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Introduction

In one of the most frequent empirical scenarios in applied linguistics, a researcher’s empirical results
can be summarized in a two-dimensional frequency table in which

• the rows list the levels of a categorical variable;
• the columns list the levels of another categorical variable;
• the cells in the table defined by these row and column levels provide the frequencies with which

combinations of row and column levels were observed in some data.

An example of data from a study of verb–particle constructions (John pickedVERB [the book]DO upPART
vs. John pickedVERB upPART [the book]DO) from Peters (2001) is shown in Table 1, which shows the
distribution of 397 constructions depending on whether the referent of the direct object (DO) is a
discourse given or new.

A researcher may be interested in whether there is a correlation between the DO’s givenness—the
row variable—and the construction a speaker produced with that DO—the column variable.
A first superficial glance suggests that given DOs are used more often in V-Part-DO (100) than in
V-DO-Part (85), but an actual statistical test is required to determine (a) whether the distribution
of the constructions with the DOs is significantly different from chance and (b), if so, what
preferences and dispreferences this data set reflects. The most frequent statistical test to analyze
two-dimensional frequency tables such as Table 1 is the chi-squared test for independence.

The Chi-squared Test for Independence

The chi-squared test for independence is introduced here using the open-source statistical lan-
guage and environment R (compare R Core Team 2022), which can be freely downloaded from
<https://cran.r-project.org/> and which runs on all major operating systems.

Entering the Data

The first step in the analysis of two-dimensional frequency tables is to start the R program and enter
the frequency table into R. For example, to enter Table 1, the researcher would type the following
at the console prompt (where c means “combine values into a vector,” or sequence, ncol specifies
the number of columns into which the sequence of numbers should be coerced, <- represents an
assignment arrow, and the Pilcrow sign ¶ means “press ENTER”):

Tab1 <- matrix(c(85, 65, 100, 147), ncol=2)¶

This creates the matrix of the frequencies shown in Table 1 and stores it as an object called Tab1.
It is also good practice to add row/column names (as an attribute called dimnames) like this (com-
ments after # are ignored by R and are added for the human reader’s convenience):
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2 TESTING INDEPENDENT RELATIONSHIPS

Table 1 Verb–particle constructions and their correlation with the givenness of the direct object

V-DO-Part V-Part-DO Sum

Given 85 100 185
New 65 147 212
Sum 150 247 397

attr(Tab1, "dimnames") <- list( # assign row & column names
Givenness=c("given", "new"),
Construction=c("V-DO-Part", "V-Part-DO"))¶

If one now tells R to display the object Tab1, then the data look exactly like Table 1:

Tab1 # show Tab1¶
Construction

Givenness V-DO-Part V-Part-DO
given 85 100
new 65 147

The row and column totals can be obtained from the function addmargins:

addmargins(Tab1) # show Tab1 with row & column sums¶
Construction

Givenness V-DO-Part V-Part-DO Sum
given 85 100 185
new 65 147 212
Sum 150 247 397

Assumptions

The second step involves determining whether the data can in fact be tested with a chi-squared
test for independence. This test has three assumptions of two different kinds: The first involves the
independence-of-data-points assumption, and the next two involve the frequencies that would be
expected if the data were randomly distributed. The three assumptions are the following:

• all observations are independent of one another;
• 80% of the expected frequencies are ≥5;
• all expected frequencies are >1.

The first assumption requires the researcher to consider whether data points—individual occur-
rences of a construction with a certain DO—are related to each other. This would be the case if, for
example, one and the same speaker provided more than one data point to the data set. In such cases,
an individual speaker’s preference for a particular construction, or a particular construction with a
certain kind of object, could bias the statistical evaluation of the data. Another threat to indepen-
dence could arise if constructional choices were from different speakers but from successive turns
in some conversation, because then a constructional choice in turn t might be influenced by the one
in turn t − 1 because of priming effects. We will assume that this is not the case here because, for
instance, each collected construction is from a different speaker in a different conversation.

