 
number of groups or dimensions. 

The following two sections briefly discuss the probably most frequently used 
methods: hierarchical cluster analysis followed by principal components analysis and 
correspondence analysis. 

Hierarchical cluster analysis 

The point of a hierarchical cluster analysis is usually to find groups among the cases. For 
instance, we might have different speakers or different languages for which we have 
numeric or categorical data, and we want them to be grouped, or clustered, on the basis 
of the data. Moisl (2015), a book-length treatment of cluster analysis for corpus data, 
gives as an example (Chapter 2, Table 2.3) the application of clustering 24 speakers on 
the basis of the frequencies with which the speakers used 12 different phonemes in a 
corpus. Looking at 24 · 12 = 288 numbers is not going to help that much, but for a 
hierarchical cluster analysis, this is actually a small dataset. 

This kind of analysis typically proceeds in three steps. First, the analysis computes a 
so-called distance matrix, which states for every case how distant it is from – i.e. how 
dissimilar it is from – every other case. Second, the analysis then computes a cluster 
structure by successively amalgamating all cases into groups/clusters such that within- 
group/cluster similarity, or cohesion, is as high as possible. Finally, the resulting 
structure is represented in a tree with the cases at the bottom and, hopefully, groups/ 
clusters emerging from the connections of the branches. Consider Figure 13.1 for the 
results of such a cluster analysis applied to nine Russian verbs, all meaning “to try”, for 
which we (Divjak and Gries 2006) had frequency data regarding 87 lexical, morpho-
syntactic and semantic features based on 1,585 annotated concordance lines. 

Figure 13.1 is instructive in particular because it is not completely obvious how many 
clusters to assume, an uncertainty that is not uncommon in exploratory analyses. One’s 
first impulse might be to go with three clusters of three verbs each, and that is the 
solution we adopted; however, at least considering a four-cluster solution might also be 
useful, namely {silit’sja, poryvat’sja, norovit’}1, {tuzit’sja, tscit’sja, pyzit’sja}2, {pro-
bovat’}3 and {pytat’sja, starat’sja}4. The results from this three-cluster solution were 
then interpreted in terms of a radial network of senses and its relation to the treatment of 
these near synonyms in traditional Russian lexicography. 
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It needs to be highlighted here that this kind of exploratory approach is not ne-
cessarily completely objective: Not only does one have to interpret the cluster structure 
returned by the analysis, which can be subjective to a certain degree, the analyst also has 
to make and defend some choices during the process. For example, the computation of 
the distance matrix can be done with different distance or similarity measures that do not 
all return identical results; similarly, there are different ways in which the cases can be 
amalgamated into clusters and, again, the researcher must choose one and justify the 
choice. On the one hand, this may seem like a weakness of the approach because it seems 
to indicate a lack of “a clear answer”; on the other hand, we are talking about ex-
ploratory approaches, so it should not come as a surprise that different ways of exploring 
the same data can lead to different aspects of the data being highlighted in these different 
analyses. Gries (2013: Section 5.6) and Desagulier (2018: Section 10.6) are useful first 
sources to consult, but Moisl (2015) provides a much more comprehensive discussion. 

Principal components analysis and (multiple) correspondence analysis 

The two analytical methods of this section are conceptually similar. Both take as input 
matrices of often co-occurrence frequencies (like Table 13.1, just with many more rows 
and columns) and try to represent the multiple dimensions of information contained in 
these matrices using much fewer – often just two or three – dimensions; these dimensions 
are usually orthogonal (i.e. mutually independent or uncorrelated), and both analyses 
will also indicate how much of the information in the original matrix the now two or 
three dimensions still represent. Principal component analyses (PCAs) are usually done 
on numeric measurements, whereas (multiple) correspondence analyses ([M]CAs) are 
usually done on frequency data. 

For instance, a PCA might indicate that a dataset with 20 columns can actually be 
reduced to, or compressed into, a dataset with only 4 columns (then called principal 
components) while still retaining 85 per cent of the information contained in the original 
20 columns. The PCA would manage that by detecting correlations between the original 

Figure 13.1 Dendrogram of the data discussed in  Divjak and Gries (2006)  
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columns – in other words, redundant information – and then “merging” multiple col-
umns into a principal component. In a somewhat similar vein, a CA decomposes a chi- 
squared statistic of a co-occurrence table into orthogonal components – which means 
correspondence analysis uses interrelations between columns (like a PCA) but also be-
tween rows (unlike a PCA) – and then represents those in a two- or three-dimensional 
plot to reveal distributional patterns impossible to see just from the co-occurrence fre-
quencies themselves. 

These methods can be extremely useful both on their own for the description and 
exploration of multidimensional, or multivariate, corpus data, but PCA is also some-
times used to prepare data for regression modeling of the type discussed in the previous 
section. This is because regressions and tree-based models sometimes have a lot of dif-
ficulties dealing with predictors that are highly correlated with each other, a problem 
referred to as (multi)collinearity. This is because if multiple predictors are highly related 
to each other, then the regression or tree “does not know” to which of them it should 
attribute what the response variable is doing. If the relevant predictors are numeric, a 
PCA could be used to reduce the number of correlated predictors – maybe even down to 
one – so that the subsequent application of a hypothesis-testing model is less jeo-
pardised. As these techniques become more popular in corpus linguistics – in particular 
(M)CA has become more widely used especially over the last few years – corpus linguists 
should become more familiar with them; Levshina (2021) and Desagulier (2018: 
Section 10.2, and 10.4–10.5) are good places to learn more about these methods.  

Further reading 

Gries, St. Th. (2013) Statistics for Linguistics with R, 2nd edn, Berlin and Boston: De Gruyter 
Mouton. (A still very useful overview of statistical methods, focusing mostly on corpus data 
and different kinds of regression modeling, but discussing also hierarchical cluster analysis.) 

Levshina, N. (2015) How to Do Linguistics with R: Data Exploration and Statistical Analysis, 
Amsterdam: John Benjamins. (A textbook on R in linguistics in general, with many applica-
tions pertinent to the sections in this chapter.) 

Paquot, M. and Gries, St. Th. (eds) (2021) Practical Handbook of Corpus Linguistics, Berlin and 
New York: Springer. (A new handbook of corpus linguistics with overview chapters on many 
central corpus-linguistic notions, as well as many hands-on chapters on statistical techniques 
applied to corpus data using R.)  
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