The other two assumptions of the chi-squared test will be tested with the function to run the test
itself in the following section. Testing the assumptions of the chi-squared test is important because
when the data violate the assumptions of the test, its results cannot be trusted: If (too many) expected
frequencies are too small, the test can become more likely to return a significant result than it should,
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TESTING INDEPENDENT RELATIONSHIPS 3

and if the data points are not independent of each other, then the computation of the expected
frequencies will be biased. Making sure that the test’s assumptions are met is therefore paramount.

Computing and Interpreting the Test

The chi-squared test can be computed easily with a function called chisq.test, which takes two
arguments: (a) the two-dimensional table for which one wants to compute a chi-squared test (here,
Tab1) and (b) an argument correct that is set to TRUE or FALSE, depending on whether or not
one wants to use a so-called continuity correction, which has sometimes been recommended for
smaller sample sizes. Since this recommendation is controversial, we will not use it and discuss a
better way to deal with small sample sizes below. The researcher can then assign the result of the
chi-squared test to an object Tab1.test (output is abbreviated):

Tab1.test <- chisq.test( # compute a chi-squared test
Tab1, # on the matrix Tab1
correct=FALSE) # with no correction for continuity

Tab1.test # show the result
Pearson’s Chi-squared test

X-squared = 9.8191, df = 1, p-value = 0.001727

Here, there is a very significant correlation between the DO’s givenness and the constructional
choice: p is smaller than the usual critical value of p = 0.05. However, we first need to determine
whether we can take this result at face value, given the two additional assumptions regarding the
chi-squared test’s expected frequencies. For this, the researcher can just print the part of the test
results that contains the (rounded) expected frequencies:

round(Tab1.test$expected, 2) # show the rounded expected frequencies¶
Construction

Givenness V-DO-Part V-Part-DO
given 69.9 115.1
new 80.1 131.9

Obviously, all expected frequencies meet both assumptions—the application of the chi-squared
test was justified. Therefore, the next step is to determine which of the four cells in Tab1 is/are most
responsible for this effect, and what to focus on most in the interpretation. To identify these cells,
one can inspect the so-called Pearson residuals.

round(Tab1.test$res, 2) # show the rounded residuals¶
Construction

Givenness V-DO-Part V-Part-DO
given 1.81 -1.41
new -1.69 1.31

If the Pearson residual in a cell is positive, the observed frequency in that cell is greater than
the expected frequency in that cell; if the Pearson residual in a cell is negative, the observed fre-
quency is less than the expected frequency; and the more a Pearson residual deviates from 0, the
stronger the effect in that cell. Here, the strongest effect is the preference of V-DO-Part with given
DOs (observed frequency: 85 and expected frequency: 69.9). Note how this analysis relativizes our
superficial assessment above (“given DOs are preferred in V-Part-DO”): The chi-squared test shows
that the 100 occurrences of given DOs in V-Part-DO actually instantiate an under representation.

Graphical Interpretation and Effect Size

The above kind of interpretation of chi-squared tests can often be facilitated considerably with
graphical displays. Figure 1 shows a mosaic plot, which can be created with the following line:
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4 TESTING INDEPENDENT RELATIONSHIPS
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Figure 1 A mosaic plot for the data in Table 1

mosaicplot(t(Tab1), main="") # plot a mosaic plot¶

In Figure 1, the box sizes are proportional to the cell frequencies and a lack of alignment of the
margins between the boxes indicates correlational structure. For example, the fact that the upper
left box is longer (vertically) than the upper right box indicates that V-DO-Part is more associated
with given DOs than V-Part-DO.

Finally, in order to be able to compare results from different studies, one can compute an effect
size, which is independent of the sample size. For two-dimensional tables, a statistic called Cramer’s
V is often used. It theoretically falls between 0 (“no association”) and 1 (“perfect association”) and
is computed as shown in (1), where min(r, c) means “the minimum of the numbers of rows and
columns”:

V =

√
𝜒2

n ⋅ (min (r, c) − 1)
(1)

In this example, the effect size can be computed with the following code, where sqrt means
“square root,” Tab1.test$statistic represents the chi-square value of the chi-squared test
stored in Tab1.test, sum(Tab1) represents the sample size n, and dim(Tab1) returns the num-
bers of rows and columns of Tab1, of which then the minimum (min) is taken. The resulting
Cramer’s V value is fairly small, certainly much closer to 0 than to 1:

> sqrt( # compute the square root of this fraction:
+ Tab1.test$statistic / # numerator
+ (sum(Tab1) * (min(dim(Tab1))-1))) # denominator;

X-squared
0.1572683
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TESTING INDEPENDENT RELATIONSHIPS 5

To report the result of a chi-squared test, the researcher should provide the table of observed
frequencies, the chi-squared value with its df- and p-value, and Cramer’s V. The following
section discusses very briefly one way to proceed if the expected frequencies are too small for a
chi-squared test.

An Exact Alternative: Fisher–Yates Test

Sometimes, one may have data that result in expected frequencies too small to meet assumptions 2
and 3 of the chi-squared test. For instance, what if Peters had only obtained the data shown here as
the hypothetical table Tab1.hyp.

Tab1.hyp <- floor(Tab1/15)¶
Tab1.hyp¶

Construction
Givenness V-DO-Part V-Part-DO

given 5 6
new 4 9

A chi-squared test on Tab1.hyp shows that too many of the expected frequencies are smaller
than 5:

round(chisq.test(Tab1.hyp, correct=FALSE)$expected, 2)¶
Construction

Givenness V-DO-Part V-Part-DO
given 4.12 6.88
new 4.88 8.12

In such cases, one could apply the Fisher–Yates exact test, whose application in R is very straight-
forward (output is abbreviated):

fisher.test(Tab1.hyp) # compute Fisher-Yates exact test¶
Fisher’s Exact Test for Count Data

p-value = 0.6752

The test shows that the distribution in Tab1.hyp is not significantly different from chance: p is
large, meaning the distribution is too compatible with the null hypothesis of no relation to accept
the alternative hypothesis.

An Alternative Approach and Its Extension to Multidimensional Tables

While the chi-squared test is probably the most widely used test for frequency tables, the alterna-
tive of G-squared is also important. Similar to chi-squared, G2 is based on comparing observed to
expected frequencies; it is computed over the c (here, c = 4) cells of the table as shown in (2):

G2 = 2
c∑
1

observed × log observed
expected

(2)

In R, this can be done like this:

2*sum(Tab1 * log(Tab1 / chisq.test(Tab1, correct=FALSE)$expected))¶
[1] 9.835021

The value is close to the chi-squared value we computed above (9.8191) and is also tested for
significance against the chi-squared distribution:
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6 TESTING INDEPENDENT RELATIONSHIPS

pchisq(9.835021, df=1, lower.tail=FALSE)¶
[1] 0.001712203

Obviously, the result is very similar to what we obtained above, but G2 is still a very impor-
tant measure to know. This is for two reasons: First, there are some areas of research in applied
linguistics—for example, research into collocations or keywords—where G2 is used much more
often than the chi-squared test. Second, it is with G2 that we can powerfully extend our above test-
ing of two-dimensional tables to higher dimensional tables. For example, we saw above that, in
Peters’s (2001) data, there was a significant correlation between DO’s givenness and constructional
choices, but what if we now had a second study testing the same issue which had these results:

Tab2 <- matrix(c(143, 66, 53, 141), ncol=2)¶
attr(Tab2, "dimnames") <- attr(Tab1, "dimnames")¶
Tab2¶

Construction
Givenness V-DO-Part V-Part-DO

given 143 53
new 66 141

That is, we now have a three-dimensional design: 2 (givenness) × 2 (construction) × 2 (study) and
need to determine whether the correlations of givenness and constructional choice we see in Tab1
and Tab2 are significantly different. Such questions can be addressed with regression methods (e.g.,
binary logistic regression and Poisson regression), which use G2, not chi-squared, as their main
significance-testing statistic. Such an analysis would show that the results of Tab1 and Tab2 differ
significantly from each other (G2 = 13.234, df = 1, p < 0.001; see Gries 2021, Ch. 5). Thus, recognizing
G2 as an important alternative to chi-squared offers powerful new ways to test for not just simple
but also more complex (in)dependent relationships.

SEE ALSO: Comparing Groups With Multiple Independent Variables; Comparing Two Related
Samples; Corpus Linguistics: Quantitative Methods; Inference; Probability and Hypothesis Testing;
Quantitative Methods; Multiple Regression
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